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Abstract. In this paper, we propose a novel method called Residual
Steps Network (RSN). RSN aggregates features with the same spatial
size (Intra-level features) efficiently to obtain delicate local represen-
tations, which retain rich low-level spatial information and result in
precise keypoint localization. Additionally, we observe the output fea-
tures contribute differently to final performance. To tackle this prob-
lem, we propose an efficient attention mechanism - Pose Refine Ma-
chine (PRM) to make a trade-off between local and global representa-
tions in output features and further refine the keypoint locations. Our ap-
proach won the 1st place of COCO Keypoint Challenge 2019 and achieves
state-of-the-art results on both COCO and MPII benchmarks, with-
out using extra training data and pretrained model. Our single model
achieves 78.6 on COCO test-dev, 93.0 on MPII test dataset. Ensembled
models achieve 79.2 on COCO test-dev, 77.1 on COCO test-challenge
dataset. The source code is publicly available for further research at
https://github.com/caiyuanhao1998/RSN/

Keywords: Human Pose Estimation, COCO, MPII, Feature Aggrega-
tion, Attention Mechanism

1 Introduction

The goal of multi-person pose estimation is to locate keypoints of all persons
in a single image. It is a fundamental task for human motion recognition, kine-
matics analysis, human-computer interaction, animation etc. For years, human
pose estimation was based on handcraft features. Recently, It has made great
progress with the development of deep convolutional neural network. The task
of human pose estimation concerns both keypoint localization and classification.
Spatial information benefits the localization task, while semantic information
is good for the classification task. To extract these two kinds of information,
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Fig. 1. Comparison of intra-level feature fusion and inter-level feature fusion. (a) Back-
bone. ”1/4 size” means 1/4 size of input image. (b) Intra-level feature fusion of level
1. (c) Inter-level feature fusion. (d) Local Representations. (e) Global representations.

current methods mainly focus on aggregating inter-level features. For instance,
HRNet [24] maintains spatial information in high-resolution sub-network and
gradually adds semantic information to it from low-resolution sub-networks. In
this way, features of different levels are fully aggregated. In CPN [2], features of
four different spatial levels are extracted by the backbone, and they are com-
bined by a head network. Although these methods are different in the ways of
feature fusion, the features to be aggregated are always from different levels. On
the contrast, the feature fusion within the same level stays less explored in the
task of human pose estimation.

The comparison of intra-level feature fusion (level 1) and inter-level feature
fusion is illustrated in Figure 1. The feature maps are continuously downsampled
to 1/4, 1/8, 1/16, 1/32 size of input image in Figure 1(a). We define consecutive
feature maps with the same spatial size as one level. As Figure 1(c) depicts,
there is a big gap between the receptive fields of features from different levels,
which are indicated by light blue bounding boxes. As a result, representations
learned by inter-level feature fusion are relatively coarse, which impede the lo-
calization of human pose from precise. As Figure 1(b) shows, the gap between
the receptive fields of intra-level features which are indicated by red bounding
boxes is relatively small. As shown in Figure 1(d), fusing intra-level features can
extract much more delicate local representations retaining more precise spatial
information, which is critical to keypoint localization.

To learn better local representations, we propose a novel network architec-
ture - Residual Steps Network (RSN). The Residual Steps Block (RSB) of RSN
fuses features inside each level using dense element-wise sum operations, which
is shown in Figure 2(c). The inner structure of RSB is deeply connected and
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motivated by DenseNet [10], which has a good performance for human pose
estimation owing to retaining rich low-level features by deep connections. How-
ever, deep connections bring about explosion of the network capacity as it goes
deeper. Thus, DenseNet performs poorly when the network becomes large. RSN
is motivated by DenseNet but is quite different in that RSN uses element-wise
sum rather than concatenation to circumvent network capacity explosion. RSN
is modestly less dense connected in the block than DenseNet, which further pro-
motes the efficiency. Additionally, we observe that the output features containing
both global and local representations contribute differently to final performance.
In light of this observation, we propose an attention module - Pose Refine Ma-
chine (PRM) to rebalance the output features of the network. The architecture
of PRM is illustrated in Figure 3 and analyzed in Section 3.3. To better illustrate
the advantages of our approach, we analyze the differences between RSN and
current methods in Section 2.2.

