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Abstract. With the knowledge of action moments (i.e., trimmed video
clips that each contains an action instance), humans could routinely lo-
calize an action temporally in an untrimmed video. Nevertheless, most
practical methods still require all training videos to be labeled with tem-
poral annotations (action category and temporal boundary) and develop
the models in a fully-supervised manner, despite expensive labeling ef-
forts and inapplicable to new categories. In this paper, we introduce a
new design of transfer learning type to learn action localization for a large
set of action categories, but only on action moments from the categories
of interest and temporal annotations of untrimmed videos from a small
set of action classes. Specifically, we present Action Herald Networks (A-
herNet) that integrate such design into an one-stage action localization
framework. Technically, a weight transfer function is uniquely devised
to build the transformation between classification of action moments or
foreground video segments and action localization in synthetic contextu-
al moments or untrimmed videos. The context of each moment is learnt
through the adversarial mechanism to differentiate the generated features
from those of background in untrimmed videos. Extensive experiments
are conducted on the learning both across the splits of ActivityNet v1.3
and from THUMOS14 to ActivityNet v1.3. Our AherNet demonstrates
the superiority even comparing to most fully-supervised action localiza-
tion methods. More remarkably, we train AherNet to localize actions
from 600 categories on the leverage of action moments in Kinetics-600
and temporal annotations from 200 classes in ActivityNet v1.3.

1 Introduction

With the tremendous increase in Internet bandwidth and the power of the cloud,
video data is growing explosively and video-based intelligent services are be-
coming gradually accessible to ordinary users. This trend encourages the de-
velopment of recent technological advances, which facilitates a variety of video
understanding applications [3, 25, 26, 34]. In between, one of the most fundamen-
tal challenges is the process of temporal action localization [7, 11, 24, 29, 46, 59],
? This work was performed at JD AI Research.
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Fig. 1: Action localization modeling for a large set of categories based on only
action moments of these categories (e.g., Kinetics [12]) and untrimmed videos
from a small set of categories with temporal annotations (e.g., ActivityNet [17]).

which is to predict the temporal boundary of each action in an untrimmed video
and categorize each action according to visual content as well. Most existing
action localization systems still perform “intensive manual labeling” to collec-
t temporal annotations (action category and temporal boundary) of actions in
untrimmed videos and then train localization models in a fully-supervised man-
ner. Such paradigm requires strong supervision, which is expensive to annotate
for new categories and thus limits the number of action categories. In the mean-
time, there are various datasets (e.g., Kinetics [12]) which include expert labeled
data of trimmed action moments for action recognition. A valid question then
emerges as is it possible to achieve action localization for a large set of cate-
gories, with only trimmed action moments from these categories and temporal
annotations from a small set of action classes? If possible, it is readily to adap-
t state-of-the-art action localization methods to support thousands of action
categories in real-world deployment.

With this motivation, Figure 1 conceptually depicts the pipeline of action lo-
calization in our work. Given a large set of categories which have only trimmed
action moments (e.g., Kinetics [12]) and a small set of classes which have fully
temporal annotations on untrimmed videos (e.g., ActivityNet [17]), we aim for
a model that enables to temporally localize and recognize actions from the large
set of categories. Note that the categories in the two sets could be completely
different. The main difficulties inherently originate from two aspects: 1) how to
build the connection between classification and localization? 2) how to halluci-
nate the context or background of an action moment in training? We propose
to mitigate the first issue through the design of weight transfer. In view that
action localization generally consists of temporal action proposal and temporal
action classification, the network weights for temporal action classification could
be derived from those for action recognition of trimmed videos. In our case, the
trimmed videos are either foreground video segments in untrimmed videos or
action moments. As such, the weight transfer is considered as a bridge between
classification and localization. We utilize the recipe of adversarial learning to al-
leviate the second issue. A discriminator is devised to differentiate the generated
context features from those of background in untrimmed videos.
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By consolidating the idea of learning action localization models on a mixture
of action moments and fully temporal annotations, we present a new Action Her-
ald Networks (AherNet) in an one-stage localization framework. AherNet mainly
includes two modules, i.e., weight transfer between classification and localization
on untrimmed videos with temporal annotations, and localization modeling on
action moments with synthetic contexts. On one hand, the first module naturally
constructs a correspondence between action localization in an untrimmed video
and action classification of “action moment”, i.e., the foreground video segmen-
t extracted from the untrimmed video. Technically, we learn a weight transfer
function which transforms network parameters for foreground segment classifi-
cation to those for temporal action classification in localization on untrimmed
videos. On the other hand, to simulate action localization on action moments
data, we hallucinate the features of context or background of an action moment
via adversarial learning. The connection between action moment classification
and localization of the action from the context is also built by the weight trans-
fer function, whose parameters are shared. The whole AherNet is end-to-end
optimized by minimizing proposal loss, classification loss and adversarial loss.

