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Fig. 1: Graphic layout generation with user constraints. We present real-
istic use cases of the proposed model. Given the desired components and partial
user-specified constraints among them, our model can generate layouts follow-
ing these constraints. We also present example designs constructed based on the
generated layouts.

Abstract. Graphic design is essential for visual communication with
layouts being fundamental to composing attractive designs. Layout gen-
eration differs from pixel-level image synthesis and is unique in terms
of the requirement of mutual relations among the desired components.
We propose a method for design layout generation that can satisfy user-
specified constraints. The proposed neural design network (NDN) con-
sists of three modules. The first module predicts a graph with complete
relations from a graph with user-specified relations. The second module
generates a layout from the predicted graph. Finally, the third module
fine-tunes the predicted layout. Quantitative and qualitative experiments
demonstrate that the generated layouts are visually similar to real de-
sign layouts. We also construct real designs based on predicted layouts
for a better understanding of the visual quality. Finally, we demonstrate
a practical application on layout recommendation.

? Work done during their internship at Google Research.
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1 Introduction

Graphic design surrounds us on a daily basis, from image advertisements, movie
posters, and book covers to more functional presentation slides, websites, and
mobile applications. Graphic design is a process of using text, images, and sym-
bols to visually convey messages. Even for experienced graphic designers, the
design process is iterative and time-consuming with many false starts and dead
ends. This is further exacerbated by the proliferation of platforms and users with
significantly different visual requirements and desires.

In graphic design, layout – the placement and sizing of components (e.g., ti-
tle, image, logo, banner, etc.) – plays a significant role in dictating the flow
of the viewer’s attention and, therefore, the order by which the information is
received. Creating an effective layout requires understanding and balancing the
complex and interdependent relationships amongst all of the visible components.
Variations in the layout change the hierarchy and narrative of the message.

In this work, we focus on the layout generation problem that places compo-
nents based on the component attributes, relationships among components, and
user-specified constraints. Figure 1 illustrates examples where users specify a col-
lection of assets and constraints, then the model would generate a design layout
that satisfies all input constraints, while remaining visually appealing. Genera-
tive models have seen a success in rendering realistic natural images [7,17,27].
However, learning-based graphic layout generation remains less explored. Ex-
isting studies tackle layout generation based on templates [3,12] or heuristic
rules [25], and more recently using learning-based generation methods [16,22,33].
However, these approaches are limited in handling relationships among compo-
nents. High-level concepts such as mutual relationships of components in a layout
are less likely to be captured well with conventional generative models in pixel
space. Moreover, the use of generative models to account for user preferences
and constraints is non-trivial. Therefore, effective feature representations and
learning approaches for graphic layout generation remain challenging.

In this work, we introduce neural design network (NDN), a new approach of
synthesizing a graphic design layout given a set of components with user-specified
attributes and constraints. We employ directional graphs as our feature repre-
sentation for components and constraints since the attributes of components
(node) and relations among components (edge) can be naturally encoded in a
graph. NDN takes as inputs a graph constructed by desired components as well
as user-specified constraints, and then outputs a layout where bounding boxes
of all components are predicted. NDN consists of three modules. First, the rela-
tion prediction module takes as input a graph with partial edges, representing
components and user-specified constraints, and infers a graph with complete re-
lationships among components. Second, in the layout generation module, the
model predicts bounding boxes for components in the complete graph in an it-
erative manner. Finally, in the refinement module, the model further fine-tunes
the bounding boxes to improve the alignment and visual quality.

We evaluate the proposed method qualitatively and quantitatively on three
datasets under various metrics to analyze the visual quality. The three exper-
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imental datasets are RICO [4,24], Magazine [33], and an image banner adver-
tisement dataset collected in this work. These datasets reasonably cover several
typical applications of layout design with common components such as images,
texts, buttons, toolbars and relations such as above, larger, around, etc. We
construct real designs based on the generated layouts to assess the quality. We
also demonstrate the efficacy of the proposed model by introducing a practical
layout recommendation application.

To summarize, we make the following contributions in this work:
– We propose a new approach that can generate high-quality design layouts

for a set of desired components and user-specified constraints.
– We validate that our method performs favorably against existing models in

terms of realism, alignment, and visual quality on three datasets.
– We demonstrate real use cases that construct designs from generated layouts

and a layout recommendation application. Furthermore, we collect a real-
world advertisement layout dataset to broaden the variety of existing layout
benchmarks.