In conclusion, our contributions can be summarized as three points:
1. We propose a novel network - RSN, which aims to learn delicate local

representations by efficient intra-level feature fusion.
2. We propose an attention mechanism - PRM, which goes further to make

a trade-off between local and global representations, and benefits the final per-
formance.

3. Comprehensive experiments demonstrate that Our approach outperforms
the state-of-the-art methods on both COCO and MPII datasets without using
extra training data and pretrained model. Moreover, the proposed approach is
much faster than HRNet with comparable performance on both GPU and CPU
platforms.

2 Related Work

2.1 Multi-person Pose Estimation

Current methods of human pose estimation fall into two categories: top-down
methods [20, 11, 8, 5, 24, 17, 23, 22, 19, 2, 29] and bottom-up methods [1, 14, 28,
18]. Top-down methods first detect the positions of all persons, then estimate the
pose of each person. Bottom-up methods first detect all the human keypoints in
an image and then assemble these points into groups to form different individu-
als. Since this paper mainly concentrates on feature fusion strategies, we discuss
these methods in terms of feature fusion.

2.2 Feature Fusion

Recently, many methods [17, 29, 2, 31, 24] of human pose estimation use inter-
level feature fusion to extract more spatial and semantic information. Newell et
al. [17] propose a U-shape convolutional neural network (CNN) named Hourglass.
In a single stage of hourglass, high-level features are added to low-level features
after upsampling. Later works such as Yang et al. [31] show great performance
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Fig. 2. Our pipeline. (a) is the multi-stage network architecture. It is cascaded by sev-
eral Residual Steps Networks (RSNs). (b) is the backbone of RSN. (c) is the structure
of Residual Steps Block (RSB), which is the basic block of RSN. RSB is designed for
learning delicate local representations through dense element-wise sum connections. A
Pose Refine Machine (PRM) is used in the last stage and it is analyzed in Section 3.4.

of using inter-level feature fusion. Chen et al. [2] combines inter-level features
using a RefineNet. Sun et al. [24] set up four parallel sub-networks. The features
of these four sub-networks aggregate with each other through high-to-low or
low-to-high way.

Though many methods have validates the effectiveness of inter-level feature
fusion, intra-level feature fusion is rarely explored in human pose estimation.
However, it has extensive applications in other tasks such as semantic segmen-
tation and image classification [25, 7, 10, 4, 34, 30]. In a block of Inception [25],
features pass through several convolutional layers with different kernels sepa-
rately and then added up. DenseNet [10] fuses intra-level features using continu-
ous concatenating operations. This implementation retains low-level features to
improve the performance. However, when the network goes deeper, the capacity
increases sharply and much redundant information appears in the network, re-
sulting in poor efficiency. Different from DenseNet, RSN uses element-wise sum
rather than concatenation to circumvent network capacity explosion. In addition,
RSN is modestly less densely connected in the constituent unit, which further
promotes the efficiency.

Res2Net [7] and OSNet [34] focus on multi-scale representations. Both of
them lack dense connections between adjacent branches. The dense connections
contribute sufficient gradients and make low-level features better supervised.
Therefore, lack of dense connections between adjacent branches results in less
precise spatial information, which is essential to keypoint localization. Suffering
from this limitations, both Res2Net and OSNet are inferior to RSN in the task
of human pose estimation. In Section 4.1, we validate the efficiency of DenseNet,
Res2Net and RSN.
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2.3 Attention Mechanism

Attention mechanism [27, 9, 23, 13, 32, 6, 33] is almost used in all areas of com-
puter vision. Current methods of attention mechanism mainly fall into two cat-
egories: channel attention [27, 9, 23, 32] and spatial attention [23, 33, 27, 13, 6].
Woo et al. [27] propose a channel attention module with global average pool-
ing and max pooling. Kligvasser et al. [13] propose a spatial activation function
with depth-wise separable convolution. Other works such as Hu et al. [9] show
the advantages of using attention mechanism. However, most prior attention
modules are lack of representing capacity and focus on optimizing the backbone.
We design PRM to make a trade-off between local and global representations in
output features by using powerful while computation-economical operations.

