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Abstract. AutoAugment has been a powerful algorithm that improves
the accuracy of many vision tasks, yet it is sensitive to the operator space
as well as hyper-parameters, and an improper setting may degenerate
network optimization. This paper delves deep into the working mecha-
nism, and reveals that AutoAugment may remove part of discriminative
information from the training image and so insisting on the ground-truth
label is no longer the best option. To relieve the inaccuracy of supervi-
sion, we make use of knowledge distillation that refers to the output of
a teacher model to guide network training. Experiments are performed
in standard image classification benchmarks, and demonstrate the ef-
fectiveness of our approach in suppressing noise of data augmentation
and stabilizing training. Upon the cooperation of knowledge distillation
and AutoAugment, we claim the new state-of-the-art on ImageNet
classification with a top-1 accuracy of 85.8%.

Keywords: AutoML, AutoAugment, Knowledge Distillation

1 Introduction

Automated machine learning (AutoML) has been attracting increasing atten-
tions in recent years. In standard image classification tasks, there are mainly
two categories of AutoML techniques, namely, neural architecture search (NAS)
and hyper-parameter optimization (HPO), both of which focus on the possibility
of using automatically learned strategies to replace human expertise. AutoAug-
ment [4] belongs to the latter, which goes one step beyond conventional data
augmentation techniques (e.g., horizontal flipping, image rescaling & cropping,
color jittering, etc.) and tries to combine them towards generating more training
data without labeling new images. It has achieved consistent accuracy gain in
image classification [4], object detection [11], etc., and meanwhile efficient vari-
ants of AutoAugment have been proposed to reduce the computational burden
in the search stage [17, 25, 13].

Despite their ability in improving recognition accuracy, we note that AutoAu-
gment-based methods often require the search space to be well-designed. Without
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Fig. 1. Left: an image and its augmented copies generated by AutoAugment. The
original image is clean and there is no doubt to use the ground-truth label, while the
augmented counterparts look more like other classes which the annotation is not aware
of. This phenomenon is called augment ambiguity. Right: We leverage the idea of
knowledge distillation to provide softened signals to avoid ambiguity.

careful control (e.g., in an expanded search space or with an increased distortion
magnitude), these methods are not guaranteed to perform well – as we shall see
in Section 3.2, an improper hyper-parameter may deteriorate the optimization
process, resulting in even lower accuracy compared to the baseline. This puts
forward a hard choice between more information (seeing a wider range of aug-
mented images) and safer supervision (restricting the augmented image within
a relatively small neighborhood around the clean image), which downgrades the
upper-bound of AutoAugment-based methods.

In this paper, we investigate the reason of this contradictory. We find that
when heavy data augmentation is added to the training image, it is probable
that part of its semantic information is removed. An example of changing image
brightness is shown in Figure 1, and other transformation such as image trans-
lation and shearing can also incur information loss and make the image class
unrecognizable (refer to Figure 3). We name this phenomenon augment ambi-
guity. In such contaminated training images, insisting on the ground-truth label
is no longer the best choice, as the inconsistency between input and supervision
can confuse the network. Intuitively, complementary information that relates the
augmented image to similar classes may serve as a better source of supervision.

Motivated by the above, we leverage the idea of knowledge distillation which
uses a standalone model (often referred to as the teacher) to guide the target
network (often referred to as the student). For each augmented image, the stu-
dent receives supervision from both the ground-truth and the teacher signal,
and in case that part of semantic information is removed, e.g., an ambiguous
(Figure 1) or an out-of-distribution (Figure 3) instance, the teacher can provide
softened labels to avoid confusion. The extra loss between the teacher and stu-
dent is measured by the KL-divergence between the score distributions of their
top-ranked classes, and the number of involved classes is positively correlated to
the magnitude of augmentation, since a larger magnitude often eliminates more
semantics and causes smoother score distributions.
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The main contribution of this paper is to reveal that knowledge distillation is
a natural complement to uncontrolled data augmentation, such as AutoAugment
and its variants. The effectiveness of our approach is verified in the space of
AutoAugment [4] as well as that of RandAugment [5] with different strengths
of transformations. Knowledge distillation brings consistent accuracy gain to
recognition, in particular when the distortion magnitude becomes larger. Ex-
periments are performed on standard image classification benchmarks, namely,
CIFAR-10/100 and ImageNet. On CIFAR-100, with a strong baseline of Pyra-
midNet [12] and ShakeDrop [49] regularization, we achieve a test error of 10.6%,
outperforming all competitors with similar training costs. On ImageNet, in the
RandAugment space, we boost the top-1 accuracy of EfficientNet-B7 [41] from
84.9% to 85.5%, with a significant improvement of 0.6%. Note that without
knowledge distillation, RandAugment with a large distortion magnitude may
suffer unstable training. Moreover, on top of EfficientNet-B8 [45], we set a new
record on ImageNet classification (without extra training data) by claiming a
top-1 accuracy of 85.8%, surpassing the previous best by a non-trivial margin.

