PointContrast: Unsupervised Pre-training for
3D Point Cloud Understanding
(Supplementary Material)

Saining Xie!, Jiatao Gu', Demi Guo*, Charles R. Qi*,
Leonidas Guibas?*, and Or Litany?*

1 Facebook AI Research
2 Stanford University

A Visualization of the SR-UNet Architecture

Here we show the SR-UNet architecture that is used as a shared backbone in
our paper for both the pre-training and the fine-tuning phases. This U-Net ar-
chitecture was originally proposed in [1] for ScanNet semantic segmentation.

H

Sparse (De)Conv
ResBlock (N=2, D=32)

}_
F

’ Sparse Deconv ResBlock (N=2, D=96) F

|

Sparse (De)Conv
(2x2x2, stride=2)

64)
128)

-32)
2,0=96)

2

Sparse Deconv ResBlock (N=2,D=

128)

128)

Sparse Conv
(3x3x3, stride=1)

256)

Sparse Conv (3x3x3, D=32)

Sparse Conv (1x1x1, D=class)

Sparse Conv ResBlock (N:

D: output dimension
} N: number of repeated layers
| Conv/DeConv layers are followed by BN and ReLU

Sparse Conv ResBlock (N=3,D:

Sparse Deconv ResBlock (N=2,D:

|

Sparse Conv ResBlock (N=4,D:
Sparse Deconv ResBlock (N=2,D:

|

Sparse Conv Res Block (N=6,0

|
|

Fig.1: SR-UNet architecture we used as a shared backbone network for pre-training
and fine-tuning tasks. For segmentation and detection tasks, both the encoder and
decoder weights are fine-tuned; for classification downstream tasks, only the encoder
network is kept and fine-tuned.

* Work done while at Facebook AI Research.



2 Authors Suppressed Due to Excessive Length

B Visualization of the ScanNet Point Cloud Pair Dataset

Fig.2: Visualization of the ScanNet point cloud pair dataset used for pre-training.
Each row is a randomly sampled scene. Each column is a different pair of point clouds
sampled from the same scene. Different colors are corresponding to two different views
(partial scans). At least 30% of the points are overlapped between two views.

C ShapeNet Supervised Training Details

We use a sparse ResNet network that has an identical structure to the encoder
part of the SR-UNet in Appendix A. We use Adam optimizer, and add standard
data augmentations including rotation, scaling and translation, following [9, 10].
We perform a grid search over learning rate, weight decay, voxel size (for sparse
convolution), and number of input points. The best performing model configura-
tion is: learning rate 0.004, voxel size 0.01, weight decay le-5, batch size 512 and



Title Suppressed Due to Excessive Length 3

2048 input points. The 85.4% accuracy is to our knowledge the best results that
has been reported on this SHREC benchmark split. We use 8 Titan-V100 GPU
with data parallelism to train the model. We train the model for 200 epochs and
the training takes around 8 hours.

D Details on PointContrast Pre-training

D.1 Details on Transformations

The transformations T; and Ty applied to two views x! and x? in our exper-
iments involves a random rotation (0 to 360°) along an arbitrary axis (applied
independently to both views). We apply scale augmentation to both views (0.8x
to 1.2x of the input scale). We have experimented with other augmentations
such as translation, point coordinate jittering, and point dropout and did not
find noticeable difference in fine-tuning performances.

D.2 Details on Loss Functions

For the hardest-contrastive loss, the positive sample size is 1024 and the hardest
negative sample size is 256. More details can be found in [2]. For the PointIn-
foNCE loss we provide a detailed PyTorch-like pseudo code (and explanatory
comments) in Algorithm 1.

Algorithm 1 Pseudocode of PointInfoNCE Loss implementation.

f_vl, £f_v2: features for matched points (in a minibatch) between view 1 and view 2: NxC
NN: shared backbone network

t: temperature

Ns: subsampling size for point features.

f_vl,inds = random.choice(f_v1l, Ns, dim=0) # subsample view 1 point features
f_v2 = f_v2[inds,:] # subsample view 2 point features

logits = torch.mm(f_vl, f_v2.transpose(l, 0)) # Ns by Ns
labels torch.arange(Ns) # for k-th row, the positive sample is at the k-th position.
loss = CrossEntropyLoss(logits/t, labels)

# SGD update: shared backbone network
loss.backward()
update (NN.params)

mm: matrix multiplication;