3 Proposed Method

The overall pipeline of our method is illustrated in Figure 2. The multi-stage
network architecture is cascaded by several single-stage modules - Residual Steps
Network (RSN), shown in Figure 2(a). As Figure 2(b) shows, RSN differs from
ResNet in the architecture of constituent unit. RSN consists of Residual Steps
Blocks (RSBs) while ResNet is comprised of ”bottleneck” blocks. Figure 2(c)
illustrates the structure of RSB. A Pose Refine Machine (PRM) is used in the
last stage and it is analyzed in Section 3.3.

3.1 Delicate Local Representations Learning

Residual Steps Network is designed for learning delicate local representations by
repeatedly enhancing efficient intra-level feature fusion inside RSB, which is the
constituent unit of RSN. As shown in Figure 2(c), RSB firstly divides the features
into four splits fi (i = 1, 2, 3, 4), then implements a conv1×1 (convolutional layer
with kernel size 1×1) separately. Each feature output from conv1×1 undergoes
incremental numbers of conv3×3. The output features yi (i = 1, 2, 3, 4) are then
concatenated to go through a conv1×1. An identity connection is employed as
the ResNet bottleneck. Because the incremental numbers of conv3×3 look like
steps, the network is therefore named Residual Steps Network.

The receptive fields of RSB range across several values, and the max one is 15.
Compared with a single receptive field in ResNet bottleneck as shown in Table 1,
RSB indicates more delicate information viewed in the network. In addition, it is
deeply connected inside RSB. On the ith branch, the front i−1 conv3×3 receive
the features output from the (i− 1)th branch. The ith conv3×3 is then designed
to refine the fusion of the features output from the (i − 1)th conv3×3. Benefit
from the dense connection structure, small-gap receptive fields of features are
fully fused resulting in delicate local representations, which retain precise spatial
and semantic information. Additionally, during the training process, the deeply
connected structure contributes sufficient gradients, so the low-level features are
better supervised, which benefits the keypoint localization task. We investigate
how the branch number of RSB influences the prediction results in Section 4.1.
Four-branch architecture has the best performance.
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Table 1. The receptive field comparison between RSB and other methods.

Architecture y1 y2 y3 y4

ResNet 3 3 3 3
OSNet 3 5 7 9

Res2Net 1 3 3,5 3,5,7
RSN 3 5,7 7,9,11 9,11,13,15

3.2 Receptive Field Analysis

In this part, we analyze the receptive fields in RSB and other methods. Firstly,
the formula for calculating the receptive field of the kth convolutional layer is
written as Equation 1

lk = lk−1 + [(fk − 1) ∗
k−1∏
i=1

si] (1)

lk denotes the size of the receptive field corresponding to the kth layer, fk
denotes the kernel size of the kth layer and si denotes the stride of the ith layer.
In this part, we only focus on the change of relative receptive fields in a block.
Every fk is 3 and si is 1. Thus, Equation 1 can be simplified to Equation 2

lk = lk−1 + 2 (2)

Using this formula, we calculate the relative receptive fields of RSB and other
methods, as shown in Table 1. It indicates that RSN has a wider range of scales
than ResNet, Res2Net and OSNet. The scale of each human joint varies a lot.
For instance, the scale of eye is small while that of hip is large. For this rea-
son, architecture with wider range of receptive fields is more fit for extracting
features relating to different joints. Also, wider range of receptive fields helps to
learn more discriminant semantic representations, which benefits the keypoint
classification task. More importantly, RSN builds dense connections between the
features with small-gap receptive fields inside RSB. The deeply connected archi-
tecture contributes to learning delicate local representations, which are essential
to precise human pose estimation.

