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Abstract. Lighter model and faster inference are the focus of current
single image super-resolution (SISR) research. However, existing meth-
ods are still hard to be applied in real-world applications due to the
heavy computation requirement. Model quantization is an effective way
to significantly reduce model size and computation time. In this work, we
investigate the binary neural network-based SISR problem and propose a
novel model binarization method. Specially, we design a bit-accumulation
mechanism (BAM) to approximate the full-precision convolution with a
value accumulation scheme, which can gradually refine the precision of
quantization along the direction of model inference. In addition, we fur-
ther construct an efficient model structure based on the BAM for lower
computational complexity and parameters. Extensive experiments show
the proposed model outperforms the state-of-the-art binarization meth-
ods by large margins on 4 benchmark datasets, specially by average more
than 0.7 dB in terms of Peak Signal-to-Noise Ratio on Set5 dataset.

Keywords: Single Image Super-Resolution, Model Quantization, Bi-
nary Neural Network, Bit-Accumulation Mechanism.

1 Introduction

Single image super-resolution (SISR) aims to recover a high-resolution (HR)
version from a low-resolution (LR) input image, which has been widely used in
many fields, such as medical imaging [21], satellite imaging [25], security and
surveillance [35] and so on. As a classical low-level problem, SISR is still an
active yet challenging research topic in the field of computer vision due to its
ill-poseness nature and high practical values.
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Fig. 1: Results of binarized networks based on SRResNet.

Recently, convolutional neural network-based (CNN-based) super-resolution
methods have been demonstrated state-of-the-art performance by learning a
mapping from LR to HR image patches. Dong et al.[6] proposed the SRCNN
model with only three convolution layers, which is the first deep learning method
in super-resolution community. From then, researchers had carried out its study
with different perspectives and obtained plentiful achievements, and various
model structure and learning strategies are used in SR networks (e.g., resid-
ual learning [10], recursive learning [11, 23, 24], skip connection [13, 27], channel
attention [32] and so on). These CNN-based methods can often achieve satis-
factory results, but the increasing model size and the computational complexity
severely restrict their applications in the real world. Recently, there appear some
lightweight approaches to reduce the computational complexity [1, 8]. However,
it is still a huge burden for mobile devices with limited computing resources.

As a way to significantly reduce model size and computation time, bina-
rized neural network (BNN) can replace the floating point operations with the
bitcounting operations, and has shown excellent performance on many semantic-
level tasks such as image classification and recognition. However, quantifying the
weights and activations will lead to serious information loss in the process of net-
work inference, which is unacceptable for super-resolution tasks because of its
highly dependence on the accuracy of pixel values. Ma et al. [17] tried to apply
the binarization to the residual blocks for image super resolution, and improve
the performance by learning a gain term. However, this work only investigate the
binary weights and full-precision activations model, the convolution calculation
is not the bitcounting operation. Then the model’s inference speed cannot be
simplified enough.

In this paper, we introduce an efficient and accurate CNN-based SISR model
by binarizing the weights and even the intermediate activations. Our binarization
approach aims to find the best approximations of the convolutions using binary
operations, and perform image super resolution task on the devices with limited
computing resources. As shown in Fig.1, our method achieves better visual SR
results compared with state-of-the-art methods, and could even be comparable
to the performance of the full-precision convolutional model.
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Overall, our contributions are mainly threefold: (1) To the best of our knowl-
edge, this is the first work to introduce the binary neural network (both the
weights and activations are binary values) to the field of image super resolution,
in which the convolutions can be estimated by the bitcounting operations. As a
result, our model could obtain about 58× speed up (the model size is also about
32× lighter) than that of an equivalent network with single-precision weight
values. Its inference can be done very efficiently on CPU. (2) A bit accumula-
tion mechanism is proposed to approximate the full-precision convolution with
an iterative scheme of cascaded binary weights and activations. Whats more,
it implements highly accurate one-bit estimation of filter and activation only
relying on existing basic models and without introducing any other additional
inference modules. (3) We construct an architecture of binary super-resolution
network (BSRN) for highly accurate image SR problem. Experimental results
show that the proposed BSRN can achieve the better SR performance with a
lighter network structure and fewer operands.