E S3DIS Segmentation Experimental Details

Here we provide training details for S3DIS semantic segmentation task. We use
the widely adopted Area 5 Test (Fold 1) split for training and testing. For all the
PointContrast variants (Training from scratch, Hardest-contrastive Pretrained,



4 Authors Suppressed Due to Excessive Length

and PointInfoNCE Pretrained) we use the same hyperparameter settings. Specif-
ically we train the model with 8 V100 GPUs with data parallelism for 10,000
iterations. Batch size is 48. Batch normalization is applied independently on
each GPU. We use SGD+momentum optimizer with an initial learning rate 0.8.
We use Polynomial LR scheduler with a power factor of 0.9. Weight decay is
0.0001 and voxel size is 0.05 (5cm). We use the same data augmentation tech-
niques in [1] such as color hue/saturation augmentation and jittering, as well as
scale augmentations (0.9%x to 1.1x). In Table 1 we show detailed per-category
performance breakdown for our models and previous approaches.

Method ceiling floor wall beam clmn windw door chair table bkcase sofa board clutter | mIOU mAcc
PointNet [9] 88.80 97.33 69.80 0.05 3.92 46.26 10.76 52.61 58.93 40.28 5.85 26.38 33.22 | 41.09 48.98
SegCloud [13] 90.06 96.05 69.86 0.00 18.37 3835 23.12 75.89 70.40 5842 40.88 12.96 41.60 | 48.92 57.35
TangentConv [12] 90.47 97.66 73.99 0.0 20.66 38.98 31.34 77.49 69.43 57.27 38.54 48.78 39.79 | 52.8  60.7
3D RNN [14] 952 986 774 08 9.83 527 279 768 783 586 274 39.1 510 534  TL3
PointCNN [6] 92.31 98.24 79.41 0.00 17.60 22.77 62.09 80.59 74.39 66.67 31.67 62.05 56.74 | 57.26 63.86
SuperpointGraph [5] 89.35 96.87 78.12 0.0 42.81 4893 61.58 84.66 7541 69.84 52.60 2.1 52.22 | 58.04 66.5
MinkowskiNet20 [1] 91.55 98.49 84.99 0.8 26.47 46.18 55.82 88.99 80.52 71.74 48.29 62.98 57.72 | 62.60 69.62
MinkowskiNet32 [1] 91.75 98.71 86.19 0.0 34.06 48.90 62.44 89.82 81.57 74.88 47.21 74.44 5857 | 65.35 TL.71
PntContrast(Scratch) 91.47 98.56 84.08 0.00 33.03 56.88 63.94 90.11 81.67 72.46 76.45 77.89 59.63 | 68.17 75.45
PntContrast(Hardest-Ctr) | 94.82 98.72 86.06 0.00 42.84 58.00 73.72 91.73 82.38 74.74 74.58 81.42 62.66 |70.90 77.00
PntContrast(Pnt-InfoNCE) | 93.26 98.67 85.56 0.11 45.90 54.41 67.87 91.56 80.09 74.66 78.20 81.49 62.32 | 70.32 76.94

Table 1: Stanford Area 5 Test (Fold 1). Per-category IOU performance.

F Synthia4dD Segmentation Experimental Details

Here we provide training details for SynthiadD semantic segmentation task. As
mentioned in the main paper, we only use 3D sparse convnet without any tem-
poral aggregation mechanisms such as 4D kernels and temporal CRF. For all the
PointContrast variants (Training from scratch, Hardest-contrastive Pretrained,
and PointInfoNCE Pretrained) we use the same hyperparameter settings, and
those are mostly identical the S3DIS experiments. Specifically we train the model
with 8 V100 GPUs with data parallelism for 15,000 iterations. Batch size is 72.
Batch normalization is applied independently on each GPU. We use SGDmomen-
tum optimizer with an initial learning rate 0.8. We use Polynomial LR scheduler
with a power factor of 0.9. Weight decay is 0.0001 and voxel size is 0.05 (5cm).
We also use the same data augmentation techniques in [1] in color space and
point coordinate space. In Table 2 we show detailed per-category performance
breakdown for our models and results reported in [1].

