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Abstract. We introduce TIDE, a framework and associated toolbox! for
analyzing the sources of error in object detection and instance segmenta-
tion algorithms. Importantly, our framework is applicable across datasets
and can be applied directly to output prediction files without required
knowledge of the underlying prediction system. Thus, our framework can
be used as a drop-in replacement for the standard mAP computation
while providing a comprehensive analysis of each model’s strengths and
weaknesses. We segment errors into six types and, crucially, are the first
to introduce a technique for measuring the contribution of each error in a
way that isolates its effect on overall performance. We show that such a
representation is critical for drawing accurate, comprehensive conclusions
through in-depth analysis across 4 datasets and 7 recognition models.
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1 Introduction

Object detection and instance segmentation are fundamental tasks in computer
vision, with applications ranging from self-driving cars [6] to tumor detection [9].
Recently, the field of object detection has rapidly progressed, thanks in part to
competition on challenging benchmarks, such as CalTech Pedestrians [8], Pascal
[10], COCO [20], Cityscapes [6], and LVIS [12]. Typically, performance on these
benchmarks is summarized by one number: mean Average Precision (mAP).

However, mAP suffers from several shortcomings, not the least of which is its
complexity. It is defined as the area under the precision-recall curve for detections
at a specific intersection-over-union (IoU) threshold with a correctly classified
ground truth (GT), averaged over all classes. Starting with COCO [20], it became
standard to average mAP over 10 IoU thresholds (interval of 0.05) to get a final
mAPY509 The complexity of this metric poses a particular challenge when
we wish to analyze errors in our detectors, as error types become intertwined,
making it difficult to gauge how much each error type affects mAP.

Moreover, by optimizing for mAP alone, we may be inadvertently leaving
out the relative importance of error types that can vary between applications.
For instance, in tumor detection, correct classification arguably matters more
than box localization; the existence of the tumor is essential, but the precise

! https://dbolya.github.io/tide/
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Table 1: Comparison to Other Toolkits. We compare our desired features
between existing toolkits and ours. ¢ indicates a toolkit has the feature, %
indicates that it partially does, and X indicates that it doesn’t.

Feature Hoiem [14] COCO [1] UAP [4] TIDE (Ours)
Compact Summary of Error Types * X 4 4
Isolates Error Contribution * X X 4
Dataset Agnostic X X v v
Uses All Detections X v 4 4
Allows for deeper analysis v v v v

location may be manually corrected. In contrast, precise localization may be
critical for robotic grasping where even slight mislocalizations can lead to faulty
manipulation. Understanding how these sources of error relate to overall mAP is
crucial to designing new models and choosing the proper model for a given task.
Thus we introduce TIDE, a general Toolkit for Identifying Detection and
segmentation Errors, in order to address these concerns. We argue that a complete
toolkit should: 1.) compactly summarize error types, so comparisons can be made
at a glance; 2.) fully isolate the contribution of each error type, such that there
are no confounding variables that can affect conclusions; 3.) not require dataset-
specific annotations, to allow for comparisons across datasets; 4.) incorporate all
the predictions of a model, since considering only a subset hides information; 5.)
allow for finer analysis as desired, so that the sources of errors can be isolated.

Why we need a new analysis toolkit. Many works exist to analyze the
errors in object detection and instance segmentation [15,24,7,17,22], but only
a few provide a useful summary of all the errors in a model [14,1, 4], and none
have all the desirable properties listed above.

Hoiem et al. introduced the foundational work for summarizing errors in
object detection [14], however their summary only explains false positives (with
false negatives requiring separate analysis), and it depends on a hyperparameter
N to control how many errors to consider, thus not fulfilling (4). Moreover, to use
this summary effectively, this IV needs to be swept over which creates 2d plots
that are difficult to interpret (see error analysis in [11,21]), and thus in practice
only partially addresses (1). Their approach also doesn’t fulfill (3) because their
error types require manually defined superclasses which are not only subjective,
but difficult to meaningfully define for datasets like LVIS [12] with over 1200
classes. Finally, it only partially fulfills (2) since the classification errors are
defined such that if the detection is both mislocalized and misclassified it will be
considered as misclassified, limiting the effectiveness of conclusions drawn from
classification and localization error.

