
Neural Design Network: Graphic Layout
Generation with Constraints

Supplementary Material

Hsin-Ying Lee?2, Lu Jiang1, Irfan Essa1,4,
Phuong B Le1, Haifeng Gong1, Ming-Hsuan Yang1,2,3, Weilong Yang1

1Google Research 2University of California, Merced
3Yonsei University 4Georgia Institute of Technology

1 Overview

In this supplementary material, we first describe the graph convolution network
we used in this work. Second, we further illustrate the training process of the
relation prediction module. Third, we present the detailed configurations of the
proposed framework. Finally, we show additional results.

2 Graph Convolution Network

Our graph convolution network takes as inputs features of nodes and edges, and
outputs the updated features. Given as input a graph G = (O,E) with vectors
of objects foi ∈ RDin , where i = 1 ∼ |O|, and vectors of relations fri ∈ RDin ,
where i = 1 ∼ |E|, we aim to output the updated vectors f ′

oi ∈ RDout and
f ′
ri ∈ RDout , where Din and Dout are dimension of input and output vectors,

respectively. The graph convolution kernel consists of three functions gs, gp, and
go to deal with features of subject, predicate, and object, respectively. These
function take as input a triple (foi , frk , foj) for an edge and outputs updated
vectors. For relations, the updated vectors is obtained directly from gp:

f ′
rk

= {gp(foi , frk , foj) : (oi, rk, oj) ∈ E}. (1)

For objects, since an object may be involved in multiple relationships, the up-
dated vectors should take all participated edges into consideration. We use a
symmetric pooling function p to take as input a set of vectors and output a
single vector. Concretely, for oi, the feature sets for oi as subject, the feature
sets for oi as object, and the final updated vectors can be formulated as:

F s
i = {gs(foi , frk , foj) : (oi, rk, oj) ∈ E}

F o
i = {go(foj , frk , foi) : (oj , rk, oi) ∈ E}

f ′
oi = p(F s

i , F
o
i).

(2)

Figure 1 illustrates an example for a single graph convolution layer.

? Work done during their internship at Google Research.

2 H.-Y. Lee et al.

𝑓"#

𝑓"$

𝑓"%

𝑓&#

𝑓&$

𝑔(
𝑔)
𝑔"

𝑝

𝑝

𝑝

Object Features

Relation Features

Pooling Function

Graph
Convolution
Kernel

𝑔(
𝑔)
𝑔"

𝑓"#
+

𝑓"$
+

𝑓"%
+

𝑓&#
+

𝑓&$
+

Fig. 1: Illustration of graph convolution layer. The example consists of
three objects with two edges. The features are passed into the graph convolution
kernel consisting of three functions. The updated relation features are directly
obtained from the output of the graph convolution kernel. The updated object
features are obtained with a pooling function.

z𝑔#

𝑔$

Relation Prediction

𝐺$

𝐺

𝐺

B C

A

?

above ?

B C

A

left

above above

B C

A

left

above above

Fig. 2: Relation prediction module. During the training process, given a
paired of a graph with partial relations Gp and a graph with complete relation
G, a graph convolution network gc first encode G into a latent vector z, then we
perform a conditional graph-to-graph translation with gp : Ĝ = gp(Gp, z).

3 Relation Prediction Module

The Figure 2 in the paper presents the generation process of three modules in the
testing stage. We further illustrate the training process of the relation prediction
module in Figure 2.

4 Model Architecture

The proposed framework contains three multilayer perceptrons (henc
bb , hdec

bb , and
hpred) and five graph convolution networks (gc, gp, genc, gupdate, and gft). We
present the architecture of sub-networks in Table 1.

Title Suppressed Due to Excessive Length 3

Table 1: Detailed configuration of the proposed network. We use the
following abbreviation: gconv(Din, H, Dout) is a graph convolution with input
dimension Din, hidden dimension H, and output dimension Dout. FC(Din →
Dout is a fully-connected layer with input dimension Din and output dimension
Dout.

Layer gc, gft

1 gconv(64, 512, 128)
2 gconv(128, 512, 128)
3 gconv(128, 512, 128)
4 gconv(128, 128, 128))

Layer gp

1 gconv(160, 512, 128)
2 gconv(128, 512, 128)
3 gconv(128, 512, 128)
4 gconv(128, 128, 128))

Layer genc

1 gconv(64, 512, 128)
2 gconv(128, 512, 128)
3 gconv(128, 512, 128)

Layer gupdate

1 gconv(128, 512, 128)

Layer hpred

1 FC(128→512)
2 FC(512→|R|))

Layer henc
bb

1 FC(4→128)
2 FC(128→128))
3 FC(128+128→32))
4mu FC(32→32))
4var FC(32→32))

Layer hdec
bb

1 FC(32+128→128)
2 FC(64))
3 FC(64→4))

5 Additional Results

We present additional results in Figure 3.

4 H.-Y. Lee et al.

Ads

Magazine

RICO

Fig. 3: Additional results. Samples generated by the proposed framework. All
layouts are generated given desired components and randomly decided partial
constraints.

