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Abstract. In this paper, we are aiming for a general reference-based
super-resolution setting: it does not require the low-resolution image and
the high-resolution reference image to be well aligned or with a similar
texture. Instead, we only intend to transfer the relevant textures from
reference images to the output super-resolution image. To this end, we
engaged neural texture transfer to swap texture features between the
low-resolution image and the high-resolution reference image. We identi-
fied the importance of designing a super-resolution task-specific features
rather than classification oriented features for neural texture transfer,
making the feature extractor more compatible with the image synthesis
task. We develop an end-to-end training framework for the reference-
based super-resolution task, where the feature encoding network prior
to matching and swapping is jointly trained with the image synthesis
network. We also discovered that learning the high-frequency residual
is an effective way for the reference-based super-resolution task. With-
out bells and whistles, the proposed method E2ENT2 achieved better
performance than state-of-the method (i.e., SRNTT with five loss func-
tions) with only two basic loss functions. Extensive experimental results
on several datasets demonstrate that the proposed method E2ENT2 can
achieve superior performance to existing best models both quantitatively
and qualitatively.

Keywords: super-resolution; reference-based; feature matching; feature
swapping; CUFED5; Flickr1024

1 Introduction

Image super-resolution (SR) is an essential task in computer vision, aiming to
transfer low-resolution (LR) images to their high-resolution (HR) counterparts.
SR remains to be a long-standing and ill-posed problem due to the non-unique
mapping between high and low-resolution samples. A single low resolution (LR)
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image could correspond to multiple high resolution (HR) images. A large number
of deep SR models have been proposed to solve this problem in recent years [3,
10, 7, 11, 13, 1]. However, in case of a large upsampling factor, recovering an HR
image requires to provide sufficient information to fill the missing contents in
the LR image.

Bicubic SRGAN SRNTT OursEhancenet Landmark

HR

Reference

Fig. 1. Left: High resulotion image (up) and reference (bottom). Right: zoomed re-
sults of different SR algorithms, including SRGAN[11], Ehancenet[13], Landmark[22],
SRNTT[24], and ours. Our end-to-end learning method produces the best result.

Reference-based super-resolution (RefSR) is a new SR branch in recent years,
which has been proven to be effective in recovering lost high-frequency details in
the LR images [16, 22, 27, 28]. These reference-based methods generally require
reference images to have similar content with the LR image or with proper
alignment. For example, prior work [28] focuses on RefSR for light field images
where the LR image and the HR reference image are very similar as they have
relatively small disparities. It estimates the transformation by optical flow and
uses the multi-scale warping technique for feature alignment. For these RefSR
methods, if the reference images do not possess relevant textures with the LR
image, their performance would significantly degrade and even be worse than
signal image SR methods.

In this paper, we are aiming for a more general RefSR setting: it does not
require the LR image and the HR reference image to be well aligned or with a
similar texture. Instead, we only intend to transfer the relevant texture from ref-
erence images to the output SR image. Ideally, a robust RefSR algorithm should
outperform single image super-resolution (SISR) when a better reference image
is provided, whilst achieving comparable performance when reference images do
not possess relevant texture at all.

Based on this goal, SRNTT [24] proposes a neural texture transfer approach
that breaks the limitation of reference images. In SRNTT, local texture matching
is conducted in the feature space, and the matched textures are transferred to the
synthesized high-resolution image through a deep neural network. However, there
are three main issues for SRNTT: (1) the features used in this image synthesis
task are extracted from a VGG net. Initially designed for image classification,
VGG may not lead to the best features for SR. (2) WIth the fixed VGG net,
SRNTT does not take advantage of the end-to-end learning in the SR task.
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(3) VGG features in shallow layers involve a high computational and enormous
memory cost, making it time-consuming to process images with large size.