3.3 Pose Refine Machine

In the last module of multi-stage network (Figure 2(a)), an attention mechanism
- Pose Refine Machine (PRM) is used to reweight the output features, as shown
in Figure 3. The first component of PRM is a conv3×3, then the features are
input into three paths. The top path is an identity connection. The middle one,
motivated by SENet [9], passes through a global pooling, two conv1×1 and a
sigmoid activation to get a weight vector α. The bottom path passes through
a conv1×1, a depth-wise separable conv9×9 and a sigmoid activation to get an
attention map β. Element-wise sum and multiplication are conducted among
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Fig. 3. Architecture of Pose Refine Machine (PRM). GP denotes global pooling. DW
denotes depth-wise separable convolution. α denotes the weight vector. β denots the
attention map. The top path is an identity connection, the middle path is designed to
reweight features in channel wise and the bottom path is proposed for spatial attention.

the three paths to get the output features. Define the input features of PRM
as fin, the output features as fout, the first conv3×3 as K(·) and element-wise
multiplication as �. Then PRM can be formulated as Equation 3.

fout = K(fin) � (1 + β � α) (3)

As for the output of RSN, features after intra-level and inter-level aggre-
gation are mixed together containing both low-level precise spatial information
and high-level discriminant semantic information. Spatial information is good
for keypoint localization while semantic information benefits keypoints classifi-
cation. These features contribute differently to the final prediction. Therefore,
to tackle this imbalance problem, PRM is designed to make a trade-off between
local and global representations in output features of RSN. Compared to prior
work of attention mechanism, we use powerful while computation-economical
operations, e.g. conv3×3, conv1×1 and DW conv9×9. The top identity mapping
in PRM is good for retaining local features which benefits precise keypoint lo-
calization. The middle path is designed to reweight the features in channel wise
and the bottom path is proposed for spatial attention.

4 Experiments

4.1 COCO Keypoints Detection

Datasets, Evaluation Metric, Human Detection. COCO dataset [16] in-
cludes over 200K images and 250K person instances labeled with 17 joints.
We use only COCO train2017 dataset for training (including about 57K im-
ages and 150K person instances). We evaluate our method on COCO minival
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dataset (5K images) and the testing datasets including test-dev (20K images)
and test-challenge (20K images). We use standard OKS-based AP score as the
evaluation metric. We use MegDet and MegDet-v2 as human detecor on COCO
val and test sets respectively.

Training Details. The network is trained on 8 V100 GPUs with mini-batch
size 48 per GPU. There are 140k iterations per epoch and 200 epochs in total.
Adam optimizer is adopted and the linear learning rate gradually decreases from
5e-4 to 0. The weight decay is 1e-5. Each image goes through a series of data
augmentation operations including cropping, flipping, rotation and scaling. The
range of rotation is −45◦ ∼ +45◦. The range of scaling is 0.7∼1.35. The size of
input image is 256×192 or 384×288.

Testing Details. We apply a post-Gaussian filter to the estimated heatmaps.
Following the strategy of hourglass [17], we average the predicted heatmaps of
original image with the results of corresponding flipped image. Then we imple-
ment a quarter offset from the highest response to the second highest one to
get the locations of keypoints. The same with CPN [2], the pose score is the
multiplication of the average score of keypoints and the bounding box score.

Table 2. Results of ResNet, Res2Net, Baseline1,2 and RSN on COCO val set

backbone input size AP ∆ GFLOPs

ResNet-18 256×192 70.7 0 2.3
Res2Net-18 256×192 71.3 +0.6 2.2
Baseline1-18 256×192 72.9 +2.1 2.5
Baseline2-18 256×192 72.1 +1.4 2.5
RSN-18 256×192 73.6 +2.9 2.5

ResNet-50 256×192 72.2 0 4.6
Res2Net-50 256×192 72.8 +0.6 4.5
Baseline1-50 256×192 73.7 +1.5 6.4
Baseline2-50 256×192 72.7 +0.5 6.4
RSN-50 256×192 74.7 +2.5 6.4

ResNet-101 256×192 73.2 0 7.5
Res2Net-101 256×192 73.9 +0.7 7.5
RSN-101 256×192 75.8 +2.5 11.5

4×ResNet-50 256×192 76.8 0 20.6
4×Res2Net-50 256×192 77.0 +0.2 20.1
4×RSN-50 256×192 78.6 +1.8 27.5