2 Related Work

2.1 Single Image Super Resolution

Recently numerous deep learning based methods have been explored and shown
dramatic improvements on the SISR tasks. Deep SISR network is first intro-
duced by SRCNN [6] which is an end-to-end model with only three convolution
layers. Considering the effectiveness of deep learning and the natural sparsity
of images [30], Wang et al. [28] proposed a Sparse Coding Network (SCN) to
make full use of the natural sparsity of images. Later on, Kim et al. [10] pro-
posed a 20-layers network VDSR, which demonstrates significant improvement
by increasing the network depth. After this, many others followed up with this
strategy for network design. Tong et al. [27] adopted dense blocks to construct
a 69-layers network SRDenseNet. Extended from it, Lim et al. [15] developed
a more in-depth and broader residual network known as EDSR, which exhibits
comparable performance for SR task. Zhang et al. [33] introduced a residual
dense network RDN, which combines residuals and dense blocks to achieve higher
image reconstruction performance with higher feature extraction capability. To
overcome the gradient vanishing problem, residual channel attention network is
adopted in RCAN [32], which proposes long and short skip connections in the
residual structure to obtain deep residual network.

Aiming to achieve better performance with less parameters, recursive learning
have been employed in SISR. Kim et al. proposed a Deeply-Recursive Convolu-
tional Network(DRCN) [11] for SISR task. Then, Tai et al. also proposed Deep
Recursive Residual Network(DRRN) [23], which introduces a very deep model
(52 layers) with residual learning and recursive module. The authors further
proposed Memory Network (MemNet) [24], which could adaptively combine the
multi-scale features by the memory blocks. Another research direction which is
time-saving network designing. For instance, the deconvolution layer has been
proposed in FSRCNN [7] and sub-pixel layer has been introduced in ESPCN
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[20], which are the better up-sampling operator for accelerating super-resolution
network. Ahn et.al. [1] introduced a cascading residual network CARN com-
bining the efficient recursive scheme and multiple residual connections. In view
of the above-mentioned methods which is heavily dependent on practical ex-
perience, He et.al [8] adopted an ordinary differential equation (ODE)-inspired
design scheme to single image super resolution.

2.2 Quantitative Model

In the development of CNN, a great amount of efforts have been explored for
model compression, which can speed-up the inference process of deep networks.
Recently, published strategies for reducing precision (number of bits used for
numerical representation) have achieved significant progress in computer vision
tasks. Among the existing methods, Soudry et.al. [22] introduced a variational
Bayesian approach to calculate the posterior distribution of the weights (the
weights are constrained to +1 or -1). Courbariaux et.al. [4] proposed a Bina-
ryConnect method, which binarizes network weights during the forward and
updates the full-precision weights during the backward propagations. Extended
from the BinaryConnect, Hubara et.al. [5] proposed a network named Bina-
ryNet, weights and activations in BinaryNet are both binarized. Rastegari et.al.
[19] proposed a similar model called XNOR-Net. XNOR-Net includes major
steps from the original BNN, but adds a gain term to compensate for lost infor-
mation during binarization. Zhou et.al. [34] tried to generalize quantization and
take advantage of bitwise operations for fixed point data with widths of various
sizes, and proposed the DoReFa-Net method. Lin et.al. [16] proposed ABC-Net
to reconcile the accuracy gap between BNNs and full-precision networks. Little
effort has been spent on model quantization for the image SR task. We design
a binarization strategy for the SR task to make the large SR networks being
configured on mobile device.

3 Proposed Approach

In this section, we present our proposed BNN-based SISR approach. After pre-
senting the motivation of our approach in Sec. 3.1, we give details on our quan-
tification of weights and activations in Sec. 3.2 and Sec. 3.3 respectively. The
proposed binary SR framework is presented in Sec. 3.4.