The main contribution of this work is a new paradigm between supervised and
weakly-supervised training, that enables action localization models to support
thousands of action categories, with only trimmed action moments from these
categories and temporal annotations from a small set of classes. This also leads
to the elegant view of how to bridge the task of classification and localization,
and how to produce the context of action moments to simulate localization in
training, which are problems not yet fully understood.

2 Related Work

Temporal Action Localization. We briefly group the temporal action local-
ization into two categories: two-stage and one-stage action localization. Two-
stage action localization approaches [16, 43, 45, 55, 58, 59] first detect temporal
action proposals [3, 6, 9, 10, 29, 33, 39, 49, 57] and then classify [40, 41] the pro-
posals into known action classes. For instance, Buch et al. [3] develop a recurrent
GRU-based action proposal model followed by a S-CNN [46] classifier for local-
ization. To further facilitate action localization by uniting separate optimization
of two stages, there have been several one-stage techniques [2, 4, 27, 32, 56] be-
ing proposed. All these methods require the training data with fully temporal
annotations. Instead, our AherNet models action localization for a large set of
categories based on only action moments of these categories and untrimmed
videos from a small set of categories with temporal annotations.

Parameter Prediction. Parameter prediction in neural networks is capable
of building the connections between the related tasks. Several weight adapta-
tion methods [18, 23, 50] learn specific matrix to adapt the image classification
weights for object detection. Most recently, Hu et al. [19] explore the direction
of parameter transferring from object detection to instance segmentation by a
general function, which enables the transformed Mask R-CNN [15] to segment
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3000 visual concepts. In our work, we utilize the parameter prediction to bridge
the task of classification and localization.

Adversarial Learning. Inspired by the Generative Adversarial Network-
s (GAN) [14], the adversarial learning has been widely used in various vision
tasks, e.g., image translation [20] and domain adaptation [8, 51]. The training
processing of GAN [14] corresponds to a minimax two-player game to make the
distribution of fake data close to the real data distribution. In the context of
our work, we simulate action localization on action moments with generated ac-
tion contexts. Through adversarial learning, the generated contextual features
become indiscriminative from real background features of untrimmed video.

Weakly-supervised Action Localization. The weakly-supervised action
localization approaches [31, 37, 38, 42, 44, 52] only utilize the category supervision
of untrimmed videos for localization, whose setting and scenario are different
from our paradigm. Most of them build an attention mechanism to detect actions.

In short, our work mainly focuses on a new learning paradigm of scaling
action localization to a large set of categories. The proposal of AherNet con-
tributes by studying not only bridging action classification and localization
through weight transfer, but also how the generated context of action moments
should be better leveraged to support action localization learning.

3 Action Herald Networks

In this section we present the proposed Action Herald Networks (AherNet) in
detail. Figure 2 illustrates an overview of our architecture. It consists of two mod-
ules, i.e., weight transfer between classification and localization, and localization
modeling on action moments. Given an untrimmed video, the foreground video
segment is extracted as the “action moment.” A 3D ConvNet is exploited as the
base network to extract a sequence of clip-level features for the untrimmed video
and foreground segment, respectively. Each feature sequence is concatenated in-
to a feature map, followed by a cascaded of 1D temporal convolutional layers to
output feature maps on different scales. For action classification of foreground
segment, global pooling is employed on the features of all the cells in each feature
map to produce the features on each scale, which are projected via a matrix for
segment-level classification. Such matrix is adapted by a weight transfer func-
tion to that used in action localization for the untrimmed video. In that case,
we perform the adapted matrix on each feature map to obtain the projection of
the features of every cell (anchor) in that map for temporal action classification.
Similar processes are implemented on action moments and the extensions with
contexts. The features of contexts are hallucinated through adversarial learning
and the parameters of the weight transfer function are shared. The network is
jointly optimized with proposal loss, classification loss and adversarial loss.