In this paper, we argue that that the matching feature does matter for neural
texture transfer in RefSR. Thus, we analyze the feature extractor in the RefSR
method and propose to use features designed for SR (i.e., SRGAN [11]) instead
of features designed for classification (VGG). Such features, on the other hand,
are more compatible with the image synthesis network where the adversarial
loss is used [5]. Secondly, Distinctive with previous RefSR methods, the whole
neural network, including the feature representation part, is able to be trained
in an end-to-end manner. Visual quality comparisons between our approach and
other state-of-the-art methods are shown in Fig.1.

Our contributions are summarized as follows:

– We identified the importance of using a task-specific feature extractor for
matching and swapping in RefSR, and proposed to use features designed for
SR (i.e., SRGAN [11]) instead of features designed for classification (VGG),
making the feature extractor more compatible with the image synthesis task.

– We designed an end-to-end training framework for the RefSR task, where
the feature extraction network for matching and swapping is jointly trained
with the image synthesis network. We also discovered that learning the high-
frequency residual is an effective and efficient way for the reference-based
super-resolution task. Without bells and whistles, we achieved better per-
formance than the state-of-the method (i.e., SRNTT [24] with five loss func-
tions) with only two basic loss functions.

– We evaluated our method in RefSR datasets, achieving the new quantita-
tively results (24.01dB for PSNR, 0.705 for SSIM) in the CUFED5 dataset.
Qualitative results also demonstrate the superiority of our method.

2 Related Work

2.1 Image Super-resolution

Deep learning based methods have been applied to image SR in recent years [3, 9,
10, 12, 23], and significant progress have been obtained due to its powerful feature
representation ability. These methods learn an end-to-end mapping from LR to
HR directly with a mean squared loss function, treating the super-resolution
as a regression problem. SRGAN [11] considers both perceptual similarity loss
and adversarial loss for super-resolution. The perceptual similarity is obtained
by computing the feature distance extracted from the VGG middle layer. The
adversarial loss enables us to generate realistic visual results for humans by using
a discriminator to distinguish between real HR images and super-resolved images
generated from generators.

The super-resolution performance has been boosted with deep features and
residual learning. For example, Dong et al. first introduced a three-layer convo-
lutional network SRCNN [3] for image super-resolution. After that, Kim et al.
reformed the problem based on residual learning and proposed VDSR [9] and
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DRCN [10] with deeper layers. Lim et al. proposed two very deep multi-scale
super-resolution networks EDSR and MDSR [12] by modifying residual units
and further improve the performance. Zhang et al. [23] proposed a residual in
residual structure to allows focusing on learning high-frequency information and
a channel attention mechanism to rescale channel-wise features by considering
inter-dependencies among channels adaptively.

2.2 Reference-based Super-resolution

Different from single image super-resolution with the only low-resolution image
provided, RefSR methods utilize additional images that have more texture in-
formation to assist the recovery process. Generally, the reference images contain
similar objects, scenes, or texture with the low-resolution image. The reference
images can be obtained from different frames in a video sequence, different view-
points in light field images or multiview videos, or by web retrieval. Many works
study the reference-based super-resolution by extra examples or similar scenes
from web [14, 17, 15]. Other works [26, 21, 27, 28] use reference images from dif-
ferent viewpoints to enhance light field images. These works mostly build the
mapping from LR to HR patches, and fuse the HR patches at the pixel level or
using a shallow model. To overcome inter-patch misalignment and the grid effect,
CrossNet[28] uses optical flow to spatially align the reference feature map with
the LR feature map and then aggregates them into SR images. SRNTT [24]
further proposes a neural texture transfer approach to improve the matching
and fusing ability. In their approach, VGG features with semantically relevant
textures from reference images are transferred to the LR image.

Unlike the flow and wrapping based approach [28], our method could further
handle the images with much larger disparities than that in light field data.
Different from the existing neural texture transfer approach [24], our texture
matching and swapping part is end-to-end trainable.

