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Abstract. Current multilingual vision-language models either require
a large number of additional parameters for each supported language,
or suffer performance degradation as languages are added. In this pa-
per, we propose a Scalable Multilingual Aligned Language Representa-
tion (SMALR) that supports many languages with few model param-
eters without sacrificing downstream task performance. SMALR learns
a fixed size language-agnostic representation for most words in a multi-
lingual vocabulary, keeping language-specific features for just a few. We
use a masked cross-language modeling loss to align features with context
from other languages. Additionally, we propose a cross-lingual consis-
tency module that ensures predictions made for a query and its machine
translation are comparable. The effectiveness of SMALR is demonstrated
with ten diverse languages, over twice the number supported in vision-
language tasks to date. We evaluate on multilingual image-sentence re-
trieval and outperform prior work by 3-4% with less than 1/5th the
training parameters compared to other word embedding methods.
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1 Introduction

Learning a good language representation is a fundamental component of address-
ing a vision-language task, such as phrase grounding [22,34] or visual question
answering [3,17]. Many recent methods have demonstrated that learning text
representations aligned to images can boost performance across many vision-
language tasks over traditional text-only trained representations [8,19,29,37,38].
This is often accomplished by using auxiliary vision-language tasks when learn-
ing the language representation (such as image-sentence retrieval, as shown in
Figure 1(a)). However, these methods often only support a single language. Al-
though some work has addressed a multilingual scenario (e.g ., [16,23,41]), these
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(a) Multilingual image-sentence retrieval (b) MSCOCO multilingual retrieval

Fig. 1: (a) presents multilingual bidirectional retrieval. We embed sentences in
ten languages with SMALR, which is used to compute the highest scoring image.
(b) shows the effect of the number of training languages on performance for prior
work MULE [23] and LIWE [41]. LIWE is the original model, hereafter referred
to as S-LIWE. The plot contains two points: L-LIWE, [41] trained with a larger
embedding (120-D vs. 24-D) for fair comparison, in orange, and SMALR, in
yellow. The points are scaled to the number of parameters, P; specifically, their
area is ( P

106 )
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2 . SMALR is able to outperform all prior work with few parameters

methods do not scale well to support many languages in terms of memory or
performance (see Figure 1(b)). As the number of languages grows, methods like
LIWE [41] that use character-based recognition systems can save memory but
suffer from performance degradation. In contrast, methods that learn to align
word embeddings across languages can maintain (or even improve) performance
as languages are added (e.g ., [16,23]), but require additional parameters for the
word embeddings that represent each new language’s vocabulary. This becomes
a challenge when scaling to support many languages, as an increasing majority
of trainable parameters are required for representing each language (e.g . �93%
of parameters of [23] with ten languages). While pretrained word embeddings
could be used without fine-tuning, e.g . Multilingual BERT [13] or MUSE [11],
this comes at a significant cost in downstream task performance [8,23].

To address this trade-off between multilingual capacity and performance,
we propose a Scalable Multilingual Aligned Language Representation (SMALR)
model, which we demonstrate achieves strong task performance while also being
highly compact compared to state-of-the-art word embedding methods [13,24,26].
As seen in Figure 1, LIWE drops over 10% in performance going from supporting
one to ten languages. MULE slightly increases performance with more languages,
but requires 6x more parameters compared to its single language model. Our ap-
proach, SMALR, outperforms both with only 1/5th the parameters of MULE.
We learn to efficiently represent each language by separating our language em-
bedding into language-specific and language-agnostic token representations. As
language follows a long-tailed distribution, only a few words occur often, with
large portions of tokens occurring very rarely. For example, in the MSCOCO
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dataset [28] there are 25,126 unique tokens, but 61% of them occur less than 4
times. This suggests that having unique representations for every token in the
vocabulary is unnecessary, as only a subset would affect downstream task per-
formance significantly. Thus, we use a Hybrid Embedding Model (HEM) that
contains language-specific embeddings for the common tokens, thereby provid-
ing a good representation for each language, and a compact language-agnostic
representation for rare and uncommon words. This results in a model that needs
far fewer unique embeddings than prior work without sacrificing performance.

We learn how to assign tokens to the language-agnostic representation in
a pretraining step, which uses monolingual FastText embeddings [7] to map
similar words to the same token, e.g . mapping “double-decker” in English and
“impériale” in French to the same shared token. Once we obtain our language
embeddings, our goal is to align them so that semantically similar words, even
those from other languages, are embedded nearby. To accomplish this, we use
a multilingual masked language model, where we randomly mask words and
then predict them based on context. Unlike similar masking approaches used
to train models such as BERT [13], we mask words of sentences from any two
languages, say German and Chinese, which are semantically similar sentences
referring to the same image, and use the context from each to predict both
masked tokens. To further encourage cross-language alignment, we also use an
adversarial language classifier and neighborhood constraints that have been used
in prior work [23]. These universal language embeddings are provided as input to
a multimodal model that learns to relate them to images. Finally, we use a cross-
lingual consistency module that uses machine translations to reason about the
image-sentence similarity across multiple languages, which we show significantly
boosts performance. Figure 2 contains an overview of our model.

We use bidirectional image-sentence retrieval as the primary evaluation of
our multilingual language representation. In this task, the goal is to retrieve a
relevant sentence from a database given an image or to retrieve a relevant image
from a database given a sentence. We augment current multilingual datasets
Multi30K [6,14,15,43] and MSCOCO [27,28,31] using machine translations so
that every image has at least five sentences across ten diverse languages: En-
glish (En), German (De), French (Fr), Czech (Cs), Chinese (Cn), Japanese (Ja),
Arabic (Ar), Afrikaans (Af), Korean (Ko), and Russian (Ru). See the supple-
mentary for details on our data augmentation procedure. This constitutes the
highest number of languages used in multilingual learning for vision-language
tasks to date, supporting more than double the number of visually-semantically
aligned languages compared to prior work [5,11,16,23,36,41].

We list the contributions of our work below:

{ SMALR, a scalable multilingual model for training visually-semantically
aligned word embeddings that outperforms the state-of-the-art on multi-
lingual image-sentence retrieval while also requiring few model parameters.

{ A comparison to four types of vocabulary reduction methods that serve as
baselines to complement our evaluation against prior work.
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