3.1 Base Backbone

We build our action localization model on a weight-sharing 1D convolutional
networks. Given an input untrimmed video or action moment, a sequence of
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Fig. 2: An overview of our Action Herald Networks (AherNet) architecture. The
foreground segments of untrimmed videos are first extracted as “action mo-
ments.” The input untrimmed video and foreground segment is encoded into
a series of clip-level features via a 3D ConvNet, which are sequentially concate-
nated as a feature map, respectively. A cascaded of 1D convolutional layers is
applied to generate multiple feature maps on different scales. For classification
of foreground segment, global pooling is exploited on all cells of feature map to
produce the features on each scale, which are projected via a matrix for segment-
level classification. The matrix is adapted by a weight transfer function (orange
box) to that used in action localization for untrimmed video. In localization,
the adapted matrix is performed on each cell in the feature map to obtain the
projection for temporal action classification. Similar process are implemented
on action moments and the extensions with generated context. The synthetic
contexts of moments are confused with the background of untrimmed videos via
adversarial learning (green box) and the parameters of weight transfer function
are shared. Our AherNet is jointly optimized with proposal loss, classification
loss and adversarial loss. In the inference stage, only the localization part (blue
box) learnt on the moments with contexts is utilized to predict action instances.

clip-level features are extracted from a 3D ConvNet. We concatenate all the
features into one feature map and then feed the map into a cascaded of 1D
convolutional layers (anchor layers) to generate multiple feature maps on eight
temporal scales. These feature maps are further exploited for action classification
of the action moment or temporal action localization of the untrimmed video.

3.2 Weight Transfer Between Classification and Localization

Given the feature maps of an untrimmed video in 1D ConvNet, temporal bound-
ary regression and action classification can be optimized for each anchor in the
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feature maps. For an action moment or foreground segment, the representa-
tion of global pooling on each feature map is able to be used for segment-level
classification. In view that action localization task decomposes into temporal
action proposal and classification, the parameters of temporal action classifi-
cation in localization to predict the score of a specific action category could
be derived from the weights of moments recognition for the same category. To
build the connection between the two tasks, we extract the foreground segment
of untrimmed video as moment and learn a generic weight transfer function to
transform parameters for foreground segment classification to those for temporal
action classification in localization.

Specifically, in j-th feature map of foreground segment, global pooling is
first employed on that map to produce a feature vector. Then a matrix Wj

regv,c

is utilized to project the feature vector into the probability of category c for
segment-level classification. As for localization on untrimmed video, we adopt a
1D convolutional layer with stride of 1 to obtain the score of each cell (anchor) in
that map for anchor-level classification. The parameters in that 1D convolutional
layer to predict score of category c are denoted asWj

clsa,c. To bridge classification
and localization for the specific category c, a generic weight transfer function T
is introduced to predict Wj

clsa,c from Wj
regv,c as follows:

Wj
clsa,c = T (Wj

regv,c; θ
j), (1)

where θj are the learnt parameters irrespective of action category. T can be
implemented with one or two fully-connected layers activated by different func-
tions. Through sharing θj with the transfer module in j-th anchor layer between
classification and localization on moments, T is generalized to the categories
of action moments. The weights of segment-level classification for those cate-
gories can be transferred to the weights of anchor-level classification. As such,
the weight transfer function is considered as a bridge to leverage the knowledge
encoded in the action classification weights for action localization learning.

3.3 Localization Modeling on Action Moments

With the obtained anchor-level classification weights predicted by weight trans-
fer function on action moments, we still can not perform action localization
training since there is no background for optimizing temporal action propos-
al. To leverage action moments data for training localization model, a natural
way is to hallucinate the background of moment to synthetize a complete action
video. We therefore propose to generate action moment contextual features for
localization modeling in an adversarial manner.