2 Related Work

Deep learning [24], in particular training deep neural networks, has been the stan-
dard methodology in computer vision. Modern neural networks, either manually-
designed [22, 34, 38, 14, 19] or automatically searched [58, 31, 59, 27, 40, 41], often
contain a very large number of trainable parameters and thus raise the challenge
of collecting more labeled data to avoid over-fitting. Data augmentation is a
standard strategy to generate training data without additional labeling costs.
Popular options of transformation include horizontal flipping, color/contrast jit-
tering, image rotation/shearing, etc., each of which slightly alters the geometry
and/or pattern of an image but keeps its semantics (e.g., the class label) un-
changed. Data augmentation has been verified successful in a wide range of visual
recognition tasks, including image classification [7, 54, 52], object detection [35],
semantic segmentation [8], person re-identification [57], etc. Researchers have
also discussed the connection between data augmentation and network regular-
ization [36, 10, 49] methods.

With the rapid development of automated machine learning (AutoML) [43],
researchers proposed to learn data augmentation strategies in a large search
space to replace the conventional hand-designed augmentation policies. Au-
toAugment [4] is one of the early efforts that works on this direction. It first
designed a search space with a number of transformations and then applied re-
inforcement learning to search for powerful combinations of the transformations
to arrive at a high validation accuracy. To alleviate the heavy computational
costs in the search stage, researchers designed a few efficient variants of Au-
toAugment. Fast AutoAugment [25] moved the costly search stage from training
to evaluation through bayesian optimization, and population-based augmenta-
tion [17] applied evolutionary algorithms to generate policy schedule by only a
single run of 16 child models. Online hyper-parameter learning [26] combined the
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search stage and the network training process, and faster AutoAugment [13] for-
mulated the search process into a differentiable function, following the recently
emerging weight-sharing NAS approaches [2, 30, 28]. Meanwhile, some properties
of AutoAugment have been investigated, such as whether aggressive transforma-
tions need to be considered [17] and how transformations of enriched knowledge
are effectively chosen [55]. Recently, RandAugment [5] shared another opinion
that the search space itself may have contributed most: based on a well-designed
set of transformations, a random policy of augmentation works sufficiently well.

Knowledge distillation was first introduced as an approach to assist network
optimization [16]. The goal is to improve the performance of a target network (of-
ten referred to as the student model) using two sources of supervision, one from
the ground-truth label, and the other from the output signal of a pre-trained
network (often referred to as the teacher model). Beyond its wide application
on model compression (large teacher, small student [33, 16]) and model initial-
ization (small teacher, large student [34, 3]), researchers later proposed to use
it for standard network training, with the teacher and student models sharing
the same network architecture [9, 50, 51], and sometimes under the setting of
semi-supervised learning [42, 56]. There have been discussions on the working
mechanism of knowledge distillation, and researchers advocated for the so-called
‘dark knowledge’ [16] being some kind of auxiliary supervision, obtained from
the pre-trained model [50, 1] and thus different from the softened signals based
on label smoothing [39, 29].

In this paper, we build the connection between knowledge distillation and
AutoAugment by showing that the former is a natural complement to the latter,
which filters out noises introduced by overly aggressive transformations.

3 Our Approach

3.1 Preliminaries: Data Augmentation with AutoML

Let D = {(xn, yn)}Nn=1 be a labeled image classification dataset with N samples,
in which xn denotes the raw pixels and yn denotes the annotated label within
the range of {1, 2, . . . , C}, C is the number of classes. yn is the vectorized version
of yn with the dimension corresponding to the true class assigned a value of 1
and all others being 0. The goal is to train a deep network, M : yn = f(xn;θ),
where θ denotes the trainable parameters. The dimensionality of θ is often very
large, e.g., tens of millions, exceeding the size of dataset, N , in most of cases.
Therefore, network training is often a ill-posed optimization problem and incurs
over-fitting without well-designed training strategies.