3.1 Motivation

The process in existing deep learning-based SISR methods could be divided into
three stages: feature extraction, nonlinear mapping and image reconstruction.
Let x denote the LR input image and y as the final recovered HR image, the
function of these models can be formulated as follows,

y = R(M(E(x))), (1)
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where E ,M and R are the three aforementioned stages. Generally, E and R
are composed of only one convolutional layer to realize the transformation from
image to deep features and its inverse transformation. M realizes the mapping
process from low-precision features to high-precision features through multiple
cascading convolutional layers. The structure of M will directly determine the
model’s performance, parameters and computational complexity. Therefore, re-
placing the M’s full-precision convolution with binary convolution can greatly
reduce the model’s consumption of computing and storage resources.

In BNN model, the full-precision convolution W ∗A is estimated by the binary
convolution WB ⊕ AB . Where WB and AB are the binary weights and activa-
tions, ⊕ indicates the bitcounting operations. To find an optimal estimation, a
straightforward way is to solve the following optimization problem:

J(WB , AB) =
∥∥W ∗A−WB ⊕AB

∥∥ ,
WB∗

, AB
∗

= argmin
WB ,AB

J(WB , AB), (2)

The key to solve this optimization problem lies in the generation of WB

and AB . In the existing quantitative models, two gain terms α, β are usually
introduced to compensate for the lost information during binarization (WB =
α|W |Bin, AB = β|A|Bin). Then the optimal solution (gain terms) can be obtained
by calculating or learning from the weights and activations before binarization.
However the improvement of convolution precision by gain term is limited, and
the back propagation of network gradient is inefficient to update it. In this work,
we propose a novel quantization method of filter weights and activations based on
bit accumulation mechanism, which achieves better performance for the image
SR task.

3.2 Quantization of Weights

The start point of our method is refining the precision of binary filters along
the direction of model inference gradually. The processing of model inference is
shown in Fig.2, we first accumulate the weight of the each past layer, then use
the current weights to offset the accumulated weights in a positive or negative
direction, lead to the accumulated weight can be quantified in a more accurate
state (-1 or +1). Considering that different convolutional layers have different
preferences for image features (color, edge, texture, etc.). We also set a group of
combination coefficients α ( α = [α1, α2, ..., αn] ) for the accumulation process.

Wn
B = Sign(BN(α1W1 + α2W2 + ...+ αnWn)) ∗ E(|Wn|), (3)

where Wn denotes the nth full-precision weights, and Wn
B denotes the actual

convolution weights of the nth binary filter after updating. E(|Wn|) is the mean
of absolute value of each output channel of weights. The utilization of E(|Wn|)
could increase the value range of weights and is beneficial to estimate the high-
precision binary weights. BN() is the batch normalization operation. Sign() is
the symbolic function which transform full-precision values to +1 or −1:
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Fig. 2: Bit Accumulation Mechanism (BAM).

xB = Sign(x)

{
+1, if x ≥ 0,
−1, otherwise,

(4)

An optimal estimation could be find by solving the following optimization
problem:

argmin
WB

n

J(WB
n ) =

∥∥Wn −WB
n

∥∥2 . (5)

For WB
n , full-precision weights Wn is given, and the gain term E(|Wn|) could be

determined from WB
n . The optimization error directly depends on the choice of

the combination coefficients α. Therefore, the equation (5) can be rewritten as
the following optimization problem:

α∗ = argmin
WB

n

J(WB
n ) (6)

Straight-Through Estimator (STE) is defined for Bernoulli sampling with
probability p ∈ [0, 1], which could be thought of as an operator that has arbitrary
forward and backward operations:

Forward : q ∼ Bernoulli(p).

Backward :
∂c

∂p
=
∂c

∂q
.