2 Related Work

Natural scene layout generation. Layout is often used as the intermediate
representation in the image generation task conditioned on text [9,11,31] or scene
graph [15]. Instead of directly learning the mapping from the source domain
(e.g., text and scene graph) to the image domain, these methods model the
operation as a two-stage framework. They first predict layouts conditioned on the
input sources, and then generate images based on the predicted layouts. Recently,
Jyothi et al. propose the LayoutVAE [16], which is a generative framework that
can synthesize scene layout given a set of labels. However, a graphic design layout
has several fundamental differences to a natural scene layout. The demands for
relationship and alignment among components are strict in graphic design. A few
pixels offsets of components can either cause a difference in visual experience or
even ruin the whole design. The graphic design layout does not only need to look
realistic but also needs to consider the aesthetic perspective.
Graphic design layout generation. Early work on design layout or docu-
ment layout mostly relies on templates [3,12], exemplars [21], or heuristic design
rules [25,30]. These methods rely on predefined templates and heuristic rules,
for which professional knowledge is required. Therefore, they are limited in cap-
turing complex design distributions. Other work leverages saliency maps [1] and
attention mechanisms [26] to capture the visual importance of graphic designs
and to trace the user’s attention. Recently, generative models are applied to
graphic design layout generation [22,33]. The LayoutGAN model [22] can gener-
ate layouts consisting of graphic elements like rectangles and triangles. However,
the LayoutGAN model generates layout from input noises and fails to handle
layout generation given a set of components with specified attributes, which is
the common setting in graphic design. The Layout Generative Network [33] is a
content-aware layout generation framework that can render layouts conditioned
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Fig. 2: Framework illustration. Neural design network consists of three mod-
ules: relation prediction, bounding box prediction, and refinement. We illustrate
the process with a three-component example. In relation prediction module,
the model takes as inputs a graph with partial relations along with a latent vec-
tor (encoded from the graph with complete relations during training, sampled
from prior during testing), and outputs a graph with complete relations. Only
the graph with location relations is shown in the figure for brevity. In layout
generation module, the model takes a graph with complete relations as in-
puts, and predicts the bounding boxes of components in an iterative manner. In
refinement module, the model further fine-tune the layout.

on attributes of components. While the goals are similar, the conventional GAN-
based framework cannot explicitly model relationships among components and
user-specified constraints.
Graph neural networks in vision. Graph Neural Networks (GNNs) [6,8,29]
aim to model dependence among nodes in a graph via message passing. GNNs are
useful for data that can be formulated in a graph data structure. Recently, GNNs
and related models have been applied to classification [20], scene graph [2,15,23,32,34],
motion modeling [13], and molecular property prediction [5,14], to name a few.
In this work, we model a design layout as a graph and apply GNNs to capture
the dependency among components.

3 Graphic Layout Generation

Our goal is to generate design layouts given a set of design components with user-
specified constraints. For example, in image ads creation, the designers can input
the constraints such as “logo at bottom-middle of canvas”, “call-to-action button
of size (100px, 500px)”, “call-to-action-button is below logo”, etc. The goal is to
synthesize a set of design layouts that satisfy both the user-specified constraints
as well as common rules in image ads layouts. Unlike layout templates, these
layouts are dynamically created and can serve as inspirations for designers.

We introduce the neural design network using graph neural network and con-
ditional variational auto-encoder (VAE) [19,28] with the goal of capturing better
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representations of design layouts. Figure 2 illustrates the process of generating
a three-component design with the proposed neural design network. In the rest
of this section, we first describe the problem overview in Section 3.1. Then we
detail three modules in NDN: the relation prediction (Section 3.2) and layout
generation modules (Section 3.3), and refinement module (Section 3.4).

3.1 Problem Overview

The inputs to our network are a set of design components and user-specified
constraints. We model the inputs as a graph, where each design component is
a node and their relationships are edges. In this paper, we study two common
relationships between design components: location and size.