The COCO evaluation toolkit [1] attempts to update Hoiem et al.’s work by
representing errors in terms of their effect on the precision-recall curve (thus tying
them closer to mAP). This allows them to use all detections at once (4), since
the precision recall curve implicitly weights each error based on its confidence.
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However, the COCO toolkit generates 372 2d plots, each with 7 precision-recall
curves, which requires a significant amount of time to digest and thus makes
it difficult to compactly compare models (1). Yet, perhaps the most critical
issue is that the COCO eval toolkit computes errors progressively which we
show drastically misrepresents the contribution of each error (2), potentially
leading to incorrect conclusions (see Sec. 2.3). Finally, the toolkit requires manual
annotations that exist for COCO but not necessarily for other datasets (3).

As concurrent work, [4] attempts to find an upper bound for AP on these
datasets and in the process addresses certain issues with the COCO toolkit.
However, this work still bases their error reporting on the same progressive
scheme that the COCO toolkit uses, which leads them to the dubious conclusion
that background error is significantly more important all other types (see Fig. 2).
As will be described in detail later, to draw reliable conclusions, it is essential
that our toolkit work towards isolating the contribution of each error type (2).

Contributions In our work, we address all 5 goals and provide a compact, yet
detailed summary of the errors in object detection and instance segmentation.
Each error type can be represented as a single meaningful number (1), making it
compact enough to fit in ablation tables (see Tab. 2), incorporates all detections
(4), and doesn’t require any extra annotations (3). We also weight our errors based
on their effect on overall performance while carefully avoiding the confounding
factors present in mAP (2). And while we prioritize ease of interpretation, our
approach is modular enough that the same set of errors can be used for more
fine-grained analysis (5). The end result is a compact, meaningful, and expressive
set of errors that is applicable across models, datasets, and even tasks.

We demonstrate the value of our approach by comparing several recent
CNN-based object detectors and instance segmenters across several datasets. We
explain how to incorporate the summary into ablation studies to quantitatively
justify design choices. We also provide an example of how to use the summary of
errors to guide more fine-grained analysis in order to identify specific strengths
or weaknesses of a model.

We hope that this toolkit can form the basis of analysis for future work, lead
model designers to better understand weaknesses in their current approach, and
allow future authors to quantitatively and compactly justify their design choices.
To this end, full toolkit code is released at https://dbolya.github.io/tide/ and
opened to the community for future development.

2 The Tools

Object detection and instance segmentation primarily use one metric to judge
performance: mean Average Precision (mAP). While mAP succinctly summarizes
the performance of a model in one number, disentangling errors in object detection
and instance segmentation from mAP is difficult: a false positive can be a
duplicate detection, misclassification, mislocalization, confusion with background,
or even both a misclassification and mislocalization. Likewise, a false negative
could be a completely missed ground truth, or the potentially correct prediction
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could have just been misclassified or mislocalized. These error types can have
hugely varying effects on m AP, making it tricky to diagnose problems with a
model off of mAP alone.

We could categorize all these types of errors, but it’s not entirely clear how
to weight their relative importance. Hoiem et al. [14] weight false positives by
their prevalence in the top N most confident errors and consider false negatives
separately. However, this ignores the effect many low scoring detections could have
(so effective use of it requires a sweep over N), and it doesn’t allow comparison
between false positives and false negatives.

There is one easy way to determine the importance of a given error to overall
mAP, however: simply fix that error and observe the resulting change in mAP.
Hoiem et al. briefly explored this method for certain false positives but didn’t
base their analysis off of it. This is also similar to how the COCO eval toolkit
[1] plots errors, with one key difference: the COCO implementation computes
the errors progressively. That is, it observes the change in mAP after fixing one
error, but keep those errors fixed for the next error. This is nice because at the
end result is trivially 100 mAP, but we find that fixing errors progressively in
this manner is misleading and may lead to false conclusions (see Sec. 2.3).

So instead, we define errors in such a way that fixing all errors will still result
in 100 mAP, but we weight each error individually starting from the original
model’s performance. This retains the nice property of including confidence and
false negatives in the calculation, while keeping the magnitudes of each error
type comparable.

2.1 Computing mAP

Before defining error types, we focus our attention on the definition of mAP to
understand what may cause it to degrade. To compute mAP, we are first given
a list of predictions for each image by the detector. Each ground truth in the
image is then matched to at most one detection. To qualify as a positive match,
the detection must have the same class as the ground truth and an IoU overlap
greater than some threshold, ¢, which we will consider as 0.5 unless otherwise
specified. If multiple detections are eligible, the one with the highest overlap is
chosen to be true positive while all remaining are considered false positives.