Figure 3 illustrates the process of action context generation for action mo-
ments. We denote the concatenated feature map of action moment and untrimmed
video extracted by 3D ConvNet as fm and fu. Taking fm as prior knowledge, two
generators (G1 and G2) with the structure of two 1D convolutional layers are
followed to synthesize the starting and ending contextual feature, respectively.
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Fig. 3: Action context generation through adversarial learning. (BG: background)

The synthetic moments feature f̃m is generated by concatenating fm with the
two generated contextual features as follows:

f̃m = A(G1(fm), fm, G2(fm)), (2)

where A denotes the concatenation operation. By feeding the synthetic feature
f̃m and the original feature fu of untrimmed videos into the 1D convolutional
networks of localization model, multiple feature maps are produced on different
scales. Each cell (anchor) in the j-th feature map reflects an action proposal,
and the default temporal boundary of the t-th cell is defined as:

mc = (t+ 0.5)/T j , mw = rd/T
j , (3)

where mc and mw are the center location and width. T j and rd represents
the temporal length and scale ratio, respectively. For each cell, we denote the
intersection over union (IoU) between the corresponding proposal and it’s closest
ground truth as giou. If the giou is larger than 0.8, we regard the cell as foreground
cell. If the giou is lower than 0.3, it will be set as background cell. In each
feature map, a discriminator is introduced to differentiate the background cells
of synthetic moments from those of untrimmed videos. The simulation of action
localization is employed on the concatenated synthetic feature.

Through adversarial learning, the contextual features of synthetic moments
tend to be real through the guidance from those of untrimmed videos. Meanwhile,
the anchor-level classification loss in localization modeling serves as a conditional
constraint for adversarial training. The loss alleviates the generation of trivial
background features and regularizes the generated context of each moment to
preserve semantic information of action category.

3.4 Network Optimization

Given the global pooling feature vector f jp of j-th feature map, the segment-level
classification loss (Lreg) for foreground segment or action moment is formulated
via softmax loss:

Lreg = −
C−1∑
n=0

In=c log(p
j
n), (4)
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Algorithm 1 AherNet Optimization
Input:

Localization model M pre-trained on untrimmed videos;
Maximum number of iteration N ;

Output:
Localization model M̃ for action categories from moment set;

1: Initialize the 1D ConvNet with M, the iterative count n = 1;
2: for n = 1 to N do
3: Optimize Lreg for foregrounds and moments to learn Wregv and W̃regv;
4: Fix Wregv, optimize Lcls and Lprop of untrimmed videos to learn θ;
5: Apply θ to W̃regv and obtain W̃clsa for synthetic moments classification;
6: Fix 1D ConvNet, optimize context generators through LadG

, Lcls and
Lprop of synthetic moments. Then fix context generators, optimize 1D
ConvNet through LadD

, Lcls and Lprop of synthetic moments;
7: end for
8: return M̃

where C represents the total number of action categories in untrimmed video
set or moment set. The indicator function In=c = 1 if n equals to ground truth
label c, otherwise In=c = 0. The probability pjn is projected by Wj

regv on f jp .
For the optimization of action localization, three 1D-conv layers are utilized

on each feature map of untrimmed video or synthetic moment to predict anchor-
level classification scores, offset parameters and overlap parameter for each cel-
l (anchor). The anchor-level classification scores are predicted by transformed
weights Wclsa and the formulation of loss function Lcls is the same with Eq.(4).
The offset parameters (∆c,∆w) denote temporal offsets relative to default center
location mc and width mw, which are leveraged to adjust temporal coordinate:

ϕc = mc + α1mw∆c and ϕw = mw exp (α2∆w) , (5)

where ϕc, ϕw are refined center location and width of the corresponding proposal.
α1 and α2 are used to balance the impact of temporal offsets. The offset loss is
devised as Smooth L1 loss [13] (SL1) between the foreground proposal and the
closest ground truth, which is computed by