The goal of data augmentation is to enlarge the set of training images without
actually collecting and annotating more data. It starts with defining a transfor-
mation function, xτ

n
.
= g(xn, τ ), in which τ ∼ T is a multi-dimensional vector

parameterizing how the transformations are performed. Note that each dimen-
sion of τ can take either discrete (e.g., whether the image is horizontally flipped)
or continuous (e.g., the image is rotated for a specific angle), and different trans-
formations can be applied to an image towards richer combinations. The idea of
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AutoAugment [4] is to optimize the distribution, T , so that the model optimized
on the augmented training set performs well on the validation set:

T ? = arg min
T
L(g(xn; τ ∼ T ) ,yn;θ?

T | (xn,yn) ∼ Dval), (1)

in which θ?
T = arg min

θ
L(g(xn; τ ∼ T ) ,yn;θ | (xn,yn) ∼ Dtrain).

Here, Dtrain and Dval are two subsets of D, used for training and validating
the quality of T , respectively. The loss function follows any conventions, e.g.,
the cross-entropy form, L(xτ

n,yn;θ) = y>n · ln f(xτ
n;θ). Eqn (1) is a two-stage

optimization problem, for which existing approaches either applied reinforcement
learning [4, 25, 17] or weight-sharing methods [13] which are often more efficient.

We follow the convention to assign each dimension in τ to be an individual
transformation, with the complete list shown below:
• invert • autoContrast • equalize • rotate
• solarize • color • posterize • contrast
• brightness • sharpness • shear-x • shear-y
• translate-x • translate-y

Therefore, τ is a 14-dimensional vector and each dimension of τ represents the
magnitude of the corresponding transformation. For example, the fourth dimen-
sion of τ represents the magnitude of rotate transformation, and a value of
zero indicates the corresponding transformation being switched off. Each time
a transformation is sampled from the distribution, τ ∼ T , at most two dimen-
sions in it are set to be non-zero, and each selected transformation is assigned a
probability that it is applied after each training image is sampled online.

3.2 AutoAugment Introduces Noisy Training Images

AutoAugment makes it possible to generate infinitely many images which do
not exist in the original training set. On the upside, this reduces the risk of
over-fitting during the training process; on the downside, it can introduce a con-
siderable amount of outliers to the training process. Typical examples are shown
in Figure 2. When an image with its upper part occupied by main content (e.g.,
bee) is sampled, the transformation of translate-y (shifting the image along
the vertical direction) suffers risk of removing all discriminative contents within
it outside the visible area, and thus the augmented image becomes meaningless
in semantics. Nonetheless, the training process is not always aware of such noises
and still uses the ground-truth signal, a one-hot vector, to supervise and thus
confuse the deep network.

In Figure 2, we also show how the training loss and validation accuracy curves
change along with the magnitude of transformation. When the magnitude is 0
(i.e., no augmentation is used), it is easy for the network to fit the training set
and thus the training loss quickly drops, but the validation accuracy remains
low which indicates over-fitting. With a relatively low magnitude of augmen-
tation, the training loss increases gradually meanwhile the validation accuracy
arrives at a higher plateau, i.e., over-fitting is alleviated. However, if the mag-
nitude of augmentation continues growing, it becomes more and more difficult
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Fig. 2. Left: AutoAugment can generate meaningless training images but still assigns
deterministic class labels to them. Right: The results of EfficientNet-B0 with different
magnitudes of transformation on ImageNet. The training difficulty increases gradually
with enlarging the magnitude of transformation, while the validation accuracy rises
initially but drops at last. This phenomenon reveals the model starts from over-fitting
to under-fitting.

to fit the training set, i.e., the model suffers under-fitting. In particular, when
the magnitude is set to be 36, the noisy data introduced to the training set is
sufficiently high to bias the model training, i.e., the results is lower than the
baseline without AutoAugment.

From the above analysis, we realize that AutoAugment is indeed balancing
between richer training data and heavier noises. Researchers provided comments
from two aspects: some of them argued that the transformation strategies may
have been overly aggressive and need to be controlled [17], while some others
advocated for the benefit of exploring aggressive transformations so that richer
information is integrated into the trained model [55]. We deal with this issue from
a new perspective. We believe that aggressive transformations are useful to train-
ing, yet treating all augmented images just like they are clean (non-augmented)
samples is not the optimal choice. Moreover, the same transformations operated
on different images will cause different results, i.e., some generated images can
enrich the diversity of training set but the others are biased. Therefore, we treat
every image differently for preserving richer information but filtering out noises.