Once each detection has matched with a ground truth (true positive) or not
(false positive), all detections are collected from every image in the dataset and
are sorted by descending confidence. Then the cumulative precision and recall
over all detections is computed as:

TP, TP,

Pczi c =
TP, + FP. r Nor

(1)

where for all detections with confidence > ¢, P, denotes the precision, R, recall,
TP, the number of true positives, and F' P, the number of false positives. Ngr
denotes the number of GT examples in the current class.

Then, precision is interpolated such that P. decreases monotonically, and
AP is computed as a integral under the precision recall curve (approximated by
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Fig.1: Error Type Definitions. We define 6 error types, illustrated in the top
row, where box colors are defined as: M = false positive detection; @ = ground
truth; M = true positive detection. The IoU with ground truth for each error
type is indicated by an orange highlight and shown in the bottom row.

a fixed-length Riemann sum). Finally, mAP is defined as the average AP over
all classes. In the case of COCO [20], mAP is averaged over all IoU thresholds
between 0.50 and 0.95 with a step size of 0.05 to obtain mAPY-5:0-95,

2.2 Defining Error Types

Examining this computation, there are 3 places our detector can affect mAP:
outputting false positives during the matching step, not outputting true positives
(i.e., false negatives) for computing recall, and having incorrect calibration (i.e.,
outputting a higher confidence for a false positive then a true positive).

Main Error Types In order to create a meaningful distribution of errors that
captures the components of mAP, we bin all false positives and false negatives
in the model into one of 6 types (see Fig. 1). Note that for some error types
(classification and localization), a false positive can be paired with a false negative.
We will use ToUyax to denote a false positive’s maximum IoU overlap with a
ground truth of the given category. The foreground IoU threshold is denoted as
ty and the background threshold is denoted as 3, which are set to 0.5 and 0.1
(as in [14]) unless otherwise noted.

1. Classification Error: IoUy,.x > tr for GT of the incorrect class (i.e., local-
ized correctly but classified incorrectly).

2. Localization Error: t;, < IoUpax < t¢ for GT of the correct class (i.e.,
classified correctly but localized incorrectly).

3. Both Cls and Loc Error: t,, < IoUp. < t; for GT of the incorrect class
(i.e., classified incorrectly and localized incorrectly).

4. Duplicate Detection Error: [oU . > t; for GT of the correct class but
another higher-scoring detection already matched that GT (i.e., would be
correct if not for a higher scoring detection).
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5. Background Error: ToUy,.x < t}, for all GT (i.e., detected background as
foreground).

6. Missed GT Error: All undetected ground truth (false negatives) not already
covered by classification or localization error.

This differs from [14] in a few important ways. First, we combine both sim
and other errors into one classification error, since Hoiem et al.’s sim and
other require manual annotations that not all datasets have and analysis of the
distinction can be done separately. Then, both classification errors in [14] are
defined for all detections with JoUpax > t4, even if ToUpax < ty. This confounds
localization and classification errors, since using that definition, detections that
are both mislocalized and misclassified are considered class errors. Thus, we

separate these detections into their own category.

Weighting the Errors Just counting the number of errors in each bin is not
enough to be able to make direct comparisons between error types, since a false
positive with a lower score has less effect on overall performance than one with a
higher score. Hoiem et al. [14] attempt to address this by considering the top N
highest scoring errors, but in practice N needed to be swept over to get the full
picture, creating 2d plots that are hard to interpret (see the analysis in [11,21]).

Ideally, we’d like one comprehensive number that represents how each error
type affects overall performance of the model. In other words, for each error type
we’d like to ask the question, how much is this category of errors holding back
the performance of my model? In order to answer that question, we can consider
what performance of the model would be if it didn’t make that error and use
how that changed mAP.

To do this, for each error we need to define a corresponding “oracle” that fixes
that error. For instance, if an oracle o € O described how to change some false
positives into true positives, we could call the AP computed after applying the
oracle as AP, and then compare that to the vanilla AP to obtain that oracle’s
(and corresponding error’s) effect on performance:

AAP, = AP, — AP 2)

We know that we’ve covered all errors in the model if applying all the oracles
together results in 100 mAP. In other words, given oracles O = {o1,...,0,}:

AP, ..o, =100 AP + AAP,, . ., =100 (3)

Referring back to the definition of AP in Sec. 2.1, to satisfy Eq. 3 the oracles
used together must fix all false positives and false negatives.