Define G = {Gloc, Gsize} = (O,Eloc, Esize), where O = {o0, o1, ..., on} is a set
of n components with each oi ∈ C coming from a set of categories C. We use o0
to denote the canvas that is fixed in both location and size, and oi to denote
other design components that need to be placed on the canvas, such as logo,
button. Eloc = {l1 ..., lml

} and Esize = {s1 ..., sms} are sets of directed edges with
lk = (oi, rl, oj) and sk = (oi, rs, oj), where rl ∈ Rloc and rs ∈ Rsize. Here, Rsize

specifies the relative size of the component, such as smaller or bigger, and rl can
be left, right, above, below, upper-left, lower-left, etc. In addition, if anchoring on
the canvas o0, we extend the Rloc to capture the location that is relative to the
canvas, e.g., upper-left of the canvas.

Furthermore, in reality, designers often do not specify all the constraints.
This results in an input graph with missing edges. Figure 2 shows an example
of a three-component design with only one specified constraint “(A, above, B)”
and several unknown relations “?”. To this end, we augment Rloc and Rsize

to include an additional unknown category, and represent graphs that contain
unknown size or location relations as Gp

size and Gp
loc, respectively, to indicate they

are the partial graphs. In Section 3.2, we describe how to predict the unknown
relations in the partial graphs.

Finally, we denote the output layout of the neural design network as a set
of bounding boxes {bb1, ..., bb|O|}, where bbi = {xi, yi, wi, hi} represents the
location and shape.

In all modules, we apply the graph convolutional networks on graphs. The
graph convolutional networks take as the input the features of nodes and edges,
and outputs updated features. The input features can be one-hot vectors repre-
senting the categories or any embedded representations.

More implementation details can be found in the supplementary material.

3.2 Relation Prediction

In this module, we aim to infer the unknown relations in the user-specified
constraints. Figure 2 shows an example where a three-component graph is given
and we need to predict the missing relations between A, B, and C. For brevity,
we denote the graphs with complete relations as G, and the graphs with partial
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relations as Gp, which can be either Gp
size or Gp

loc. Note that since the augmented
relations include the unknown category, both Gp and G are complete graphs in
practice. We also use ei to refer to either li or si depending on the context.

We model the prediction process as a paired graph-to-graph translation task:
from Gp to G. Since the translation is multimodal, i.e., a graph with partial rela-
tions can be translated to many possible graphs with complete relations. There-
fore, we adopt a similar framework to the multimodal image-to-image transla-
tion [35] and treat Gp as the source domain and G as the target domain. Similar
to [35], the translation is a conditional generation process that maps the source
graph, along with a latent code, to the target graph. The latent code is encoded
from the corresponding target graph G to achieve reconstruction during training,
and is sampled from a prior during testing. The conditional translation encoding
process is modeled as:

z = gc(G) z ∈ Z,
{hi} = gp(Gp, z) i = 1, ..., |Ẽ|,
{êi} = hpred({hi}) i = 1, ..., |E|,

(1)

where gc and gp are graph convolutional networks, and hpred is a relation pre-

dictor. In addition, Ẽ is the set of edges in the target graph. Note that |Ẽ| = |E|
since the graph is a complete graph.

The model is trained with the reconstruction loss Lcls = CE({êi}, {ei}) on the
relation categories, where the CE indicates cross-entropy function, and a KL loss
on the encoded latent vectors to facilitate sampling at inference time: LKL1

=

E[DKL((z)‖N (0, 1))], where DKL(p‖q) = −
∫
p(z) log p(z)

q(z)dz. The objective of

the relation prediction module is:

Lrel = λclsLcls + λKL1
LKL1

. (2)

The reconstruction loss captures the knowledge that the predicted relations
should agree with the existing relations in Gp, and fill in any missing edge with
the most likely relation discovered in the training data.

3.3 Layout Generation

Given a graph with complete relations, this module aims to generate the design
layout by predicting the bounding boxes for all nodes in the graph.