4×ResNet-50 384×288 77.5 0 46.4
4×Res2Net-50 384×288 77.6 +0.1 45.2
4×RSN-50 384×288 79.2 +1.7 61.9

Ablation Study of RSN Improvement. In Section 2.2, we analyze the differ-
ences between RSN and current methods. In this part, we validate the effective-
ness of intra-level feature fusion method in RSN. Since it is known dividing the
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Fig. 4. Illustrating how the performances of ResNet, Res2Net, DenseNet and RSN are
affected by GFLOPs. The results are reported on COCO minival dataset.

network into branches, e.g., Inception and ResNetXt [30], can improve the recog-
nition performance, we add two baselines into comparison. Baseline 1: remove
the intra-level fusion (i.e., the vertical arrows) from Figure 2(c). This baseline can
reveal whether the proposed intra-level fusion is important. Baseline 2: replace
f1-f4 in Baseline 1 with 4 f3’s respectively, which is more like the conventional
branching strategy. We keep the same GFLOPs of Baseline1, Baseline2 with
RSN by adapting channels. Ablation experiments are implemented on ResNet,
Res2Net, Bseline1, Baseline2, and RSN based networks. PRM is left out for more
strong comparison. The results on COCO val are reported in Table 2.

As Table 2 shows, RSN boosts the performance by relatively larger extent
with acceptable computation cost addition, while Res2Net can only obtain lim-
ited gain. For instance, RSN-18 is 2.9 points AP higher than ResNet-18 adding
only 0.2 GFLOPs and 2.3 points AP higher than Res2Net-18 adding only 0.3
GFLOPs. However, Res2Net-18 obtains only 0.6 AP gain than ResNet-18. RSN
always works much better than ResNet and Res2Net with comparable GFLOPs.
In addition, it is worth noting that when model complexity is relatively low,
RSN still has a remarkable performance, which indicates that RSN is more com-
pact and efficient. For instance, compared with ResNet-101 and Res2Net-101,
RSN-18 has a similar AP, however, with only a third of computation cost. On
the other hand, RSN achieves higher AP than Baseline1 and Baseline2 with the
same GFLOPs, e.g., RSN-50 is 1 AP higher than Baseline1-50 and 2 AP higher
than Baseline2-50. This observation strongly demonstrate the superiority of the
intra-level feature fusion mode of RSN.
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Ablation Study of RSN Efficiency. The dense connection principle of RSN
comes form DenseNet. However, it is not efficient for DenseNet when too many
concatenating operations are implemented. To circumvent the network capacity
explosion, RSN uses element-wise sum to connect adjacent branches. To validate
the efficiency of our approach, we respectively adopt ResNet, Res2Net, DenseNet
and RSN as the backbone in the same multi-stage architecture as shown in Fig-
ure 2(a) to compare the performance. PRM is left out for fair comparison. The
results are shown in Figure 4. For relatively small models, RSN and DenseNet
based networks can both achieve good results, while Res2Net only gets a mi-
nor improvement than ResNet. However, as the model capacity increases, the
improvements of DenseNet and Res2Net based network decrease dramatically.
Both of them can only get a inferior result close to ResNet when the model size
becomes large, while RSN can keep its superiority to the end.

DenseNet has a high AP score at a low complexity owing to the deep connec-
tions and frequent feature aggregations inside the same level by continuous con-
catenating operations. This makes the low-level features sufficiently supervised
resulting in satisfactory delicate spatial texture information, which benefits the
keypoint localization. However, as the computation cost raises, the concatenat-
ing operations of DenseNet become redundant. It combines quite a large range of
less utilized information. As for Res2Net, narrower range of receptive fields and
lack of efficient intra-level feature fusion to extract delicate local representations
make it much inferior than RSN.

(a) Res2Net (b) DenseNet (c) RSN

Fig. 5. The average absolute filter weights of the last conv1× 1 layers of each level in
trained Res2Net-50 (a), DenseNet-169(b) and RSN-50(c). Larger weights means higher
utilization. The weights of Res2Net are smaller than those of RSN. Most weights in
DenseNet have values close to zero. While RSN can utilize most channels better.