Considering this, we define the following oracles for each of the main error
types described above:

1. Classification Oracle: Correct the class of the detection (thereby making
it a true positive). If a duplicate detection would be made this way, suppress
the lower scoring detection.



TIDE: A General Toolbox for Identifying Object Detection Errors 7

2. Localization Oracle: Set the localization of the detection to the GT’s local-
ization (thereby making it a true positive). Again, if a duplicated detection
would be made this way, suppress the lower scoring detection.

3. Both Cls and Loc Oracle: Since we cannot be sure of which GT the
detector was attempting to match to, just suppress the false positive detection.

4. Duplicate Detection Oracle: Suppress the duplicate detection.

Background Oracle: Suppress the hallucinated background detection.

6. Missed GT Oracle: Reduce the number of GT (Ngr) in the mAP calcula-
tion by the number of missed ground truth. This has the effect of stretching
the precision-recall curve over a higher recall, essentially acting as if the
detector was equally as precise on the missing GT. The alternative to this
would be to add new detections, but it’s not clear what the score should be
for that new detection such that it doesn’t introduce confounding variables.
We discuss this choice further in the Appendix.

ot

Other Error Types While the previously defined types fully account for all
error in the model, how the errors are defined doesn’t clearly delineate false
positive and negative errors (since cls, loc, and missed errors can all capture false
negatives). There are cases where a clear split would be useful, so for those cases
we define two separate error types by the oracle that would address each:

1. False Positive Oracle: Suppress all false positive detections.
2. False Negative Oracle: Set N7 to the number of true positive detections.

Both of these oracles together account for 100 mAP like the previous 6 oracles
do, but they bin the errors in a different way.

2.3 Limitations of Computing Errors Progressively

Note that we are careful to compute errors individually (i.e., each AAP starts
from the vanilla AP with no errors fixed). Other approaches [1, 4] compute their
errors progressively (i.e., each AAP starts with the last error fixed, such that
fixing the last error results in 100 AP). While we ensure that applying all oracles
together also results in 100 AP, we find that a progressive AAP misrepresents
the weight of each error type and is strongly biased toward error types fized last.

To make this concrete, we can define progressive error AAP,|;, to be the
change in AP from applying oracle a given that you've already applied oracle b:

AAP,, = AP, , — AP, (4)

Then, computing errors progressively amounts to setting the importance of error 4
to AAP,,|o,,....0,_,- This is problematic for two reasons: the definition of precision
includes false positives in the denominator, meaning that if you start with fewer
false positives (as would be the case when having fixed most false positives
already), the change in precision will be much higher. Furthermore, any changes
in recall (e.g., by fixing localization or classification errors) amplifies the effect of
precision on mAP, since the integral now has more area.
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Fig. 2: The problem with computing errors progressively. The COCO
eval analyze function [1] computes errors progressively, which we show for Mask
R-CNN [13] detections on mAPsq. On the right, we swap the order of applying
the classification and background oracles. The quantity of each error remains
the same, but the perceived contribution from background error (purple region)
significantly decreases, while it increases for all other errors. Because COCO
computes background error second to last, this instills a belief that it’s more
important than other errors, which does not reflect reality (see Sec. 2.3).

We show this empirically in Fig. 2, where Fig. 2a displays the original COCO
eval style PR curves, while Fig. 2b simply swaps the order that background and
classification error are computed. Just computing background first leads to an
incredible decrease in the prevalence of its contribution (given by the area of the
shaded region), meaning that the true weight of background error is likely much
less than COCO eval reports. This makes it difficult to draw factual conclusions
from analysis done this way.

Moreover, computing errors progressively doesn’t make intuitive sense. When
using these errors, you’d be attempting to address them individually, one at a
time. There will never be an opportunity to correct all localization errors, and
then start addressing the classification errors—there will always be some amount
of error in each category left over after improving the method, so observing AP,
isn’t useful, because there is no state where you're starting with AP,.

For these reasons, we entirely avoid computing errors progressively.

3 Analysis

In this section we demonstrate the generality and usefulness of our analysis
toolbox by providing detailed analysis across various object detection and instance
segmentation models and across different data and annotation sets. We also
compare errors based on general qualities of the ground truth, such as object
size, and find a number of useful insights. To further explain complicated error
cases, we provide more granular analysis into certain error types. All modes of
analysis used in this paper are available in our toolkit.
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Fig.3: Summary of errors on COCO Detection. Our model specific error
analysis applied to various object detectors on COCO. The pie chart shows
the relative contribution of each error, while the bar plots show their absolute
contribution. For instance segmentation results, see the Appendix.