G ScanNet Segmentation Experimental Details

For ScanNet segmentation task, we train the model with 8 V100 GPUs with
data parallelism for 15,000 iterations. Batch size is 48. We use SGD+momentum



Title Suppressed Due to Excessive Length 5

Method | Bldn  Road Sdwlk Fence Vegittn Pole  Car T.Sign Pedstn Bicycl Lame T.Light| mloU mAcc

MinkNet20 + TA [1]
4D MinkNet32 + TS-CRF [1]

88.096 97.790 78.329 87.088 96.540 97.486 94.203 78.831 92.489 0.000 46.407 67.071
89.694 98.632 86.893 87.801 98.776 97.284 94.039 80.292 92.300 0.000 49.299  69.060

77.03  89.198
78.67  90.51

PntContrast(Train from scratch)
PntContrast(Hardest-Contrastive)
PntContrast(PointInfoNCE)

92.237 98.619 90.217 86.863 99.346 96.848 95.085 75.526 88.596 0.000 72.173  62.060
92.518 99.040 93.309 87.331 99.384 97.500 96.174 81.627 92.007 0.000 80.257 71.764
92.238  99.006 93.993 87.368 99.657 97.755 95.648 83.446 93.279 0.000 79.002 76.364

79.797  91.492
82.576  93.650
83.146 93.707

Table 2: SynthiadD segmentation test results Per-category IOU performance.

optimizer with an initial learning rate 0.8. We use Polynomial LR scheduler with
a power factor of 0.9. Weight decay is 0.0001 and voxel size is 0.025 (2.5cm).
We also use the same data augmentation techniques in [1] in color space and
point coordinate space. In Table 2 we show detailed per-category performance
breakdown for our models and results reported in [1].

Method ‘bz\th bed bookshelf cab  chair counter curtain desk door floor other  pic ref shower sink  sofa tab  toilet wall wind ‘mIoU mAce

Scratch 84.866 96.412 64.271 80.928 90.910 85.954 73.890 61.767 59.935 80.753 30.896 68.571 62.109 75.252 54.603 67.236 90.084 68.720 85.936 60.279|72.169 80.718
Hardest-Ct | 85.773 96.442 66.883 81.525 91.829 84.708 74.030 65.149 62.835 82.645 32.113 66.451 64.408 77.507 53.049 69.762 94.269 67.934 88.601 60.190|73.305 81.025
PntInfoNCE|86.540 96.456  66.630 81.294 91.301 84.281 77.393 68.031 65.168 81.600 33.530 66.037 67.639 77.803 56.853 (9.398 95.202 68.329 88.303 60.924|74.136 81.623

Table 3: ScanNet segmentation results on val set Per-category IOU performance.

H ScanNet and SUN RGB-D Detection Details

For the 3D object detection experiments, we mostly follow the configurations in
VoteNet [7] framework after switching in the SR-UNet backbone architecture.
We train the model on 1 GPU, with batch size 64 for SUN RGB-D and 32 for
ScanNet. Learning rate is 0.001 and we use Adam optimizer. The input points
are subsampled before voxelization, we use 20000 points for SUN RGB-D and
40000 points for ScanNet. The voxel size is 2.5cm for ScanNet and 5cm for SUN
RGB-D. In Table 7 we show more results reported by previous methods. In
Table 4 and Table 5, we show per-category AP performance for PointContrast
models agains training from scratch results, under AP@QQ0.5 metric.

Methods ‘bed table sofa chair toil desk dress night book bath‘mAP@O.5

Train from Scratch ‘47.8 19.6 48.1 54.6 60.0 6.3 15.8 27.3 5.4 32.1‘ 31.7

Hardest-Contrastive|52.0 20.1 52.3 55.8 60.0 7.5 14.7 36.8 10.0 35.6 34.5
PointInfoNCE 50.5 19.4 51.8 54.9 574 7.5 16.2 37.0 5.9 47.6| 34.8
Table 4: SUN RGB-D detection results Per-category AP@0.5 performance.




6 Authors Suppressed Due to Excessive Length

Methods [cabinet bed chair sofa table door wind bkshlf pic  cntr  desk curtain refrig shower tollet sink bath garbage|mAP@O.5
Train from Scratch ‘ 9.9 70.5 70.0 60.5 43.4 21.8 10.5 33.3 0.8 15.4 33.3 26.6 39.3 9.7 747 23.7 75.8 18.1 ‘ 35.4
Hardest-Contrastive| 10.5 68.4 75.6 59.1 43.1 19.6 9.6 35.0 2.1 15.6 34.3 32.8 378 13.6 76.9 28.8 824 25.8 37.3
PointInfoNCE 13.1 747 754 61.3 44.8 19.8 12.9 32.0 0.9 21.9 31.9 27.0 32.6 17.5 87.4 23.2 80.8 26.7 38.0

Table 5: ScanNet detection results Per-category AP@0.5 performance.