In order to embody the differences of Res2Net, DenseNet and RSN more
essentially, we show the average absolute filter weights of the last conv1×1 layers
of each level in trained Res2Net-50, DenseNet-169 and RSN-50 in Figure 5. The
highly used weights become less from level 1 to level 4 in DenseNet. The overall
useful weights of DenseNet are less than those of RSN, which can be deduced
from Figure 5 (b) and (c) that the red area in each level of DenseNet is much
smaller than that of RSN. According to the analysis in Section 3.2, RSN can
enhance the efficient fusion of intra-level features with dense element-wise sum
connections. There are not accumulative concatenating operations like DenseNet.
Thus, RSN is less occupied by the redundant features with low utilization. On the
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Fig. 6. Visual analysis of Res2Net-50, DenseNet-169 and RSN-50. (a) Input images, (b)
High-level feature maps (level 4), (c) Low-level heatmaps (level 1), (d) Final predictions.

other hand, compared with Res2Net, the more densely connected architecture
and wider range of receptive fields make the intra-level feature fusion of RSN
more effective, that is why the red area of RSN is much larger than that of
Res2Net and the weights of RSN are more fully used, just as shown in Figure 5 (a)
and (c). As a result, the RSN model can keep its high efficiency and considerable
improvement from the beginning to the end, just as shown in Figure 4.

Additionally, to highlight the advantages of RSN more intuitively, we conduct
visual analysis of Res2Net-50, DenseNet-169 and RSN-50, as shown in Figure 6.
In Figure 6(b), the high-level response to human body of Res2Net and DenseNet
either covers incomplete body area or too large area of background. Only RSN
has a relatively complete and appropriate response area to the human body. As
a result, in final prediction, Res2Net is easily misled by the background informa-
tion, DenseNet ignores some keypoints such as shoulders, while RSN can locate
the keypoints better and reduce the interference of background information. As
Figure 6(c) shows, the heatmaps of RSN are much clearer and the locations of
the responses are much more accurate.

Ablation Study of RSN Architecture. When designing RSN, we firstly
deploy the dense connection principle of DenseNet. Then, for a break-down ab-
lation, we set different branch number as variants to discuss the designing of
RSN and explore a best trade-off between branch representing capacity and the
degree of intra-level fusion. experiments are done on RSN-18 and RSN-50. We in-
crease branch numbers from 2 to 6 while keeping the model capacity unchanged
by adapting channels. As Table 3 shows, the performance firstly becomes bet-
ter and attains its peak when there are 4 branches. However, when the branch
number continues growing, the results get worse. Thus, 4 is the best choice.
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Table 3. Illustrating how the performance of RSN affected by the branch number.

backbone input size 2-branch 3-branch 4-branch 5-branch 6-branch

RSN-18 256×192 73.1 73.0 73.6 73.2 72.9
RSN-50 256×192 73.9 74.2 74.7 74.3 74.0

Ablation Study of Pose Refine Machine. In Section 3.3, we have analyzed
the architecture of PRM and the differences between PRM and prior attention
mechanism. To validate the improvement of PRM, we perform ablation experi-
ments on both single-stage and multi-stage network architecture. Additionally,
We validate the impact of SENet and CBAM by replacing PRM. The results
are shown in Table 4. SE-block and CBAM decrease the performance of human
pose estimation, which implies vanilla attention mechanisms are not suitable for
rebalancing output features. In contrast, when the model capacity is small, PRM
has a considerable improvement. As for relatively high AP baseline, PRM still
obtains 0.4 AP gain. These observations demonstrate the robustness of PRM.

Results on COCO test-dev and test-challenge. We validate our approach
on COCO test-dev and test-challenge sets. The results are shown in Table 5
and Table 6. For fair comparison, we pay attention to the performances of single
models with comparable GFLOPs, without using extra training data. In Table 5,
our method outperforms HRNet by 2.5 AP (78.0 v.s. 75.5), and outperforms
SimpleBaseline by 4.3 AP on COCO test-dev dataset. Additionally, as Table 6
shows, our approach outperforms MSPN (winner of COCO kps Challenge 2018)
by 0.7 AP on test-challenge set. Note that we don’t even use pretrained model.

Table 4. Ablation experiments of Pose Refine Machine on COCO minival dataset.