Models We choose various object detectors and instance segmenters based on
their ubiquity and/or unique qualities which allows us to study the performance
trade-offs between different approaches and draw several insights. We use Mask
R-CNN [13] as our baseline, as many other approaches build on top of the
standard R-CNN framework. We additionally include three such models: Hybrid
Task Cascades (HTC) [5], TridentNet [18], and Mask Scoring R-CNN (MS-
RCNN) [13]. We include HTC due to its strong performance, being the 2018
COCO challenge winner. We include TridentNet [18] as it specifically focuses
on increasing scale-invariance. Finally, we include MS R-CNN as a method
which specifically focuses on fixing calibration based error. Distinct from the
two-stage R-CNN style approaches, we also include three single-stage approaches,
YOLACT/YOLACT++ [3,2] to represent real-time models, RetinaNet [19] as
a strong anchor-based model, Fully Convolutional One-Stage Object Detection
(FCOS) [23] as a non anchor-based approach. Where available, we use the
ResNet101 versions of each model. Exact models are indicated in the Appendix.

Datasets We present our core cross-model analysis on MS-COCO [20], a widely
used and active benchmark. In addition, we seek to showcase the power of our
toolbox to perform cross-dataset analysis by including three additional datasets:
Pascal VOC [10] as a relatively simple object detection dataset, Cityscapes [6]
providing high-res, densely annotation images with many small objects, and
LVIS [12] using the same images at COCO but with a massive diversity of
annotated objects with 1200+ mostly-rare class.

3.1 Validating Design Choices

The authors of each new object detector or instance segmenter make design
choices they claim to affect their model’s performance in different ways. While
the goal is almost always to increase overall m AP, there remains the question:
does the intuitive justification for a design choice hold up? In Fig. 3 we present
the distribution of errors for all object detectors and instance segmenters we
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Fig. 4: Comparison across models on COCO. Weight of each error type
compared across models. This has the same data as Fig. 3.

consider on COCO [20], and in this section we’ll analyze the distribution of errors
for each detector to see whether our errors line up with the intuitive justifications.

R-CNN Based Methods First, HTC [5] makes two main improvements over
Mask R-CNN: 1.) it iteratively refines predictions (i.e., a cascade) and passes
information between all parts of the model each time, and 2.) it introduces a
module specifically for improved detection of foreground examples that look
like background. Intuitively, (1) would improve classification and localization
significantly, as the prediction and the features used for the prediction are
being refined 3 times. And indeed, the classification and localization errors
for HTC are the lowest of the models we consider in Fig. 4 for both instance
segmentation and detection. Then, (2) should have the effect of eliciting higher
recall while potentially adding false positives where something in the background
was misclassified as an object. And this is exactly what our errors reveal: HT'C
has the lowest missed GT error while having the highest background error (not
counting YOLACT++, whose distribution of errors is quite unique).

Next, TridentNet [18] attempts to create scale-invariant features by having
a separate pipeline for small, medium, and large objects that all share weights.
Ideally this would improve classification and localization performance for objects
of different scales. Both HT'C and TridentNet end up having the same classification
and localization performance, so we test this hypothesis further in Sec. 3.2.
Because HTC and TridentNet make mostly orthogonal design choices, they would
likely compliment each other well.

One-Stage Methods RetinaNet [19] introduces focal loss that down-weights
confident examples in order to be able to train on all background anchor boxes
(rather than the standard 3 negative to 1 positive ratio). Training on all negatives
by itself should cause the model to output fewer background false positives,
but at the cost of significantly lower recall (since the detector would be biased
toward predicting background). The goal of focal loss then is to train on all
negatives without causing extra missed detections. We observe this is successful
as RetinaNet has one of the lowest background errors across models in Fig. 4a,
while retaining slightly less missed GT error than Mask R-CNN.

Then FCOS [23] serves as a departure from traditional anchor-based models,
predicting a newly defined box at each location in the image instead of regressing
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Table 2: Mask Rescoring. An ablation of MS-RCNN [13] and YOLACT++ [2]
mask performance using the errors defined in this paper. AmAPsq is denoted as
E for brevity, and only errors that changed are included. Mask scoring better
calibrates localization, leading to decrease in localization error. However, by
scoring based on localization, the calibration of other error types suffer. Note
that this information is impossible to glean from the change in AP5q alone.