Lof = SL1(ϕc − gc) + SL1(ϕw − gw), (6)

where gc and gw represents the center location and width of the proposal’s
closest ground truth instance, respectively. Furthermore, we define an overlap
parameter yov to regress IoU between the proposal and it’s closest ground truth
for proposal re-ranking in localization. The mean square error (MSE) loss is
adopted to optimize it as follows:

Lov = (yov − giou)2. (7)

Since both of the offset loss (Lof ) and overlap loss (Lov) are optimized for tem-
poral action proposal, the sum of the two is regarded as the proposal loss (Lprop).
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In the moment context generation stage, we define G as context generators
of action moments, while D represents the discriminator of background cell on
the feature map. We denote Fu and Fm as the set of extracted feature maps of
untrimmed video and moment set, respectively. After producing the background
cells bu and bm of each set, the adversarial loss is formulated as

LadD
= −Efu∼Fu

[log(D(bu; fu))]− Efm∼Fm
[log(1−D(bm;G(fm)))],

LadG
= −Efm∼Fm

[log(D(bm;G(fm)))].
(8)

The overall training objective of our AherNet is formulated as a multi-task
loss by integrating classification loss in segment-level (Lreg) and anchor-level
(Lcls), proposal loss (Lprop) and adversarial loss (Lad). The weight-sharing 1D
convolutional networks of localization model are first pre-trained on untrimmed
videos for initialization. Then we propose an alternating training strategy in each
iteration to optimize the whole networks in an end-to-end manner. Algorithm 1
details the optimization strategy of our AherNet.

3.5 Inference and Post-processing

During prediction of action localization on action moment set, the context gen-
erators have been removed. The final ranking score sf of each candidate action
proposal is calculated by anchor-level classification scores p = [p0, p1, ..., pC−1]
and overlap parameter yov with sf = max(p) · yov. Given the predicted action
instance φ = {ϕc, ϕw, Ca, sf} with refined boundary (ϕc, ϕw), predicted action
label Ca, and ranking score sf , we employ the non-maximum suppression (NMS)
for post-processing.

4 Experiments

We empirically verify the merit of our AherNet by conducting the experiments
of temporal action localization across three different settings with three popular
video benchmarks: ActivityNet v1.3 [17], THUMOS14 [21] and Kinetics-600 [12].

4.1 Datasets

The ActivityNet v1.3 dataset contains 19,994 videos in 200 classes collect-
ed from YouTube. The dataset is divided into three disjoint subsets: training,
validation and testing, by 2:1:1. All the videos in the dataset have temporal anno-
tations. The labels of testing set are not publicly available and the performances
of action localization on ActivityNet dataset are reported on validation set. The
THUMOS14 dataset includes 1,010 videos for validation and 1,574 videos for
testing from 20 classes. Among all the videos, there are 220 and 212 videos with
temporal annotations in validation and testing set, respectively. The Kinetics-
600 is a large-scale action recognition dataset which consists of around 480K
videos from 600 action categories. The 480K videos are divided into 390K, 30K,
60K for training, validation and test sets, respectively. Each video in the dataset
is a 10-second clip of action moment annotated from raw YouTube video.
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4.2 Experimental Settings

Data Splits. For each setting, our AherNet involves two datasets, untrimmed
video set with temporal annotations and action moment set with only catego-
ry labels. In the first setting, we split the classes of ActivityNet v1.3 into two
parts according to the dataset taxonomy. The untrimmed video set (ANet-UN)
contains 87 classes and the action moment set (ANet-AM) consists of the re-
maining 113 classes. We extract the foreground segments of training videos from
113 classes as the training data and take the original videos in the validation set
from 113 classes as the validation data. In view that we aim to transfer action
localization capability on the categories in ANet-UN to those in ANet-AM, this
setting is named as ANet-UN→ANet-AM. The second setting treats all the 220
validation videos in THUMOS14 (TH14) as untrimmed video set and the fore-
ground segments of all the training videos in ActivityNet v1.3 as action moment
set (ANet-FG). All the validation videos in ActivityNet v1.3 are exploited as
the validation data. Similarly, we name this setting as TH14→ANet-FG. In the
third setting, we utilize ActivityNet v1.3 (ANet) and Kinetics-600 (K600) as
untrimmed video set and action moment set, respectively. To verify action local-
ization on 600 categories in Kinetics-600, we crawled at least 10 raw YouTube
videos of action moments in validation set for each class. In total, the validation
data contains 6,459 videos. This setting is namely ANet→K600 for short.