Backbone Attention input size AP ∆ GFLOPs

ResNet-18 None 256×192 70.7 0 2.3
ResNet-18 SE-block 256×192 70.5 -0.2 2.3
ResNet-18 CBAM 256×192 69.9 -0.8 2.3
ResNet-18 PRM 256×192 72.2 +1.5 4.1

ResNet-50 None 256×192 72.2 0 4.6
ResNet-50 SE-block 256×192 72.1 -0.1 4.6
ResNet-50 CBAM 256×192 71.1 -1.1 4.6
ResNet-50 PRM 256×192 73.4 +1.2 6.4

4×ResNet-50 None 256×192 76.8 0 20.6
4×ResNet-50 SE-block 256×192 76.6 -0.2 20.6
4×ResNet-50 CBAM 256×192 76.1 -0.7 20.6
4×ResNet-50 PRM 256×192 77.2 +0.4 22.4

4×RSN-50 None 256×192 78.6 0 27.5
4×RSN-50 SE-block 256×192 78.6 0 27.5
4×RSN-50 CBAM 256×192 78.0 -0.6 27.5
4×RSN-50 PRM 256×192 79.0 +0.4 29.3
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Table 5. Results on COCO test-dev dataset. ”*” means using ensembled models.
Pretrain = pretrain the backbone on the ImageNet classification task.

Method Extra data Pretrain Backbone Input Size Params GFLOPs AP AP.5 AP.75 AP(M) AP(L) AR

CMUpose [1] × - - - - - 61.8 84.9 67.5 57.1 68.2 66.5
G-MRI [21] × - ResNet-101 353×257 42.6M 57.0 64.9 85.5 71.3 62.3 70.0 69.7
G-RMI [21]

√
- ResNet-101 353×257 42.6M 57.0 68.5 87.1 75.5 65.8 73.3 73.3

CPN [2] ×
√

ResNet-Inception 384×288 58.8M 29.2 72.1 91.4 80.0 68.7 77.2 78.5
CPN∗ [2] ×

√
ResNet-Inception 384×288 - - 73.0 91.7 80.9 69.5 78.1 79.0

SimpleBase [29] ×
√

ResNet-152 384×288 68.6M 35.6 73.7 91.9 81.1 70.3 80.0 79.0
HRNet-W32 [24] ×

√
HRNet-W32 384×288 28.5M 16.0 74.9 92.5 82.8 71.3 80.9 80.1

HRNet-W48 [24] ×
√

HRNet-W48 384×288 63.6M 32.9 75.5 92.5 83.3 71.9 81.5 80.5
SimpleBase∗[29]

√ √
ResNet-152 384×288 - - 76.5 92.4 84.0 73.0 82.7 81.5

HRNet-W48 [24]
√ √

HRNet-W48 384×288 63.6M 32.9 77.0 92.7 84.5 73.4 83.1 82.0
MSPN [15]

√
× 4×ResNet-50 384×288 71.9M 58.7 77.1 93.8 84.6 73.4 82.3 82.3

Ours(RSN) × × RSN-18 256×192 12.5M 2.5 71.6 92.6 80.3 68.8 75.8 77.7
Ours(RSN) × × RSN-50 256×192 25.7M 6.4 72.5 93.0 81.3 69.9 76.5 78.8
Ours(RSN) × × 2×RSN-50 256×192 54.0M 13.9 75.5 93.6 84.0 73.0 79.6 81.3
Ours(RSN) × × 4×RSN-50 256×192 111.8M 29.3 78.0 94.2 86.5 75.3 82.2 83.4
Ours(RSN) × × 4×RSN-50 384×288 111.8M 65.9 78.6 94.3 86.6 75.5 83.3 83.8
Ours(RSN∗) × × 4×RSN-50 - - - 79.2 94.4 87.1 76.1 83.8 84.1