(7)

Here we adopt the STE method for back-propagate through WB . Assume c as
the cost function, ABo as the output tensor of a convolution respectively, the
gradient at nth filter in back propagation can be computed as follows:

∂c

∂Wn
=

∂c

∂Ao

∂Ao

∂Wn
B

∂Wn
B

∂Wn

STE
≈ ∂c

∂Ao

∂Ao

∂Wn
B

=
∂c

∂Wn
B
. (8)

Bear in mind that during training, the full-precision weights are reserved
and updated at every epoch, while in test-time only binary weights are used in
convolution. The training details of our model are summarized in Algorithm 1.
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Algorithm 1 Training a N -layers CNN-block with BAM:

Input: Full-precision activations A1 and weights W from the N filters (W =
[W1,W2, ...,WN ]), activation combination coefficients β1, β2, ..., βN , cost function c
and current learning rate ηt.
Output: updated weight W t+1, updated activation combination coefficients
β1, β2, ..., βN , and updated learning rate ηt+1.
1: for n = 1 to N do
2: ABn ← calculate the equation (9)
3: α ← solve the equation (6)
4: WB

n ← calculate the equation (3)
5: An+1 = BinaryConv(WB

n , A
B
n )

6: end for
7: gw ← BinaryBackward( ∂c

∂Ao
,WB), computed using the equation (8)

8: for n = N to 1 do
9: gwn ← BackwardGradient(gw,Wn)
10: βn = UpdateParameters(βn

scale, gβscale
n

, ηt)

11: W t+1
n = UpdateParameters(W t

n, g
w
n , η

t)
12: end for
13: ηt+1 = UpdateLearningrate(ηt; t)

3.3 Quantization of Activations

The operation of floating-point convolution could be implemented without mul-
tiplications when weights are binarized, but the computation is still much more
than the bitcounting operation. Next we detail our approach to getting binary
activations that are input to convolutions, which is of critical importance in
replacing floating-point convolutions by bitcounting-based convolutions.

The proposed bit accumulation mechanism is not only applicable to the quan-
tification of weights, but also applicable to the quantization of activations ass
shown in Fig.2. Here we also make linear combination of the past multi-layer’s
activations to approximate the current layer’s activations.

An
B ≈ Sign(BN(β1A1 + β2A2 + ...+ βnAn)), (9)

Considering that the process of image super resolution depends heavily on the
details of the activation, the rough quantification (Sign()) of the activation can
lead to a sharp decline in model performance. Instead of setting the combination
weights of the activations to a single scale, we use a two-dimensional array to
represent these weights.

βn ← Update(βn
scaleE(An), gβscale

n
, η) (10)

where βn
scale is a scale factor, and only βn

scale will be updated during the
training process. gβscale

n
and η are the gradient and learning rate. E(An) is the

activation statistics along the channel dimension, which could reflect the spatial
information of the input image.
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Fig. 3: Network architecture of our proposed BSRN.

3.4 Binary Super Resolution Network

As described in section 3.1, our binary super resolution network (BSRN) also
consists of three subnetworks: a feature extraction network E , a nonlinear map-
ping network M and an image reconstruction network R. E contains only one
convolutional layer and R contain only one convolutional layer, while R contains
an additional upsampling layer. Consistent with existing binarization methods,
all convolution operations in E and R are full-precision.

Particularly, we construct a high-precision binarization (HPB) block struc-
ture to form our nonlinear mapping network M, which could achieve the ap-
proximation of high precision convolution by accumulation the multiple binary
convolution. The details are shown in Fig.3. HPB block is also composed of sev-
eral cascaded local binarization (LB) block, and each LB-block consists of one
3 × 3 convolution layer and two 1 × 1 convolution layers. The novelty of HPB
block lies in two ranges of bit accumulation. Firstly, the short-range accumula-
tion exists in each LB-block. The filters and activations of intermediary layers
are accumulated into the higher layers, and finally converge on the last 1 × 1
convolution layer. Then, the long-range accumulation occurs in the first convo-
lutional layer of each LB-block, and only filters are accumulated in the same way
as the short-range accumulation.