Let G be the graph with complete relations constructed from Gsize and Gloc,
the output of the relation prediction module. We model the generation process
using a graph-based iterative conditional VAE model. We first obtain the features
of each component by

{fi}i=1∼|O| = genc(G), (3)

where genc is a graph convolutional network. These features capture the relative
relations among all components. We then predict bounding boxes in an iterative
manner starting from an empty canvas (i.e., all bounding boxes are unknown).
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As shown in Figure 2, the prediction of each bounding box is conditioned on the
initial features as well as the current canvas, i.e., predicted bounding boxes from
previous iterations. At iteration k, the condition can be modeled as:

tk = ({fi}i=1∼|O|, {bbi}i=1∼k−1),

ck = gupdate(tk),
(4)

where gupdate is another graph convolutional network. tk is a tuple of features
and current canvas at iteration k, and ck is a vector. Then we apply conditional
VAE on the current bounding box bbk conditioned on ck.

z = hencbb (bbk, ck),

b̂bk = hdecbb (z, ck),
(5)

where hencbb and hdecbb represent encoders and decoders consisting of fully connected
layers. We train the model with conventional VAE loss: a reconstruction loss

Lrecon =

|O|∑
i=1

‖b̂bi − bbi‖1 and a KL loss LKL2 = E[DKL(p(z|ck, bbk)‖p(z|ck))].

The objective of the layout generation module is:

Llayout = λreconLrecon + λKL2
LKL2

. (6)

The model is trained with teacher forcing where the ground truth bounding box
at step k will be used as the input for step k + 1. At test time, the model will
use the actual output boxes from previous steps. In addition, the latent vector z
will be sampled from a conditional prior distribution p(z|ck), where p is a prior
encoder.

Bounding boxes with predefined shapes. In many design use cases, it is of-
ten required to constrain some design components to fixed size. For exam-
ple, the logo size needs to be fixed in the ad design. To achieve this goal,
we augment the original layout generation module with an additional VAE en-
coder h̄encbb to ensure the encoded latent vectors z can be decoded to bounding
boxes with desired widths and heights. Similar to (5), given a ground-truth
bounding box bbk = (xk, yk, wk, hk), we obtain the reconstructed bounding box

b̂bk = (x̂k, ŷk, ŵk, ĥk) with h̄encbb and hdecbb . Then, instead of applying reconstruc-
tion loss on whole bounding boxes tuples, we only enforce the reconstruction of
width and height with

Lsize
recon =

|O|∑
i=1

‖ŵi − wi‖1+‖ĥi − hi‖1. (7)

The objective of the augmented layout generation module is given by:

L′layout = λsizereconL
size
recon + Llayout. (8)
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3.4 Layout Refinement

We predict bounding boxes in an iterative manner that requires to fix the pre-
dicted bounding boxes from the previous iteration. As a result, the overall bound-
ing boxes might not be optimal, as shown in the layout generation module in
Figure 2. To tackle this issue, we fine-tune the bounding boxes for better align-
ment and visual quality in the final layout refinement module. Given a graph
G with ground-truth bounding boxes {bbi}, we simulate the misalignment by
randomly apply offsets δ ∼ U(−0.05, 0.05) on {bbi}, where U is the uniform
distribution. We obtain misaligned bounding boxes {b̄bi} = {bbi + δi}. We apply
a graph convolutional network gft for finetuning:

{b̂bi} = gft(G, {b̄bi}). (9)

The model is trained with reconstruction loss Lft =
∑

i‖{b̂bi} − {bbi}‖1.

4 Experiments and Analysis

Datasets We perform the evaluation on three datasets:
– Magazine [33]. The dataset contains 4k images of magazine pages and 6

categories (texts, images, headlines, over-image texts, over-image headlines,
backgrounds).

– RICO [4,24]. The original dataset contains 91k images of the Android apps
interface and 27 categories. We choose 13 most frequent categories (toolbars,
images, texts, icons, buttons, inputs, list items, advertisements, pager indica-
tors, web views, background images, drawers, modals) and filter the number
of components within an image to be less than 10, totaling 21k images.

– Image banner ads. We collect 500 image banner ads of the size 300× 250
via image search using keywords such as “car ads”. We annotate bounding
boxes of 6 categories: images, regions of interest, logos, brand names, texts,
and buttons.

Evaluated methods. We evaluate and compare the following algorithms:
– sg2im [15]. The model is proposed to generate a natural scene layout from a

given scene graph. The sg2im method takes as inputs graphs with complete
relations in the setting where all constraints are provided. When we compare
with this method in the setting where no constraint is given, we simplify the
input scene graph by removing all relations. We refer the simplified model
as sg2im-none.