Inference Speed. Current methods of human pose estimation mainly focus
on promoting the performance while deploying resource-intensive networks with
large depth and width. This leads to inefficient inference. Interestingly, we ob-
serve RSN can make a better trade-off between accuracy and inference speed
than prior work. For fair comparison, we train RSN and HRNet under the same
settings in Section 4, with 256×192 input size. Both use MegDet as human de-
tector when testing. We use pps to measure inference speed, i.e., Persons inferred
Per Second. On the same GPU (RTX 2080ti), results of COCO val are reported,
HRNet-w16 with 1.9 G and 7.2 M achieves 71.9 AP and 31.8 pps, RSN-18 with
2.5G and 12.5 M achieves 73.6 AP and 64.9 pps, HRNet-w32 with 7.1 G and
28.5M achieves 74.6 AP and 26.5 pps, RSN-50 with 6.4 G and 25.7 M achieves
74.7 AP and 42.6 pps. HRNet-w48 with 14.6G and 63.6M achieves 75.5 AP and
24.7 pps, 2×RSN-50 with 13.9 G and 54.0 M achieves 77.4 AP and 20.2 pps.
In addition, the inference speed on CPU (Intel(R) Xeon(R) Gold6013@2.1GHZ)
also shows, RSNs with higher performances are faster than HRNet by all sizes.
These results suggest that RSN is more accurate, compact and efficient.

Effect of Human Detection. We use MegDet as human detector in ablation
study, which achieves 49.4 AP on COCO val. For test sets, we use MegDet-v2,
which has 59.8 AP on COCO val. As human detection has an influence on the
final performance of top-down approach, We perform ablations to investigate
the impact of human detector on COCO test-dev. 4×RSN-50 at input size of
256×192 achieves 77.3 AP using MegDet, and 78.0 using MegDet-v2. 4×RSN-50
at input size of 384×288 achieves 77.9 using MegDet, and 78.6 using MegDet-v2.

4.2 MPII Human Pose Estimation

We validate RSN on MPII test set, a single-person pose estimation benchmark.
As shown in Table 7, RSN boosts the SOTA performance by 0.7 in PCKh@0.5,
which demonstrates the superiority and generalization ability of our method.
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Table 6. Results on COCO test-challenge dataset. ”*” means using ensembled models.

Method Extra data Pretrain Backbone Input Size Params GFLOPs AP AP.5 AP.75 AP(M) AP(L) AR

G-RMI [21]
√

- ResNet-101 353×257 42.6M 57.0 69.1 85.9 75.2 66.0 74.5 75.1
CPN∗ [2] ×

√
ResNet-Inception 384×288 - - 72.1 90.5 78.9 67.9 78.1 78.7

Sea Monsters∗
√

- - - - - 74.1 90.6 80.4 68.5 82.1 79.5
SimpleBase∗[29]

√ √
ResNet-152 384×288 - - 74.5 90.9 80.8 69.5 82.9 80.5

MSPN∗ [15]
√

× 4×ResNet-50 384×288 - - 76.4 92.9 82.6 71.4 83.2 82.2

Ours(RSN∗) × × 4×RSN-50 - - - 77.1 93.3 83.6 72.2 83.6 82.6

Table 7. PCKh@0.5 results on MPII test dataset.

Method Hea Sho Elb Wri Hip Kne Ank Mean

Chen et al.[3] 98.1 96.5 92.5 88.5 90.2 89.6 86.0 91.9
Yang et al.[31] 98.5 96.7 92.5 88.7 91.1 88.6 86.0 92.0
Ke et al. [12] 98.5 96.8 92.7 88.4 90.6 89.3 86.3 92.1

Tang et al. [26] 98.4 96.9 92.6 88.7 91.8 89.4 86.2 92.3
Sun et al. [24] 98.6 96.9 92.8 89.0 91.5 89.0 85.7 92.3

ours(4×RSN-50) 98.5 97.3 93.9 89.9 92.0 90.6 86.8 93.0

5 Conclusion

In this paper, we propose a novel method, Residual Steps Network, which aims
to learn delicate local representations by efficient intra-level feature fusion. To
make a better trade-off between local and global representations in output fea-
tures, we design Pose Refine Machine. Our method yields the best results on two
benchmarks, COCO and MPII. Some prediction results are visualized in Fig 7.

Fig. 7. Prediction results on COCO (top line) and MPII (bottom line) val sets.
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