4 Experiments

4.1 Datasets

DIV2K is a high quality image dataset which consists of 800 training images,
100 validation images and 100 testing images and it is widely used for super-
resolution in recent years. Following[14, 1, 3, 8], we use 800 training images from
DIV2K dataset[26] as training set. To illustrate the performance of our pro-
posed methods, we conduct test experiments on four standard datasets, Set5[2],
Set14[31] , BSD100[18] and Urban100[9] which includes 5, 14, 100 and 100 images
respectively.

Three upscaling factors are evaluated, including ×2, ×3 and ×4. The input
LR image is generated by bicubic down sampling the HR image with ×2, ×3
and ×4 scale respectively. The size of input patches are 48× 48, and the output
patch size is 96×96, 144×144 and 192×192 for ×2, ×3 and ×4 upscaling factor
respectively.
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4.2 Implementations

Data augmentation is performed on aforementioned 800 training images, which
are randomly rotated by 90◦, 180◦, 270◦ and flipped horizontally. Batch size is
set to 16. Adam is utilized to optimize the network. The momentum parameter
is set to 0.5, weight decay is set to 2× 10−4, and the initial learning rate is set
to 1 × 10−4 and will be divided a half every 200 epochs. All of our models are
implemented under the PyTorch environment with Python 3.6 on Ubuntu 16.04
system with a 12G NVIDIA Titan Xp GPU.

For assessing the quality of SR results, we employ two objective image quality
assessment metrics: Peak Signal to Noise Ratio (PSNR) and structural similarity
(SSIM)[29]. All metrics are performed on the Y-channel (YCbCr color space) of
center-cropped, removaling of a s-pixel wide strip from each ×s upscaling image
border.

4.3 Evaluation

We choose two simple and practical super-resolution networks to evaluate model
quantization methods: VDSR[10] and SRResNet[13]. VDSR and SRResNet can
be regarded as the most typical methods of convolution-cascade model and block-
cascade model respectively. Experimental evaluation on these two networks can
more intuitively reflect the performance of model quantization. The performance
evaluation of the proposed bit accumulation mechanism (BAM) is carry out on
these two SR network, the compared methods including BNN[5] DoReFa-Net[34]
and ABC-Net[16].

Evaluation on VDSR: Considering that the operation of our bit accumulation
method needs to work in multiple convolutional layers, we divide the middle 18
convolutional layers of VDSR into 6 blocks on average. Each block contains
three convolutional layers. The weight and activation accumulation process in
each convolution block is consistent with sections 3.2 and 3.3. Other methods
quantify each convolutional layer at the middle of VDSR separately. One should
be noted is that ABC-Net simulates a full-precision convolution through multiple
one-bit convolutions. Here we set the number of one-bit convolution to 3, that is,
the model size of VDSR ABC is nearly three times larger than other methods.

Table.1 shows the quantitative comparisons of the performances over the
benchmark datasets. For binarization of weight and activation, there is no com-
pensation process for quantization error in VDSR BNN and VDSR DoReFa
methods. The information carried in the activations is limited, and the image’s
high frequency details are difficult to predict. These two methods achieve infe-
rior performance than VDSR ABC and our proposed VDSR BAM. VDSR ABC
approximates the full-precision convolution by linear combination of multiple bi-
nary convolutions. Its performance is significantly higher than VDSR DoReFa.
However, the single convolution process in VDSR ABC is not significantly im-
proved compared with that of VDSR DoReFa. Besides, the model parameters
and computational operands of VDSR ABC are 3 times (in this work) higher
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Methods Scale
Set5 Set14 B100 Urban100