3.3 Circumventing Outliers with Knowledge Distillation

Our idea is very simple. For a training image generated by AutoAugment,
g(xn; τ ), we provide two-source supervision signals to guide network optimiza-
tion. The first one remains the same as the original training process, with the
standard cross-entropy loss computed based on the ground-truth class, yn. The
second one comes from a pre-trained model which provides an individual judg-
ment of g(xn; τ ), i.e., whether it contains sufficient semantics for classification.
Let MT and MS denote the pre-trained (teacher) and target (student) model,
where the superscripts of T and S represent ‘teacher’ and ‘student’, respectively,
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and thus the network loss function is upgraded to be:

LKD
(
xτ
n,yn;θS

)
= y>n · ln fS

(
xτ
n;θS

)
+ λ ·KL

[
fS
(
xτ
n;θS

)
‖fT
(
xτ
n;θT

)]
,

(2)
where λ is the balancing coefficient, and we have followed the convention to
use the KL-divergence to compute the distance between teacher and student
outputs, two probabilistic distributions over all classes.

Intuitively, when the semantic information of an image is damaged by data
augmentation, the teacher model that is ‘unaware’ of augmentation should pro-
duce less confident probabilistic outputs, e.g., if an original image, xn, contains
a specific kind of bird and some parts of the bird is missing or contaminated
by augmentation, τ , then we expect the probabilistic scores of the augmented
image, xτ

n, to be distributed over a few classes with close relationship to the true
one. We introduce a hyper-parameter, K, and consider the K classes with the

highest scores in fT
(
xτ
n;θT

)
, forming a set denoted by CK

(
xτ
n;θT

)
. Due to the

reason that the class probability decays rapidly with ranking, and low-ranked
scores may contain much noise, it is often unsafe to force the student model to
fit all teacher scores, so most often, we have K � C, and the choice of K will be
discussed empirically in the experimental section. The KL-divergence between

fT
(
xτ
n;θT

)
and fS

(
xτ
n;θS

)
is thus modified as:

KL
[
fS
(
xτ
n;θS

)
‖fT
(
xτ
n;θT

)]
=

∑
c∈CK(xτ

n;θ
T)

fTc

(
xτ
n;θT

)
· ln

fSc

(
xτ
n;θS

)
fTc

(
xτ
n;θT

) , (3)

where fc denotes the c-th dimension of f .

3.4 Discussions and Relationship to Prior Work

A few prior work [1, 50] studied how knowledge distillation works in the sce-
narios that teacher and student models have the same capacity. They argued
that the teacher model should be strong enough so as not to provide low-quality
supervision to the student model. However, this work provides a novel usage of
the teacher signal: suppressing noises introduced by data augmentation. From
this perspective, the teacher model can be considerably weaker than the stu-
dent model but still contribute to recognition accuracy. Experimental results on
CIFAR-100 (setting and details are provided in Section 4.1) show that a pre-
trained Wide-ResNet-28-10 [53] with AutoAugment (test set error rate of 17.1%)
can reduce the test set error rate of a Shake-Shake (26 2x96D) [10] trained with
AutoAugment from 14.3% to 13.8%.

We noticed prior work [15] argued that data augmentation may introduce
uncertainty to the network training process because the training data distribu-
tion is changed, and proposed to switch off data augmentation at the end of
the training stage to alleviate the empirical risk of optimization. Our method
provides an alternative perspective that the risk is likely to be caused by the
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noises of data augmentation and thus can be reduced by knowledge distillation.
Moreover, the hyper-parameters in [15] (e.g., when to switch off data augmenta-
tion) is difficult to tune. In training Wide-ResNet-28-10 [53] with AutoAugment
on CIFAR-100, we follow the original paper to prevent data augmentation by
adding 50 epochs to train the clean images only, but the baseline error rate
(17.1%) is only reduced to 16.8%. In comparison, when knowledge distillation is
added to these 50 epochs, the error rate is significantly reduced to 16.2%.

This work is also related to prior efforts that applied self-training to semi-
supervised learning, i.e., only a small portion of training data is labeled [42,
23, 46]. These methods often started with training a model on the labeled part,
then used this model to ‘guess’ a pseudo label for each of the unlabeled samples,
and finally updated the model using all data with either ground-truth or pseudo
labels. This paper verifies the effectiveness of knowledge distillation in the fully-
supervised setting in which augmented data can be noisy. Therefore, we draw the
connection between exploring unseen data (data augmentation) and exploiting
unlabeled data (semi-supervised learning), and reveal the potential of integrating
AutoAugment and/or other hyper-parameter optimization methods to assist and
improve semi-supervised learning.