3 Our Method

In this section, our proposed method, namely End-to-End learning for Neural
Texture Transfer (E2ENT2), will be introduced in detail. We first present the
network framework of our proposed E2ENT2, as shown in Fig.2, which consists
of 3 key blocks, including (1) a feature encoding module which extracts features
from the LR input and reference images; (2) a newly designed match and swap
(MS) module which identifies similar LR-HR feature pairs and conducts feature
swapping, where gradients can back-propagate through it to enable end-to-end
learning; (3) an image synthesis module which fuses the LR image feature and
swapped feature, and outputs the SR image.

3.1 Notations

The input of our network includes a LR input image Iin, an HR reference image
Iref and a corresponding LR reference image I↓ref . I↓ref is the down-sampled
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Fig. 2. The framework of our proposed network. The network consists of three main
modules: feature encoding module, match and swap module, and image synthesis mod-
ule. The network takes the LR image, HR reference image as input, and outputs the
super-resolved image.

version of the HR reference image Iref . Iin is with size Win ×Hin; Iref is with

size Wref × Href , which does not need to be the same size as Iin, and I↓ref is

with size
Wref

r × Href

r , with r being the super-resolution ratio.
After the feature encoding module, we get feature maps φ(Iin), φ(Iref ) and

φ(I↓ref ) for Iin, Iref and I↓ref , respectively. The feature map size is Win × Hin

for φ(Iin), Wref ×Href for φ(Iref ), and
Wref

r × Href

r for φ(Iref ). In other words,
the feature map shares the same width and height with the image, so that could
minimize the loss of details.

Feature maps φ(Iin), φ(I↓ref ) and φ(Iref ) are fed to the match and swap
module ψ, and a new swapped feature map F is obtained,

F = ψ(φ(Iin), φ(I↓ref ), φ(Iref )), (1)

where the size of F is rWin × rHin.
Finally, the swapped feature F together with the LR feature φ(Iin) are fed

into the image synthesis module ζ to generate the super-resolution image Isr, as

Isr = ζ(F , φ(Iin)), (2)

where the size of Isr is rWin × rHin.

3.2 Feature Encoding Module

Single image super-resolution benefits a lot from skip-connections [9, 10, 12, 23],
and various deep learning models have achieved state-of-the-art performance.
Thus, we propose to utilize the residual learning in the SR feature encoding
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Fig. 3. The structure of our single-image super-resolution (SISR) branch with the resid-
ual connection. The network consists of several residual blocks for feature encoding.
The feature encoding module is marked within the dashed line.

module to improve the accuracy of feature representation for the reference-based
super-resolution task.

Our proposed RefSR network shares the same feature encoding module φ(·)
in the SISR branch to produce features for Iin, Iref and I↓ref . The SISR branch
has a deep residual-based structure without the BN layer, as shown in Fig.3.
The SISR branch is composed of stacked residual blocks with 3×3 Conv kernels
and followed by pixelshuffle layers for upsampling. The skip connections allow
the network to focus on informative features rather than the LR features. After
the feature encoding module, we can get φ(Iin), φ(Iref ) and φ(I↓ref ).

In addition to being used in the RefSR branch, φ(Iin) is also passed to the rest
of the SISR branch to complete a SISR task, which ensures feature consistency
between the two standalone SR tasks. Meanwhile, introducing a shared trainable
feature encoding module in both SISR and RefSR can generate discriminative
features for the match and swap module due to end-to-end learning.

To further enhance the subjective visual quality of the SR image, we also
adopt a discriminator for adversarial learning in both SISR and RefSR branches.

3.3 Match and Swap Module

To transfer the semantically relevant texture from reference images to the output
SR image, we adopt a patch-based feature match and swap module. As shown
in Fig.4, the match and swap module takes the feature maps obtained in the
encoding stage as input, including φ(Iin), φ(Iref ) and φ(I↓ref ). This module
outputs a fused feature map F .