Implementations. We utilize Pseudo-3D [40] network as our 3D ConvNet
for clip-level feature extraction. The network input is a 16-frame clip and the
sample rate of frames is set as 8. The 2,048-way outputs from pool5 layer are
extracted as clip-level features. During training, we choose three temporal scale
ratios {rd}3d=1 = [20, 21/3, 22/3] derived from [30]. The parameter α1 and α2 are
set as 1.0 by cross validation. The threshold of NMS is set as 0.90. We implement
our AherNet on Tensorflow [1] platform. In all the experiments, our networks
are trained by utilizing adaptive moment estimation optimizer (Adam) [22]. The
initial learning rate is set as 0.0001, and decreased by 10% after every 5k on first
two data split settings and 15k on the final setting. The mini-batch size is 16.

Evaluation Metrics. On all the three settings, we employ the mean average
precision (mAP) values with IoU thresholds between 0.5 and 0.95 (inclusive) with
a step size 0.05 as the metric for comparison.

4.3 Evaluation on Weight Transfer

We first examine the module of weight transfer between classification and lo-
calization in our AherNet. We compare several implementations of the weight
transfer function T , e.g., different number of fully-connected layers plus vari-
ous activation functions (ReLU, LeakyReLU [35] and ELU [5]), and three base-
line approaches of AherNet0, AherNet− and AherNet∗. AherNet0 is a purely
classification-based model which learns a snippet-level classifier to predict the
action score sequentially and splits action instances with multi-threshold strat-
egy on the score sequence. As such, AherNet0 is regarded as the lower bound.
AherNet− deploys a “proposal+classification” scheme without weight transfer
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Approach ANet-UN → ANet-AM TH14 → ANet-FG
AherNet0 10.2 9.3
AherNet− 12.8 10.4
AherNet,1-fc,none 16.1 23.2
AherNet,1-fc,ReLU 16.4 23.4
AherNet,1-fc,LeakyReLU 16.5 23.5
AherNet,1-fc,ELU 16.7 23.9
AherNet,2-fc,LeakyReLU 16.9 24.2
AherNet,2-fc,ELU 17.2 24.3
AherNet,3-fc,ELU 16.8 24.1
AherNet∗ 22.6 28.9

Table 1: Exploration of different im-
plementations of the weight transfer
function in our AherNet. (fc means
fully-connected layer).
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Fig. 4: Action classification accuracy of
AherNet− and AherNet in different anchor
layer on (a) ANet-UN→ANet-AM and (b)
TH14→ANet-FG.

module. The action proposal model in AherNet− is learnt on untrimmed video
set and directly performed on validation videos to output temporal action pro-
posals. The classifier trained on action moment set is employed to predict the
category of each action proposal. AherNet∗ is an oracle run that exhaustively
exploits the original videos of moment and trains a localization model in a fully-
supervised manner. From this view, AherNet∗ is considered as the upper bound.

Table 1 summarizes the average mAP performances over all IoU thresholds of
different methods on the first two settings. AherNet with weight transfer function
of two fully-connected layers plus ELU activation consistently exhibits better
performance than other implementations across the two settings. As expected,
AherNet0 performs worst since the method solely capitalizes on classification for
localization problem without any knowledge of temporal action proposal. With
the use of action proposal model learnt on untrimmed video set, AherNet− sur-
passes AherNet0 by 2.6% and 1.1% on the settings of ANet-UN→ANet-AM and
TH14→ANet-FG. AherNet further boosts up the average mAP from 12.8% and
10.4% of AherNet− to 17.2% and 24.3%, respectively. The results verify the mer-
it of weight transfer in AherNet for bridging classification and localization, and
scaling action localization to a large set of categories with only action moments.
In practice, AherNet has great potential to support localization for thousands of
categories. More importantly, when evaluating action localization model on the
categories with full temporal annotation in the training, AherNet slightly out-
performs AherNet∗, e.g., 25.4% vs. 25.2% and 27.7% vs. 26.9% on the actions in
ANet-UN and TH14. This also demonstrates the advantage of leveraging action
moments data in AherNet training to enhance action localization model.