4 Experiments

4.1 Results on the CIFAR-10/100 Datasets

Dataset and Settings. CIFAR-10/100 [21] contain tiny images with a resolu-
tion of 32×32. Both of them have 50K training and 10K testing images, uniformly
distributed over 10 or 100 classes. They are two commonly used datasets for val-
idating the basic properties of learning algorithms. Following the convention [4,
5], we train three types of networks, namely, wide ResNet (Wide-ResNet-28-
10) [53], Shake-Shake (three variants with different feature dimensions) [10],
and PyramidNet [12] with ShakeDrop regularization [49].
Knowledge Distillation Stabilizes AutoAugment. The core idea of our ap-
proach is to utilize knowledge distillation to restrain noises generated by severe
transformations. This is expected to stabilize the training process of AutoAug-
ment. To verify this, we start with training Wide-ResNet-28-10 on CIFAR-100.
Note that the original augmentation space of AutoAugment involves two major
kinds of transformations, namely, geometric or color-based transformations, on
which AutoAugment as well as its variants limited the distortion magnitude of
each transformation in a relatively small range so that the augmented images are
mostly safe, i.e., semantic information is largely preserved. In order to enhance
the benefit brought by suppressing noises of aggressive augmentations, we design
a new augment space in which the restriction in distortion magnitude is much
weaker. To guarantee that large magnitudes lead to complete damage of semantic
information, we only preserve a subset of geometric transformations (shear-x,
shear-y, translate-x, translate-y) as well as cutout, and set 10 levels of dis-
tortion, so that M = 0 implies no augment, and M = 10 of any transformation
destroys the entire image. Note that the range of M here is specifically designed
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TranslateX

Cutout

ShearY

ShearX
+

TranslateY

M = 1 M = 3 M = 5 M = 7 M = 9M = 0

Fig. 3. Examples of transformations involved in our self-designed augment space. The
distortion magnitude, M , is divided into 10 levels. The deformation introduced by
transformations increases along with the magnitude. First three rows are examples of
the deformation produced by each type of transformation with different magnitudes.
The last row represents applying two consecutive transformations on a single image,
which is the real case in our training scenario.

Model
Distortion Magnitude, M

0 1 2 3 4 5 6 7

RA 18.4 19.5 20.7 22.4 25.7 31.6 40.3 55.1
RA+KD 18.0 17.6 18.5 19.9 21.9 27.0 34.9 48.0

Gain +0.4 +1.9 +2.2 +2.5 +3.8 +4.6 +5.4 +7.1

Table 1. Comparison between RandAugment with or without knowledege distillation
in our self-designed augment space on CIFAR-100 based on Wide-ResNet-28-10. All
numbers in the table are error rates (%). M indicates the distortion magnitude of each
transformation. RA for RandAugment [5], and KD for knowledege distillation.

for the modified augment space, which is incomparable with the original defini-
tion of M in RandAugment (experimented in Section 4.2). Regarding knowledge
distillation, we set K = 3 (computing KL-divergence between the distributions
of top-3 classes, determined by the teacher model) for CIFAR-10 and K = 5 for
CIFAR-100. The balancing coefficient, λ, and the softmax temperature, T , is set
to be 1.0 and 2.0, respectively.

In this modified augment space, we experiment with the strategy of Ran-
dAugment [5] which controls the strength of augmentation by adjusting the
distortion magnitude, M . For example, on the translate-x transformation, a
magnitude of 3 allows the entire image to be shifted, to the left or right, by
at most 30% of the visible field, and a magnitude of 10 enlarges the number
into 100%, i.e., the visible area totally disappears. More examples are shown in
Figure 3. Note that RandAugment performs two consecutive transformations on
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Dataset Network NA AA FAA PBA RA Ours

Wide-ResNet-28-10 3.9 2.6 2.7 2.6 2.7 2.4
Shake-Shake (26 2x32D) 3.6 2.5 2.5 2.5 − 2.3

CIFAR-10 Shake-Shake (26 2x96D) 2.9 2.0 2.0 2.0 2.0 1.8
Shake-Shake (26 2x112D) 2.8 1.9 1.9 2.0 − 1.9
PyramidNet+ShakeDrop 2.7 1.5 1.7 1.5 1.5 1.5