PSRN SSIM PSRN SSIM PSRN SSIM PSRN SSIM

VDSR ×2 37.53 0.959 33.05 0.913 31.90 0.896 30.77 0.914

Bicubic ×2 33.66 0.930 30.24 0.869 29.56 0.843 26.88 0.840

VDSR BNN ×2 34.43 0.936 30.94 0.882 30.05 0.856 27.54 0.860

VDSR DoReFa ×2 34.70 0.933 31.22 0.876 30.25 0.849 28.25 0.865

VDSR ABC ×2 35.35 0.939 31.71 0.886 30.68 0.861 28.77 0.878

VDSR BAM ×2 36.60 0.953 32.41 0.905 31.32 0.886 29.43 0.895

VDSR ×3 33.66 0.921 29.77 0.831 28.82 0.798 27.14 0.828

Bicubic ×3 30.39 0.868 27.55 0.774 27.21 0.739 24.46 0.735

VDSR BNN ×3 31.01 0.874 28.15 0.791 27.57 0.755 25.01 0.758

VDSR DoReFa ×3 31.79 0.895 28.68 0.806 27.98 0.766 25.53 0.782

VDSR ABC ×3 32.01 0.898 28.86 0.808 28.08 0.770 25.80 0.787

VDSR BAM ×3 32.52 0.907 29.17 0.819 28.29 0.782 26.07 0.799

VDSR ×4 31.35 0.884 28.01 0.767 27.29 0.725 25.18 0.752

Bicubic ×4 28.42 0.810 26.00 0.703 25.96 0.668 23.14 0.658

VDSR BNN ×4 29.02 0.827 26.55 0.724 26.29 0.685 23.55 0.685

VDSR DoReFa ×4 29.39 0.837 26.79 0.728 26.45 0.689 23.81 0.696

VDSR ABC ×4 29.59 0.841 29.63 0.730 26.51 0.687 23.96 0.699

VDSR BAM ×4 30.31 0.860 27.46 0.749 26.83 0.706 24.38 0.720

Table 1: Quantitative evaluation of VDSR-based state-of-the-art model quantization
methods.

than other methods. Benefit from BAM’s ability to retain and compensate for
lost information during the quantization process, our VDSR BAM exceeds all
previous methods on four benchmark datasets.

Evaluation on SRResNet: SRResNet is a modular (residual-block) network
structure. Then our BAM can be directly applied to each module. The setup
of other model quantization methods is consistent with evaluation on VDSR.
Each residual block in SRResNet ABC contains six one-bit convolutions. The
comparison results are shown in Table.2.

Compared with VDSR-based models, the performance of model quantiza-
tion methods with SRResNet has been significantly improved. This is not only
attributed to the stronger learning ability of nonlinear mapping of the residual
block, but also to its highly gain brought by the increase of model parameters.
Especially, the performance of SRResNet DoReFa improved significantly. The
main reason is that the updating and generating modes of weights and activa-
tions in VDSR is monotonous, especially under the interference of binaryzation
function Sign(). The difficulty of weights updating in gradient back propagation
is greatly increased. While the gain of the residuals to the gradient back prop-
agation is beyond doubt, and its skip connection also can effectively enrich the
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Methods Scale
Set5 Set14 B100 Urban100