Method APs0t Eeis{ Eioc ¥ Evkg ¥ Eniss 4 Erp ! Epnv
Mask R-CNN (R-101-FPN) 58.1 3.1 93 45 75 15.9 17.8

+ Mask Scoring 58.3 36 78 5.1 7.8 15.9 18.1
Improvement +0.2 +0.4 -1.5 +0.7 +40.3 +0.0 +0.3
YOLACT++ (R-50-FPN) 51.8 3.3 104 32 13.0 10.7 27.7

+ Mask Scoring 52.3 3.6 9.7 32 13.2 10.1 28.2
Improvement +0.5 +0.3 -0.7 +0.0 +40.2 —0.5 +0.6

an existing prior. While the primary motivation for this design choice was
simplicity, getting rid of anchor boxes has other tangible benefits. For instance,
an anchor-based detector is at the mercy of its priors: if there is no applicable
prior for a given object, then the detector is likely to completely miss it. FCOS
on the other hand doesn’t impose any prior-based restriction on its detections,
leading to it having one of the lowest missed detection errors of all the models
we consider (Fig. 4a). Note that it also has the highest duplication error because
it uses an NMS threshold of 0.6 instead of the usual 0.5.

Real-Time Methods YOLACT [3] is a real-time instance segmentation
method that uses a modified version of RetinaNet as its backbone detector
without focal loss. YOLACT++ [2] iterates on the former and additionally in-
cludes mask scoring (discussed in Tab. 2). Observing the distribution of errors
in Fig. 3, it appears that design choices employed to speed up the model result
in a completely different distribution of errors w.r.t. RetinaNet. Observing the
raw magnitudes in Fig. 4a, this is largely due to YOLACT having much higher
localization and missed detection error. However, the story changes when we
look at instance segmentation, where it localizes almost as well as Mask R-CNN
despite the bad performance of its detector (see Appendix). This substantiates
their claim that YOLACT is more conducive to high quality masks and that its
performance is likely limited by a poor detector.

A Note on Ablations To demonstrate the potential usefulness of this toolkit
for isolating error contribution and debugging, we showcase how an ablation
over error types instead of only over mAP provides meaningful insights while
still being compact. As an example, consider the trend of rescoring a mask’s
confidence based on its predicted IoU with a ground truth, as in Mask Scoring
R-CNN [16] and YOLACT++ [2]. This modification is intended to increase the
score of good quality masks and decrease the score of poor quality masks, which
intuitively should result in better localization. In order to justify their claims,
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Fig.5: Comparison of Scales between HTC and TridentNet. Both HTC
and TridentNet have the same classification and localization error on COCO
detection. Using fine analysis, we can isolate the cause of these errors further.

the authors of both papers provide qualitative examples where this is the case,
but limit quantitative support to the change to an observed increase in mAP.
Unfortunately, a change in mAP alone does not illuminate the cause of that
change, and some ablations may show little change in m AP despite the method
working. By adding the error types that were affected by the change to ablation
tables (e.g., see Tab. 2) we not only provide quantitative evidence for the design
choice, but also reveal side effects (such that classification calibration error went
up), which were previously hidden by the raw increase in mAP.

3.2 Comparing Object Attributes for Fine Analysis

In order to compare performance across object attributes such as scale or aspect
ratio, the typical approach is to compute mAP on a subset of the detections
and ground truth that have the specified attributes (with effective comparison
requiring normalized mAP [14]). While we offer this mode of analysis in our
toolkit, this doesn’t describe the effect of that attribute on overall performance,
just how well a model performs on that attribute. Thus, we propose an additional
approach based on the tools we defined earlier for summarizing error’s affect on
overall performance: simply fix errors and observe AmAP as before, but only
those whose associated prediction or ground truth have the desired attribute.
Comparing Across Scale As an example of using this approach across
different scales of objects, we return to the case of TridentNet vs. HTC discussed
in Sec. 3.1. Both models have the same classification and localization error and
we would like to understand where the difference, if any, lies. Since TridentNet
focuses specifically on scale-invariance, we turn our attention to performance
across scales. We define objects with pixel areas of between 0 and 162 as extra
small (XS), 162 to 322 as small (S), 322 to 962 as medium (M), 96 to 2882 as (L),
and 2882 and above as extra large (XL). In Fig. 5 we apply our approach across
HTC and TridentNet (with Mask R-CNN detections included for reference). This
comparison reveals that TridentNet localizes and classifies medium sized objects
better than HTC, while HTC is better at large objects. This could potentially
be why the authors of TridentNet find that they can achieve nearly the same
performance by only evaluating their branch for medium sized objects [18]. Other
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Fig. 6: Performance of Mask R-CNN Across Datasets. Because our toolkit
is dataset agnostic, we can fix a detection architecture and compare performance
across datasets to gain valuable insights into properties of each dataset.

comparisons between subsets of detections such as across aspect ratios, anchor
boxes, FPN layers, etc. are possible with the same approach.