– LayoutVAE [16]. This model takes a label set as input, and predicts the
number of components for each label as well as the locations of each compo-
nent. We compare with the second stage of the LayoutVAE model (i.e., the
bounding box prediction stage) by giving the number of components for each
label. In addition, we refer to LayoutVAE-loo as the model that predicts
the bounding box of a single component when all other components are
provided and fixed (the leave-one-out setting).
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– Neural Design Network. We refer to NDN-none when the input con-
tains no prior constraint, NDN-all in the same setting as sg2im when all
constraints are provided, and NDN-loo in the same setting as LayoutVAE-
loo.

We do not compare our method with LayoutGAN [22] since LayoutGAN gen-
erates outputs in an unconditional manner (i.e., generation from sampled noise
vectors). Even in the no-constraint setting, it is difficult to conduct fair compar-
isons as multiple times of resampling are required to generate the same combi-
nations of components.

4.1 Implementation Details

In this work, hencbb , hdecbb , and hpred consists of 3 fully-connected layers. In addition,
gc, gp, genc, and gupdate consist of 3 graph convolution layers. The dimension of
latent vectors z in the relation prediction and layout generation module is 32. The
input features of nodes and edges are obtained from a dictionary mapping, which
is trained along with the model. For training, we use the Adam optimizer [18]
with batch size of 512, learning rate of 0.0001, and (β1, β2) = (0.5, 0.999). In
all experiments, we set the hyper-parameters as follows: λcls = 1, λKL1 = 0.005,
λrecon = λKL2 = 1, and λrecon = 10. We use a predefined order of component
sets in all experiments.

For the relation prediction module, the graphs with partial constraint are gen-
erated from the ground-truth graph with 0.2 ∼ 0.9 dropout rate. For the layout
generation module, the input graphs with complete relations are constructed
from the ground-truth layouts. The location and size relations are obtained
by ground-truth bounding boxes. The corresponding outputs are the bounding
boxes from the ground-truth layouts.

Since the location relations are discretized and mutually exclusive, there
might be some ambiguity. For example, a component is both “above” and “right”
of another component when it is in the upper-right direction to the other. To
handle the ambiguity, we predefine the order when conflicts occur. Specifically,
“above” and “below” have higher priority than “left of” and “right of”.

More implementation details can be found in the supplementary material.

4.2 Quantitative Evaluation

Realism and accuracy. We evaluate the visual quality following Fréchet In-
ception Distance (FID) [10] by measuring how close the distribution of generated
layout is to the real ones. We train a binary layout classifier to discriminate be-
tween good and bad layouts. The bad layouts are generated by randomly moving
component locations of good layouts. The classifier consists of four graph con-
volution layers and three fully connected layers. The binary classifier achieves
classification accuracy of 94%, 90, and 95% on the Ads, Magazine, and RICO
datasets, respectively. We extract the features of the second from the last fully
connected layer to measure FID.
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Table 1: Quantitative comparisons. We compare the proposed method to
other works on three datasets using three settings: no-constraint setting that
no prior constraint is provided (first row), all-constraint setting that all rela-
tions are provided (second row), and leave-one-out setting that aims to predict
the bounding box of a component with ground-truth bounding boxes of other
components provided. The FID metric measures the realism and diversity, the
alignment metric measures the alignment among components, and the prediction
error metric measures the prediction accuracy in the leave-one-out setting.

Datasets Ads Magazine RICO

FID ↓ Align. ↓ FID ↓ Align. ↓ FID ↓ Align. ↓
sg2im-none 116.63 0.63 95.81 0.97 269.60 0.14
LayoutVAE 138.11±38.91 1.21±0.08 81.56±36.78 .314±0.11 192.11±29.97 1.19±0.39
NDN-none 129.68±32.12 0.91±0.07 69.43±32.92 2.51±0.09 143.51±22.36 0.91±0.03

sg2im 230.44 0.0069 102.35 0.0178 190.68 0.007
NDN-all 168.44±21.83 0.61±0.05 82.77±16.24 1.51±0.09 64.78±11.60 0.32±0.02

Pred. error ↓ Align. ↓ Pred. error ↓ Align. ↓ Pred. error ↓ Align. ↓
LayoutVAE-loo 0.071±0.002 0.48±0.01 0.059±0.002 1.41±0.02 0.045±0.0021 0.39±0.02