PSRN SSIM PSRN SSIM PSRN SSIM PSRN SSIM

SRResNet ×2 37.76 0.958 33.27 0.914 31.95 0.895 31.28 0.919

Bicubic ×2 33.66 0.930 30.24 0.869 29.56 0.843 26.88 0.840

SRResNet BNN ×2 35.21 0.942 31.55 0.896 30.64 0.876 28.01 0.869

SRResNet DoReFa ×2 36.09 0.950 32.09 0.902 31.02 0.882 28.87 0.880

SRResNet ABC ×2 36.34 0.952 32.28 0.903 31.16 0.884 29.29 0.891

SRResNet BAM ×2 37.21 0.956 32.74 0.910 31.60 0.891 30.20 0.906

SRResNet ×3 34.07 0.922 30.04 0.835 28.91 0.798 27.50 0.837

Bicubic ×3 30.39 0.868 27.55 0.774 27.21 0.739 24.46 0.735

SRResNet BNN ×3 31.18 0.877 28.29 0.799 27.73 0.765 25.03 0.758

SRResNet DoReFa ×3 32.44 0.903 28.99 0.811 28.21 0.778 25.84 0.783

SRResNet ABC ×3 32.69 0.908 29.24 0.820 28.35 0.782 26.12 0.797

SRResNet BAM ×3 33.33 0.915 29.63 0.827 28.61 0.790 26.69 0.816

SRResNet ×4 31.76 0.888 28.25 0.773 27.38 0.727 25.54 0.767

Bicubic ×4 28.42 0.810 26.00 0.703 25.96 0.668 23.14 0.658

SRResNet BNN ×4 29.33 0.826 26.72 0.728 26.45 0.692 23.68 0.683

SRResNet DoReFa ×4 30.38 0.862 27.48 0.754 26.87 0.708 24.45 0.720

SRResNet ABC ×4 30.78 0.868 27.71 0.756 27.00 0.713 24.54 0.729

SRResNet BAM ×4 31.24 0.878 27.97 0.765 27.15 0.719 24.95 0.745

Table 2: Quantitative evaluation of SRResNet-based state-of-the-art model quantiza-
tion methods.

information of the activations in forward inference processing. In some cases, e.g.
x3 on B100, x4 on Set14 and x4 on B100, the gap between our SRResNet BAM
and the full-precision SRResNet is shrunk to no more than 0.3dB.

Qualitative Evaluation: As demonstrated in Fig.4, we present a subjective
comparison with state-of-the-art model quantization methods based on VDSR.
We enlarge the texture on the general real-world images to compare the subjec-
tive visual effects of different SR methods. It is obvious that the compared SR
methods fails to extract realistic details from LR inputs and they are prone to
produce a blurry texture. Our model could reveal the most accurate and realistic
details and generates the correct direction of texture.

Fig.5 presents the results of different quantization SR methods based on
SRResNet. Parts including lines or holes in the buildings are magnified for more
obvious comparison. It is observed that after 4 minification and magnification
by bicubic, the direction of the line and the outline of the hole is hard to be
distinguished. Most methods can effectively recover the lines in the regions close
to the shooting point. However, most of them can do nothing for the regions far
from the shooting point. Benefit from the retention of information in the BAM
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VDSR 
(PSNR/SSIM)

Bicubic 
(25.12 / 0.660)

VDSR-BNN 
(25.54 / 0.695)

VDSR-DoReFa 
(25.73 / 0.690)

VDSR-ABC 
(25.76 / 0.695)

VDSR-BAM
(25.96 / 0.710)

Fig. 4: VDSR-based subjective quality assessment for ×4 upscaling on the structured
image: img001 from Urban100.

quantization process, our proposed SRResNet BAM method could recover more
accurate details for these regions.

4.4 Model Analysis

In this section, we first evaluated the performance of our proposed BSRN model.
Then we investigate the effects of different quantization approaches. Finally, we
compare our method with existing quantized convolution-based super resolution
method [17].

Evaluation on Proposed BSRN Framework: The purpose of our work is
to reduce model parameters and improve the reasoning speed so that it can be
applied to mobile devices such as mobile phones. We restrict our study to the
binary networks with a low number of parameters and do not further investigate
potentially beneficial extensions such as width and depth of network [32] or
different loss functions [12, 13].

In our experiment, we set the number of HPB-Block (see Fig.3) as 20. Each
HPB-Block contains 2 LB-Blocks. The number of feature channels is set to 48.
Then, based on our proposed BAM quantization method, BSRN is compared
with the other two super-resolution networks (VDSR and SRResNet). The re-
sults are shown in Table.3. It is obvious that our model can achieve superior
performance with lower model parameters and calculation operands.