3.3 Comparing Performance Across Datasets

Our toolkit is dataset agnostic, allowing us to compare the same model across
several datasets, as in Fig. 6, where we compare Mask R-CNN (Faster R-CNN
for Pascal) across Pascal VOC [10], COCO [20], Cityscapes [6], and LVIS [12].

In this comparison, the first immediately clear pattern is that Background
error decreases both in overall prevalence (pie charts) and absolute magnitude
(bar charts) with increasing density of annotations. Faster R-CNN on Pascal is
dominated by background error, but of reduced concern on COCO. Both LVIS
and Cityscapes, which are very densely annotated, have almost no background
error at all. This potentially indicates that much of the background error in
Pascal and COCO are simply due to unannotated objects (see Sec. 3.4).

As expected, missed ground truths are a large issue for densely annotated
datasets like LVIS and Cityscapes. The core challenge on Cityscapes is the
presence of many small objects, which are well known to be difficult to detect
with modern algorithms. On the other hand, LVIS’s challenge is to deal with
the vast number of possible objects that the detector has to recognize. We
can see from the relatively normal classification error on LVIS that the model
isn’t particularly suffering directly from misclassifying rare objects, but instead
completely failing to detect them when they appear. This is also reflected in
the false positive and false negative error distributions (vertical bars). Overall,
Pascal is heavily biased toward false positives, COCO is mixed, and LVIS and
Cityscapes are both biased toward false negatives.

On COCO, Mask R-CNN has a harder time localizing masks (Fig. 6b) than
boxes (Fig. 6a), but the opposite is true for LVIS, possibly because of its higher
quality masks, which are verified with expert studies [12]. Again, this potentially
indicates that a lot of the error in instance segmentation may be derived by
mis-annotations.



14 D. Bolya et al.

Fig. 7: Examples of Poor Annotations. In modern detectors, highly confident
detections classified as both mislocalized and misclassified or background errors
are likely to be mislabeled examples on COCO. In the first two images, the
ground truth should have been labeled as crowds. In the third, some of the
donuts simply weren’t labeled. l = ground truth, @ = predictions.

3.4 Unavoidable Errors

We find in Sec. 3.3 that a lot of the background and localization error may simply
be due to mis- or unannotated ground truth. Examining the top errors more
closely, we find that indeed (at least in COCO), many of the most confident
errors are actually misannotated or ambiguously misannotated ground truth (see
Fig. 7). For instance, 30 of the top 100 most confident localization errors in Mask
R-CNN detections are due to bad annotations, while the number soars to 50
out of 100 for background error. These misannotations are simple mistakes like
making the box too big or forgetting to mark a box as a crowd annotation. More
examples are ambiguous: should a mannequin or action figure be annotated as a
person? Should a sculpture of a cat be annotated as a cat? Should a reflection of
an object be annotated as that object? Highly confident mistakes result in large
changes in overall mAP, so misannotated ground truth considerably lower the
maximum mAP a reasonable model can achieve.

This begs the question, what is the upper bound for mAP on these datasets?
Existing analyses into the potential upper bound in object detection such as
[4] don’t seem to account for the rampant number of mislabeled examples. The
state-of-the-art on the COCO challenge are slowly stagnating, so perhaps we
are nearing the “reasonable” upper bound for these detectors. We leave this for
future work to analyze.

4 Conclusion

In this work, we define meaningful error types and a way of tying these error types
to overall performance such that it minimizes any confounding variables. We then
apply the resulting framework to evaluate design decisions, compare performance
on object attributes, and reveal properties of several datasets, including the
prevalence of misannotated ground truth in COCO. We hope that our toolkit
can not only serve as method to isolate and improve on errors in detection, but
also lead to more interpretability in design decisions and clearer descriptions of
the strengths and weaknesses of a model.
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