Figure 4 further details the average classification accuracy over all proposals
in each anchor layer. Specifically, we feed the same proposals generated by Aher-
Net into the classifier of AherNet− for accuracy computation on the same scale.
Because most proposals in ActivityNet range over about 40% of the whole videos
and such receptive field is nicely characterized by each anchor in the 7th layer, it
is not a surprise that both AherNet and AherNet− achieve the highest accuracy
on that layer. Benefited from the capture of contexts in joint optimization with
temporal action proposal, AherNet leads to better and more stable performances
than AherNet−. The results again validate the weight transfer module.
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Approach ANet-UN → ANet-AM TH14 → ANet-FG
AUC mAP AUC mAP

AherNet0 41.8 10.2 11.2 9.3
AherNet− 52.6 12.8 16.4 10.4
AherNetM 53.5 13.2 49.7 17.3
AherNetA− 54.6 14.7 51.0 19.1
AherNet 58.3 17.2 55.5 24.3
AherNet∗ 61.1 22.6 63.4 28.9

Table 2: The evaluations of lo-
calization modeling of AherNet.

Foreground 
Synthetic Background 

Real Background
(a) Visualization on ANet-AM

Foreground 
Synthetic Background 

Real Background
(b) Visualization on ANet-FG

Fig. 5: Feature visualization of AherNet: (a)
ANet-UN→ANet-AM and (b)TH14→ANet-FG.

4.4 Evaluation on Localization Modeling

Next, we study how localization modeling with context generation in AherNet
influences the performances of both temporal action proposal and temporal ac-
tion localization. We design two additional runs of AherNetM and AherNetA−
for comparison. AherNetM capitalizes on only action moment set and direct-
ly learns an anchor-based action localization network by considering the start-
ing/ending points of each moment as the time stamps of the action. AherNetA−
is a variant of AherNet by removing adversarial learning. The context generator
is pre-trained on untrimmed video set through minimizing L2 loss between the
converted background from foreground and the real background.

Table 2 shows the measure of area under Average Recall vs. Average Number
of proposals per video curves (AUC) for action proposal and mAP performances
for action localization. Overall, AherNetM leads to a performance boost against
AherNet− on both settings. In particular, AherNetM improves the AUC value
from 16.4% to 49.7% on TH14→ANet-FG. Such results basically indicate that
AherNetM is a practical choice for learning action localization directly on mo-
ment data. AherNetA− is benefited from context generation for action moment
set and the gain of mAP over AherNetM is 1.5% and 1.8%, respectively. More-
over, the upgrade of context generator from pre-training solely on untrimmed
videos in AherNetA− to adversarial learning across the two video sets in AherNet
contributes a mAP increase of 2.5% and 5.2%.

To examine the generated features of background, we further visualize the
features of foreground, synthetic and real background for action moments by
using t-SNE [36]. Specifically, we randomly select 500 anchors of foreground,
synthetic and real background from 200 moments and the original videos in
validation data, respectively. The first 256 principal components of the features
of each anchor are extracted by PCA and projected into 2D space using t-SNE
as shown in Figure 5. It is clear that the generated features of background by
AherNet are indistinguishable from those of real background on both ANet-AM
and ANet-FG sets, that confirms the effectiveness of context generation.

4.5 Evaluation on Model Capacity of AherNet

We discuss our AherNet with several state-of-the-art fully-supervised and weakly-
supervised action localization methods. Table 3 lists the mAP performances un-
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ActivityNet v1.3, mAP@α
Approach 0.5 0.75 0.95 Average

Fully-supervised Localization
Wang et al. [53] 45.11 4.11 0.05 16.41
Singh et al. [47] 26.01 15.22 2.61 14.62
Singh et al. [48] 22.71 10.82 0.33 11.31

CDC [43] 45.30 26.00 0.20 23.80
TAG-D [54] 39.12 23.48 5.49 23.98
Lin et al. [28] 48.99 32.91 7.87 32.26