Ablation Study on Quantization of Weights and Activations: Table.4
presents the ablation study on the effect of our BAM quantization method. In
this table, BSRN-W1 is BSRN without linear combination coefficients in the
process of weight quantization, that is, α1 = α2 = ... = αn = 1. BSRN-W2
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SRResNet 
(PSNR/SSIM)

Bicubic 
(20.96 / 0.522)

SRResNet-BNN 
(21.97 / 0590)

SRResNet-DoReFa 
(22.59 / 0.615)

SRResNet-ABC 
(22.71 / 0.612)

SRResNet-BAM
(22.91 / 0.639)

Fig. 5: SRResNet-based subjective quality assessment for ×4 upscaling on the struc-
tured image: img045 from Urban100.

Methods Paras MAC
Set5 Set14 B100 Urban100

PSRN SSIM PSRN SSIM PSRN SSIM PSRN SSIM

VDSR BAM 668K 616.9G 30.31 0.860 27.46 0.749 26.83 0.706 24.38 0.720

SRResNet BAM 1547K 127.9G 31.24 0.878 27.97 0.765 27.15 0.719 24.95 0.745

BSRN 1216K 85G 31.35 0.880 28.04 0.768 27.18 0.720 25.11 0.749

Table 3: Comparison between VDSR BAM and SRResNet BAM and BSRN on ×4.
MAC is the number of multiply-accumulate operations. We assume that the generated
SR image is 720P (1280 × 720).

refers to the process of weight quantization of BSRN without bit accumulation
operation, i.e.Wn

B = Sign(BN(αWn))∗E(|Wn|). Corresponding to BSRN-W1
and BSRN-W2, BSRN-A1 and BSRN-A2 quantize the activations according to
the same way.

From the results, we can see that the processing mode of activation has a great
impact on the performance of the model, which also indicates that for the image
super-resolution task, the ability to activate information can directly determine
the performance of the model. In addition, the bit accumulation operation has
a greater gain on model performance than the combination coefficients. This
allows us to achieve a satisfactory performance with less parameters and without
combination coefficients.

Comparison with Ma et.al [17]: Recently, Ma et al. [17] proposed an image
super-resolution work based on model quantization. It is not a complete binary
neural network, but a network model with a binary filters and full-precision
activations. In this section, we evaluate the performance of the our model under
the binary filters and with full-precision activations. The results are shown in
Table.5. The superiority of our performance can be clearly seen from the results.
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Models BSRN-W1 BSRN-W2 BSRN-A1 BSRN-A2 BSRN

PSNR 31.25 31.14 31.22 30.92 31.35

Table 4: Effects of the quantization of weights and activations measured on the
Set5 ×4 dataset.

Methods Scale
Set5 Set14 Urban100

PSRN SSIM PSRN SSIM PSRN SSIM

SRResNet Ma et.al. ×2 35.66 0.946 31.56 0.897 28.76 0.882

SRResNet BAM ×2 37.51 0.956 33.03 0.912 30.79 0.915

SRResNet Ma et.al. ×4 30.34 0.864 27.16 0.756 24.48 0.728

SRResNet BAM ×4 31.57 0.883 28.16 0.769 24.30 0.755

Table 5: Quantitative evaluation with the work of Ma et.al on SRResNet.

In general, the experiments not only illustrate the effectiveness of design bi-
narization method but suggest the reasonability of bit-accumulation perspective.

5 Conclusions

In this paper, we proposed a BNN-based model for SISR, in which a novel bina-
rization method named bit-accumulation mechanism and a lightweight network
structure are designed to approximate the full-precision CNN. The evaluation
and analysis in this paper indicates that the presented method can gradually re-
fine the precision of quantization along the direction of model inference and sig-
nificantly improve the model performance. Extensive experiments compared with
the state-of-the-art methods demonstrated the superiority of the our proposed
binarization method. We believe that this bit-accumulation mechanism could be
more widely applicable in practice. Moreover, it is readily to be used in other
machine vision problems, especially image reconstruction related tasks, such as
image/video deblurring, compression artifact removal, image/video restoration
and so on.
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