Wide-ResNet-28-10 18.8 17.1 17.3 16.7 16.7 16.2
CIFAR-100 Shake-Shake (26 2x96D) 17.1 14.3 14.6 15.3 − 13.8

PyramidNet+ShakeDrop 14.0 10.7 11.7 10.9 − 10.6

Table 2. Comparison between our approach and other data augmentation methods
on CIFAR-10 and CIFAR-100. The teacher for all networks is Wide-ResNet-28-10,
except for PyramidNet+ShakeDrop with itself as teacher on CIFAR-100 (due to the
huge performance gap). All numbers in the table are error rates (%). NA indicates
no augmentation is used, AA for AutoAugment [4], FAA for fast AutoAugment [25],
PBA for population-based augmentation [17], and RA for RandAugment [5].

each image, therefore, a magnitude of 8 is often enough to destroy all semantic
contents. Hence, M is constrained within the range of 0–7 in our experiments.

Results of different distortion magnitudes are summarized in Table 1. With
the increase of the magnitude, a larger portion of semantic information is ex-
pected to be removed from the training image. In this scenario, if we continue
forcing the model to fit the ground-truth, one-hot supervision of each training
sample, the deep network may get confused and ‘under-fit’ the training data.
This causes consistent accuracy drop, especially in the modified augment space
with only geometric transformations. Even when the full augment space is used
(in which some transformations are not very sensitive to M), this factor persists
and hinders the use of larger M values, and thus restricts the degree of freedom
of AutoAugment.

Knowledge distillation offers an opportunity that each augmented image is
checked beforehand, and a soft label is provided by a pre-trained teacher model
to co-supervise the training process so that the deep network is not forced to fit
the one-hot label. This is especially useful when the training image is contam-
inated by augmentation. As shown in Table 1, knowledge distillation provides
consistent accuracy gain over RandAugment, as it slows down the accuracy drop
with aggressive augmentation (the gain is larger as the distortion magnitude in-
creases). More importantly, under a magnitude of M = 1, knowledge distillation
produces an accuracy gain of 1.9%, assisting the RandAugment-only model with
a deficit of 1.1% to surpass the baseline, claiming an advantage of 0.4%. This
proves that the benefit mainly comes from the cooperation of RandAugment
and knowledge distillation, not only from the auxiliary information provided by
knowledge distillation itself [9, 1, 50].

Comparison with State-of-the-Arts. To make fair comparisons to the previ-
ous AutoAugment-based methods, we directly inherit the augmentation policies
found on CIFAR by AutoAugment. In this full space, all transformations listed
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in Section 3.1, not only the geometric transformations, can appear. Results are
summarized in Table 2.

On CIFAR-10, our method outperforms other augmentation methods consis-
tently, in particular, on top of smaller networks (e.g., the error rates of Wide-
ResNet-28-10 and two Shake-Shake models are reduced by 0.2%). For larger
models, in particular PyramidNet with ShakeDrop regularization, the room of
improvement on CIFAR-10 is very small, yet we can observe improvement on
very large models on the more challenging CIFAR-100 and ImageNet datasets
(see the next part for details).

A side comment is that we have used the same teacher model (i.e., Wide-
ResNet-28-10, reporting a 2.6% error) which is relatively weak. We find this
model can assist training much stronger students (e.g., the Shake-Shake series,
in which the error of the 2x96D model, 2.0%, is reduced to 1.8%). In other
words, weaker teachers can assist training strong students. This delivers
a complementary opinion to prior research which advocates for extracting ‘dark
knowledge’ as some kind of auxiliary supervision [50] from stronger [16] or at
least equally-powerful [9] teacher models, and further verifies the extra benefits
brought by integrating knowledge distillation and AutoAugment together.

On CIFAR-100, we evaluate a similar set of network architectures, i.e., Wide-
ResNet-28-10, Shake-Shake (26 2x96D), and PyramidNet+ShakeDrop. As shown
in Table 2, our results consistently outperform the previous state-of-the-arts. For
example, on a relatively smaller Wide-ResNet-28-10, the error of AutoAugment
decreases from 17.1% to 16.2% and significantly outperforms other methods,
e.g., PBA and RA. On Shake-Shake (26 2x96D), our approach also surpasses
the previous best performance (14.3%) by a considerable margin of 0.5%. On
pyramidNet with ShakeDrop, although the baseline accuracy is sufficiently high,
knowledge distillation still brings a slight improvement (from 10.7% to 10.6%).