Forward Pass. Our proposed matching process is conducted at patch level,
which is a 3 × 3 feature block. Firstly, we crop φ(Iin), φ(I↓ref ) and φ(Iref ) into
3×3, 3×3 and 3r×3r patches with stride 1, 1 and r, respectively. These patches
are indexed based on the horizontal and vertical position. Matching similarity is
computed between patches in φ(Iin) and φ(I↓ref ).

To recover the missing details as much as possible, in the feature matching
process, for each LR feature patch in φ(Iin), we need to search for the most

similar feature patch in φ(I↓ref ), and the corresponding feature patch in φ(Iref )
will be used to replace the original patch.



End2End Learning for Ref-SR 7

7 7 5 5

7 7 4 7

4 8 2 6

5 5 5 8

1 5 3 5

4 8 6 8

4 9 5 9

7 2 4 7

6 6 2 2 5 5 6 6

6 6 2 2 5 5 6 6

1 1 3 3 4 4 7 7

1 1 3 3 4 4 7 7

5 5 9 9 2 3 6 6

5 5 9 9 2 2 5 6

5 5 6 6 5 5 7 8

5 5 6 6 5 6 8 8

Low-resolution

Input feature

High resolution

reference feature

Swapped map

Operation 

match & swap

Feature 

matching

LR  image Synthesis

Module

2 3 6 6 1 1 5 5

2 2 5 6 1 1 5 5

5 5 7 8 4 4 8 8

5 6 8 8 4 4 8 8

4 4 9 9 5 5 9 9

4 9 9 9 5 5 9 9

7 7 2 2 4 4 7 7

7 7 2 2 4 4 7 7

HR reference 

image

Encoder

Module

𝜙 𝐼𝑖𝑛

𝜙 𝐼ref
↓

𝜙 𝐼𝑟𝑒𝑓

Fig. 4. Illustration of the forward pass in the match and swap module. Feature patch
matching are conducted based on the feature similarity between φ(Iin), φ(I↓ref ). The
corresponding matched HR reference feature patches replace the LR features, and
finally a swapped feature F is produced.

Computation of patch similarity is efficiently implemented as convolution
operations. The matching result is recorded in a 3-dimensional similarity map S,
with Si(x, y) denoting the similarity between the patch centered at the location

(x, y) in φ(Iin) and the i-th reference patch in φ(I↓ref ). Computation of Si can
be efficiently implemented as a set of convolution operations over all patches in
φ(Iin) with a kernel corresponding to reference feature patch i:

Si = φ (Iin) ∗
Pi

(
φ
(
I↓ref

))
∥∥∥Pi

(
φ
(
I↓ref

))∥∥∥ , (3)

where Pi(·) denotes to sample the i-th patch from a feature map, ∗ is a 2D
convolution operation, and ‖·‖ is used to get the feature length (L1). Note that
Si is a 2-dimensional map.

After the feature matching, we can obtain a swapped feature map F based
on the 3D similarity map S. Each patch in F centered at (x, y) is defined as:

Fp
(x,y) = Pi∗ (φ (Iref )) , i∗ = arg max

i
Si(x, y), (4)

where i∗ is the patch index for the most similar one in the reference feature.
Pi∗(·) denotes to sample the i∗-th patch from a feature map. Note that the

patch size of Pi∗ (φ (Iref )) is r2 times that of Pi∗

(
φ
(
I↓ref

))
. Therefore, after

swapping, the feature size of F is r2 times that of φ(Iin).
In the forward pass, we use K(x,y) to record the number of times that the

reference patch centered at (x, y) in φ(Iref ) is selected for swapping, and use
Q(x,y) to record a list of patch center coordinates for all the LR patches in
φ(Iin) that matches with the reference patch centered at (x, y) in the matching
process. K(x,y) and Q(x,y) will be used in the gradient backpropagation process.
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swap module to the image encoding module. In this figure, we assume α1 = α2 = α3 =
1 for simplicity.