NDN-loo 0.043±0.001 0.36±0.01 0.024±0.0002 1.30±0.01 0.018±0.002 0.14±0.01

real data - 0.0034 - 0.0126 - 0.0012

We measure FID in two settings. First, a model predicts bounding boxes with-
out any constraints. That is, only the number and the category of components
are provided. We compare with LayoutVAE and sg2im-none in this setting. Sec-
ond, a model predicts bounding boxes with all constraints provided. We compare
with sg2im in this setting since LayoutVAE cannot take constraints as inputs.
The first two rows in Table 1 present the results of these two settings. Since
LayoutVAE and the proposed method are both stochastic models, we generate
100 samples for each testing design in each trial. The results are averaged over
5 trials. In both no-constraint and all-constraint settings, the proposed method
performs favorably against the other schemes.

We also measure the prediction accuracy in the leave-one-out setting, i.e., pre-
dicting the bounding box of a component when bounding boxes of other com-
ponents are provided. We measure the accuracy by the L1 error between the
predicted and the ground-truth bounding boxes. The third row of Table 1 shows
the comparison to the LayoutVAE-loo method in this setting. The proposed
method gains better accuracy with statistical significance (≥ 95%), indicating
that the graph-based framework encodes better relations among components.

Alignment. Alignment is an important principle in design creation. In most
good designs, components need to be either in center alignment or edge align-
ment (e.g., left- or right-aligned). Therefore, in addition to realism, we explicitly
measure the alignment among components using:

1

ND

∑
d

∑
i

min
j,i 6=j
{min(l(cdi , c

d
j ),m(cdi , c

d
j ), r(cdi , c

d
j )}), (10)
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Table 2: Ablation on partial constraints and the refinement module.
We measure the FID and alignment of the proposed method taking different
percentages of prior constraints as inputs using the RICO dataset. We also show
that the refinement module can further improve the visual quality as well as the
alignment.

Unary
size (%)

Binary
size (%)

Unary
location (%)

Binary
location (%)

Refinement FID ↓ Align. ↓

0 0 0 0 3 143.51±22.36 0.91±0.03

20 20 0 0 3 141.64±20.01 0.87±0.03
0 0 20 20 3 129.92±23.76 0.81±0.03
20 20 20 20 126.18±23.11 0.74±0.02
20 20 20 20 3 125.41±21.68 0.70±0.02

100 100 100 100 70.55±12.68 0.36±0.02
100 100 100 100 3 64.78±11.60 0.32±0.02

Table 3: Components Order. We
compare the performance of our
model using different strategies of
deciding orders of components. We
evaluate the FID score on the RICO
dataset.

Order Size Occurence Random

FID 132.84 136.22 143.51
Pred.
error

1.08±0.04 1.02±0.04 0.91±0.03

Table 4: Constraint consistency.
We measure the consistency of the
relations among generated compo-
nents and the user-specified con-
straints.

Dataset Ads Magazine RICO

Constraint
consistency (%)

96.8 95.9 98.2

where ND is the number of generated layouts, cdk is the kth component of the
dth layout. In addition, l, m, and r are alignment functions where the distances
between the left, center, and right of components are measured, respectively.

Table 1 presents the results in the no-constraint, all-constraint, and leave-one-
out settings. The results are also averaged over 5 trials. The proposed method
performs favorably against other methods. The sg2im-none method gets better
alignment score since it tends to predict bounding boxes in several fixed locations
when no prior constraint is provided, which leads to worse FID. For similar
reasons, the sg2im method gains a slightly higher alignment score on RICO.

Partial constraints. Previous experiments are conducted under the settings
of either no constraints or all constraints provided. Now, we demonstrate the
efficacy of the proposed method on handling partial constraints. Table 2 shows
the results of layout prediction with different percentages of prior constraints
provided. We evaluate the partial constraints setting using the RICO dataset,
which is the most difficult dataset in terms of diversity and complexity. Ideally,
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Fig. 3: Qualitative comparison. We evaluate the proposed method with the
LayoutVAE and Sg2im methods in both no-constraint and all-constraint setting.
The proposed method can better model the relations among components and
generate layouts of better visual quality.