4.2 Results on the ImageNet Dataset

Dataset, Setting, and Implementation Details. ImageNet [6] is one of
the largest visual recognition datasets which contains high-resolution images.
We use the competition subset which has 1K classes, 1.3M training and 50K
validation images. The number of images in each class is approximately the
same for training data.

We build our baseline upon EfficientNet [41] and RandAugment [5]. Efficient-
Net contains a series of deep networks with different depths, widths and scales
(i.e., the spatial resolution at each layer). There are 9 variants of Efficient-
Net [45], named from B0 to B8. Equipped with RandAugment, EfficientNet-B7
reports a top-1 accuracy of 85.0% which is close to the state-of-the-art. We start
with EfficientNet-B0 to investigate the impact of different knowledge distillation
parameters on ImageNet, and finally compete with state-of-the-art results on
EfficientNet-B4, EfficientNet-B7, and EfficientNet-B8.
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Fig. 4. Training EfficientNet-B0 with different KD parameters. All numbers reported
are top-1 accuracy (%). Left: The testing accuracy of different λ values, while K is set
as 10. Right: The testing accuracy of different K values, while λ is set to be 0.5.

We follow the implementation details provided by the authors1, and re-
produce the training process using PyTorch. For EfficientNet-B0, it is trained
through 500 epochs with an initial learning rate to be 0.256 and decayed by a
factor of 0.97 every 2.4 epochs. We use the RMSProp optimizer with a decay
factor of 0.9 and a momentum of 0.9. The batch-normalization decay factor is set
to be 0.99 and the weight decay 10−5. We use 32 GPUs (NVIDIA Tesla-V100) to
train EfficientNet-B0/B4, and 256 GPUs for EfficientNet-B7/B8, respectively.

The Impact of Different Knowledge Distillation Parameters. We start
with investigating the impact of λ and K, two important hyper-parameters of
knowledge distillation. Note that we fix the softmax temperature, T , to be 10.0
in all ImageNet experiments. We perform experiments on EfficientNet-B0 with
a moderate distortion magnitude of M = 9, which, as we have shown in the
right-hand side of Figure 2, is a safe option on EfficientNet-B0. For λ, we set
different values including 0.1, 0.2, 0.5, 1.0, and 2.0. For K, the optional values
include 2, 5, 10, 25, and 50. To better evaluate the effect of each parameter, we
fix one parameter value when changing the other.

Results are shown in Figure 4. It is clear that a moderate λ performs best.
While setting λ with a small value, e.g., 0.1, knowledge distillation is only ex-
pected to affect a small part of training samples. Yet, it obtains a 0.3% accuracy
gain, implying that these samples, though rarely seen, can make the training
process unstable. On the other hand, when λ is overly large, e.g., knowledge
distillation can dominate the training process and force the student model to
have a very similar behavior to the teacher model, which limits its ability and
harms classification performance.

Regarding K, we note that K = 5 achieves the best performance, indicating
that on average, each class is connected to 4 other classes. This was also suggested
in [50]. Yet, we find that setting K = 2 or K = 10 reports similar accuracy, but
the performance gradually drops as K increases. This implies including too many
classes for KL-divergence computation is harmful, because each training image,
after augmented with a relatively small distortion magnitude, is not likely to be

1 https://github.com/tensorflow/tpu/tree/master/models/official/efficientnet
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connected to a large number of classes. However, to train more powerful models,
larger distortion magnitudes need to be used and heavier ambiguity introduced.
In this case, a larger K will be better, as we shall see in the next section.

Regardless of tuning hyper-parameters, we emphasize that all tested λ’s, lying
in the range of [0.1, 2.0], and all tested K’s, in [2, 50], can bring positive effects
on classification. This indicates that knowledge distillation is usually useful in
training with augmented data. With the best setting, i.e., a distortion magnitude
of 9, a fixed K of 5, and λ = 0.5, we achieve a top-1 accuracy of 78.0% on
EfficientNet-B0. This surpasses the accuracy of RandAugment (reproduced by
us) and AdvProp [45] by margins of 0.6% and 0.4%, respectively.

Comparison to the State-of-the-Arts. To better evaluate the effectiveness of
our approach, we further conduct experiments on more challenging large mod-
els, i.e., EfficientNet-B4, EfficientNet-B7, and EfficientNet-B8. Given the fact
that larger network is expected to over-fit more easily, for EfficienNet-B4 and
EfficientNet-B7, we lift the magnitude of transformations on RandAugment from
9 in EfficientNet-B0 to 15 and 28, respectively. As discussed above, increasing
the distortion magnitude brings more ambiguity to the training images so that
each of them should be connected to more classes, and the knowledge distillation
supervision should take a heavier weight. Hence, we increase K to 50 and λ to
2.0 in all experiments in this part.