I PointContrast vs FCGF for low- and high-level tasks

We take the best performing FCGF model released in [2] that achieves a high
registration feature matching recall (FMR) of: 0.958. However, this model does
not perform well for S3DIS segmentation. On the other hand, the PointContrast
model that performs best for segmentation achieves a lower FMR when applied
to the registration task. We conclude that low-level tasks and high-level tasks in
3D might require different design choices.

methods |Registration FMR|S3DIS mloU
FCGF[1] 0.958 63.06
PointContrast 0.912 70.90

Table 6: FCGF vs PointContrast. FCGF achieves a much higher registration feature
matching recall, while PointContrast achieves higher mIoU for segmentation.

methods input mAP@0.5 mAP@0.25
DSS [11, 4] Geo+RGB 6.8 15.2
MRCNN 2D-3D (3, 4] Geo+RGB 10.5 17.3
F-PointNet [8, 4] Geo+RGB 10.8 19.8
GSPN [15] Geo+RGB 17.7 30.6
3D-SIS [4] Geo+RGB (s views) 22.5 40.2
VoteNet [7] Geo-+Height 33.5 58.6
Training from scratch Geo 35.4 56.7
Point Contrast(Hardest-Contrastive) Geo 37.3 59.2
PointContrast(PointInfoNCE) Geo 38.0 58.5

Table 7: 3D object detection results on ScanNet dataset. More methods in

comparison.

References

1. Choy, C., Gwak, J., Savarese, S.: 4D spatio-temporal convnets: Minkowski convo-
lutional neural networks. In: CVPR (2019)
2. Choy, C., Park, J., Koltun, V.: Fully convolutional geometric features. In: ICCV

(2019)



w

10.

11.

12.

13.

14.

15.

Title Suppressed Due to Excessive Length 7

He, K., Gkioxari, G., Dollar, P., Girshick, R.: Mask R-CNN. In: ICCV (2017)
Hou, J., Dai, A., Niefiner, M.: 3D-SIS: 3d semantic instance segmentation of rgb-d
scans. In: CVPR (2019)

Landrieu, L., Simonovsky, M.: Large-scale point cloud semantic segmentation with
superpoint graphs. In: CVPR (2018)

Li, Y., Bu, R., Sun, M., Wu, W., Di, X., Chen, B.: Pointcnn: Convolution on
x-transformed points. In: NeurIPS (2018)

Qi, C.R., Litany, O., He, K., Guibas, L.J.: Deep hough voting for 3d object detec-
tion in point clouds. ICCV (2019)

Qi, C.R., Liu, W., Wu, C., Su, H., Guibas, L.J.: Frustum pointnets for 3d object
detection from rgb-d data. In: CVPR (2018)

Qi, C.R., Su, H., Mo, K., Guibas, L.J.: Pointnet: Deep learning on point sets for
3d classification and segmentation. CVPR (2017)

Qi, C.R., Yi, L., Su, H., Guibas, L.J.: Pointnet++: Deep hierarchical feature learn-
ing on point sets in a metric space. NeurIPS (2017)

Song, S., Xiao, J.: Deep sliding shapes for amodal 3d object detection in rgb-d
images. In: CVPR (2016)

Tatarchenko, M., Park, J., Koltun, V., Zhou, Q.Y.: Tangent convolutions for dense
prediction in 3d. In: CVPR (2018)

Tchapmi, L., Choy, C., Armeni, 1., Gwak, J., Savarese, S.: Segcloud: Semantic
segmentation of 3d point clouds. In: 3DV (2017)

Ye, X., Li, J., Huang, H., Du, L., Zhang, X.: 3d recurrent neural networks with
context fusion for point cloud semantic segmentation. In: ECCV (2018)

Yi, L., Zhao, W., Wang, H., Sung, M., Guibas, L.: Gspn: Generative shape proposal
network for 3d instance segmentation in point cloud. In: CVPR (2019)