the FID and alignment scores should be similar regardless of the percentage of
constraints given. However, in the challenging RICO dataset, the prior informa-
tion of size and location still greatly improves the visual quality, as shown in
Table 2, The location constraints contribute to more improvement since they
explicitly provide guidance from the ground-truth layouts. As for the alignment
score, layouts in all settings perform similarly. Furthermore, the refinement mod-
ule can slightly improve the alignment score as well as FID.
User constraint consistency The major goal of the proposed model is to
generate layouts according to user-specified constraints. Therefore, we explicitly
measure the consistency between the relations among generated components and
the original user-specified constraints. Table 4 shows that the generated layouts
reasonably conform to the input constraints.
Order of components. Since the proposed model predicts layouts in an itera-
tive manner, the order of the components plays an important role. We evaluate
our method using three different strategies of defining orders: ordered by size,
ordered by occurrences, and random order. We show the comparisons in Table 3.
We have a similar finding as in LayoutVAE that the order of components affects
the generation results. However, we use the random order in all our experiments
since our goal is not only to generate layouts, but also enable flexible user con-
trol. In user cases such as leave-one-out prediction and layout recommendation,
using random order can better align the training and testing scenarios.

4.3 Qualitative Evaluation

We compare the proposed method with related work in Figure 3. In the all-
constraint setting, both the sg2im method and the proposed model can generate
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Fig. 4: Layout generation with partial user-specified constraints. We
generate layouts according to different user-specified constraints on location and
size. Furthermore, we construct designs with real assets based on the generated
layouts to better visualize the quality of our model.

reasonable layouts similar to the ground-truth layouts. However, the proposed
model can better tackle alignment and overlapping issues. In the no-constraint
setting, the sg2im-none method tends to place components of the same categories
at the same location, like the “text”s in the second row and the “text”s and “text
button”s in the third row. The LayoutVAE method, on the other hand, cannot
handle relations among components well without using graphs. The proposed
method can generate layouts with good visual quality, even with no constraint
provided.

Partial constraints. In Figure 4, we present the results of layout generation
given several randomly selected constraints on size and location. Our model gen-
erates design layouts that are both realistic and follows user-specified constraints.
To better visualize the quality of the generated layouts, we present designs with
real assets generated from the predicted layouts. Furthermore, we can constrain
the size of specific components to desired shapes (e.g., we fix the image and logo
size in the first row of Figure 4.) using the augmented layout generation module.

Layout recommendation. The proposed model can also help designers decide
the best locations of a specific design component (e.g., logo, button, or headline)
when a partial design layout is provided. This can be done by building graphs
with partial location and size relations based on the current canvas and set the
relations to target components as unknown. We then complete this graph using
the relation prediction module. Finally, conditioned on the predicted graph as
well as current canvas, we perform iterative bounding boxes prediction with the
layout generation module. Figure 5 shows examples of layout recommendations.

Failure cases. Several reasons may lead to undesirable generation. First, due
to the limited amount of training data, the sampled latent vectors used for gen-
eration might locate in undersampled spaces that are not fully exploited during
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Fig. 5: Layout Recommendation.
We show examples of layout recom-
mendations where locations of desired
components are recommended given
the current layouts.

Fig. 6: Failure cases. Generation
may fail when the sampled la-
tent vectors locate in under-sample
spaces or the characteristics of in-
puts differ greatly from that in the
training data.

training. Second, the characteristic of the set of components is too different from
the training data. For example, the lower-left image in Figure 6 demonstrates a
generation requiring three buttons and two logos, which are less likely to exist
in real designs.

5 Conclusion and Future Work

In this work, we propose a neural design network to handle design layout gen-
eration given user-specified constraints. The proposed method can generate lay-
outs that are visually appealing and follow the constraints with a three-module
framework, including a relation prediction module, a layout generation module,
and a refinement module. Extensive quantitative and qualitative experiments
demonstrate the efficacy of the proposed model. We also present examples of
constructing real designs based on generated layouts, and an application of lay-
out recommendation.

Visual design creation is an impactful but understudied topic in our com-
munity. It is extremely challenging. Our work is among one of the first works
tackling graphic design in a well-defined setting that is reasonably close to the
real use case. However, graphic design is a complicated process involving con-
tent attributes such as color, font, semantic labels, etc. Future directions may
include content-aware graphic design or fine-grained layout generation beyond
the bounding box.
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