Results are summarized in Table 3. By restraining the inevitable noises gen-
erated by RandAugment, our approach significantly boosts the baseline models.
As shown in Table 3, the top-1 accuracy of EfficientNet-B4 is increased from
83.0% to 83.6%, and that of EfficientNet-B7 from 84.9% to 85.5%. The margin
of 0.6% is considered significant in such powerful baselines. Both numbers sur-
pass the current best, AdvProp [45], without using adversarial examples to assist
training. Besides, when we simply double the training epochs of EfficientNet-B4,
the top-1 accuracy is slightly improved from 83.0% to 83.2%, which is still much
lower than 83.6% reported by applying another KD-guided training procedure.

Following AdvProp [45], we also move towards training EfficientNet-B8. The
hyper-parameters remain the same as in training EfficientNet-B7. Due to GPU

Teacher Network Student Network AA RA RA† AdvProp Ours

EfficientNet-B0 EfficientNet-B0 77.3 − 77.4 77.6 78.0
EfficientNet-B4 EfficientNet-B4 83.0 − 83.0 83.3 83.6
EfficientNet-B7 EfficientNet-B7 84.5 85.0 84.9 85.2 85.5
EfficientNet-B7* EfficientNet-B8 84.8 85.4 − 85.5 85.7

Table 3. Comparison between our approach and other data augmentation methods on
ImageNet. All numbers in the table are top-1 accuracy (%). AA indicates AutoAug-
ment [4] is used, RA for RandAugment [5], and AdvProp for Adversarial Propaga-
tion method [45]. RA† denotes the results of RandAugment produced by ourselves in
PyTorch. EfficientNet-B7* denotes the student model in the penultimate row, which
achieves a top-1 accuracy of 85.5%.
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Method Params Extra Training Data Top-1 (%)

ResNet-152 [14] 60M − 77.8
Inception-v4 [37] 48M − 80.0
ResNeXt-101 [47] 84M − 80.9

SENet [18] 146M − 82.7
AmoebaNet-C [32] 155M − 83.5

GPipe [20] 557M − 84.3
EfficientNet-B7 [5] 66M − 85.0
EfficientNet-B8 [5] 88M − 85.4
EfficientNet-L2 [41] 480M − 85.5

AdvProp (EfficientNet-B8) [45] 88M − 85.5

ResNeXt-101, Billion-scale [48] 193M 3.5B tagged images 84.8
FixRes ResNeXt-101, WSL [44] 829M 3.5B tagged images 86.4

Noisy Student (EfficientNet-L2) [46] 480M 300M unlabeled images 88.4

Ours (EfficientNet-B7 w/ KD) 66M − 85.5
Ours (EfficientNet-B8 w/ KD) 88M − 85.8

Table 4. Comparison to the state-of-the-arts on ImageNet. In the middie panel, we
list three approaches with extra training data (a large number of weakly tagged or
unlabeled images). Red and blue texts highlight the best results to date without and
with extra training data, respectively.

memory limit, we use the best trained EfficientNet-B7 (with a 85.5% accuracy)
as the teacher model. We report a top-1 accuracy of 85.7%, which sets the new
state-of-the-art on the ImageNet dataset (without extra training data). With
the test image size increased from 672 to 800, the accuracy is slightly improved
to 85.8%. We show the comparison with previous best models in Table 4.

5 Conclusions

This paper integrates knowledge distillation into AutoAugment-based methods,
and shows that the noises introduced by aggressive data augmentation policies
can be largely alleviated by referring to a pre-trained teacher model. We adjust
the computation of KL-divergence, so that the teacher and student models share
similar probabilistic distributions over the top-ranked classes. Experiments show
that our approach indeed suppresses noises introduced by data augmentation,
and thus stabilizes the training process and enables more aggressive AutoAug-
ment policies to be used. Our approach sets the new state-of-the-art, a 85.8%
top-1 accuracy, on the ImageNet dataset (without extra training data).

Our research leaves several open problems. For example, it remains unclear
whether useful information only exists in the top-ranked classes determined by
the teacher model, and whether mimicking the class-level distribution is the opti-
mal choice. Moreover, the balancing coefficient, λ, is a constant during training,
which we believe there is room of improvement. We will continue investigating
these topics in our future research.
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