BSN [29] 52.50 33.53 8.85 33.72
Weakly-supervised Localization

STPN [37] 29.30 16.90 2.60 -
Nguyen et al. [38] 36.40 19.20 2.90 -

Partially-supervised Localization
AherNet 40.33 25.04 3.92 24.31

Table 3: Temporal action de-
tection performances on Activ-
ityNet v1.3, measured by mAP
at different IoU thresholds α.
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Fig. 6: Average mAP comparisons of AherNet∗
learnt with different ratio of temporal annota-
tion and AherNet, on (a) ANet-UN→ANet-AM
and (b) TH14→ANet-FG.

der different IoU thresholds on ActivityNet v1.3 and such evaluation corresponds
to the second setting of TH14→ANet-FG for AherNet. The goal of weakly-
supervised methods is to train action localization models for a set of categories
which have untrimmed videos with only video-level labels. Instead, our AherNet
enables the training of localization model for the categories of interest with ac-
tion moments from these categories (e.g., ANet-FG) and temporal annotations
from a small set of classes (e.g., TH14). Compared to the most recent advance
[38] in weakly-supervised localization, AherNet leads to a mAP boost of 3.9%
and 5.8% under the IoU of 0.5 and 0.75, respectively. AherNet is also compara-
ble or even superior to several fully-supervised localization models, e.g., [43] and
[54], which rely on full temporal annotations for all the categories. More impor-
tantly, the partially-supervised learning paradigm of our AherNet extends action
localization to potentially thousands of categories in a more deployable way.

To further quantitatively analyze the capability of AherNet, we compare
AherNet with the fully-supervised version of AherNet∗ trained on different pro-
portions of temporal annotations as shown in Figure 6. As expected, the average
mAP performances of AherNet∗ constantly improve with respect to the increase
of temporal annotations in training on both datasets. The results are desirable
in the way that AherNet∗ starts to surplus the performance of AherNet till more
than 50% temporal annotations are leveraged.

4.6 Large-Scale Action Localization of AherNet

We finally take a step further to learn action localization model for 600 actions in
Kinetics-600 dataset, which refers to the third setting of ANet→K600. Since the
temporal annotations are not available for the validation videos of Kinetics-600,
we collected the raw YouTube videos of action moments in our validation set
and invited ten evaluators to label annotations. Table 4 summarizes the mAP at
different IoU thresholds on the setting of ANet→K600. The performance trends
are similar with those on the first two settings. AherNet boosts up the average
mAP from 14.18% to 24.43%, indicating the impact of AherNet on the gener-
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Fig. 7: Example of two action localization results on Kinetics-600.

Table 4: Performance comparisons of temporal action localization on Kinetics-
600, measured by mAP at different IoU thresholds α.

ANet→K600, Kinetics-600, mAP@α
Approach 0.5 0.75 0.95 Average
AherNet0 19.26 16.72 0.88 14.18
AherNet− 21.76 17.85 1.71 15.96
AherNetM 28.98 20.71 2.95 19.05
AherNetA− 32.71 23.04 5.08 21.68
AherNet 36.19 26.96 6.55 24.43

alization of action localization for a large set of categories. Figure 7 showcases
localization results of two videos from Kinetics-600, showing that AherNet nicely
models the temporal dynamics and predicts accurate temporal boundaries.

5 Conclusions

We have presented Action Herald Networks (AherNet) which scale action local-
ization to a large set of categories. Particularly, we study the problem from a new
learning paradigm of training localization model with only trimmed action mo-
ments from the large set of categories plus temporal annotations on untrimmed
videos from a small set of action classes. To materialize our idea, we have devised
an one-stage action localization framework which consists of two key modules:
weight transfer between classification and localization, and localization modeling
on action moments. The former extracts foreground segments from untrimmed
videos as action moments, and learns a weight transfer function between fore-
ground segment classification and temporal action classification in localization.
The latter simulates action localization on action moments data by hallucinating
the background features of an action moment via adversarial learning. Experi-
ments conducted on two settings, i.e., across the splits of ActivityNet v1.3 and
from THUMOS14 to ActivityNet v1.3, validate our proposal. More remarkably,
we build a large-scale localization model for 600 categories in Kinetics-600.
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