We conduct the feature matching at low-resolution (using φ(Iin) and φ(I↓ref ))
to boost the matching speed for fast training. Traditional feature matching meth-
ods [4, 24] use a bicubic up-sampling strategy on the LR image to get an up-
sampled image that shares the same spatial size as an HR image. However,
such operation brings exponential computation in the feature matching process,
especially when the image size is large.

Backward Pass. To have an end-to-end training, we design a mechanism to
enable the gradients to back-propagate through the match and swap module,
from the image synthesis module to the feature encoding module, as shown in
Fig.5.

The error term E = ∂J /∂F for F can be calculated from the loss layer, with
J being the loss function. E is with the same size as the swapped map F . Notice
that the argmax function in Eq.(4) is non-differentiable, a new mechanism to
back-propagate E to the feature encoding module is needed.

As demonstrated in Fig.4, features φ(Iin), φ(Iref ) and φ(I↓ref ) all affect the

swapped map F . We define the error term for φ(Iin), φ(Iref ) and φ(I↓ref ) are EIin ,

EIref and EI
↓
ref , respectively. Since the feature matching location information,

K(x,y) and Q(x,y), are recorded in the forward process, for each matching patch
centered at (x, y), we have their error terms:

EIin(x,y) = α1E↓(x,y),

E
I↓ref
(x,y) = α2

K(x,y)∑
j=1

E↓
Qj

(x,y)

,

EIref(x,y) = α3

K(x,y)∑
j=1

EQj
(x,y)

,

(5)
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where E↓ is the corresponding downsampled error term for E ; E↓(x,y), E
↓
Qj

(x,y)

are

downsampled error term for patch centered at (x, y) and Qj
(x,y), respectively;

EQj
(x,y)

is the error term for patch centered at Qj
(x,y). α1, α2 and α3 are dif-

ferent weighting factors. Considering that each reference feature patch could
have multiple matches with patches in φ(Iin), the corresponding error terms are

accumulated multiple times for EI
↓
ref and EIref .

We construct the whole error map EIin , EI
↓
ref and EIref in the feature en-

coding module by accumulating error terms for all the patches along with their
coordinates. For the overlapped regions covered by multiple patches, the average
error value is used.

Finally, the error map EIin , EI
↓
ref and EIref are used for the parameter update

in the convolution layers of the feature encoding module:

∂J (W)

∂W
= EIin ∂φ(Iin)

∂W
+ EI

↓
ref

∂φ(I↓ref )

∂W
+ EIref ∂φ(Iref )

∂W
, (6)

where W is the parameter set, and η is the update rate.

3.4 Image Synthesis Module

In the image synthesis module, the LR image Iin, its features φ(Iin), and the
swapped feature map F are used to fuse and synthesize the SR image with
residual learning. The swapped feature F contains HR textures to recover the
details.

Similar to the structure in our feature encoding module, we also utilize the
stacked residual blocks to fuse the high-frequency features to the SR image.
As shown in Fig.6, the first set of residual blocks on the left mainly focuses
on upsampling the LR features φ(Iin) for the next stage, while the second set
of residual blocks focuses on the information fusion between the two kinds of
features. The features at the concatenation operation are with the same feature
size and they are concatenated at the channel dimension.

The final output super-resolution image Isr can be defined as:

Isr = I↑in +Res2([F ⊕Res1(φ(Iin))]), (7)
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where I↑in is a bilinear interpolated upsampled input, Res1 and Res2 represent
the left and right residual connection blocks, respectively, and ⊕ is the concate-
nation operation. The detailed structure of the image synthesis network is shown
in Fig.6. Note that feature F and φ(Iin) used for image synthesis are all obtained
from our SR task, instead of coming from a classification model, e.g., VGG [24].

The skip-connection between the LR image and the SR image could increase
the image synthesis stability by making the network focus more on the high-
frequency details during the training.

To further enhance the subjective visual quality of the SR image, we also
adopt discriminators for adversarial learning in both SISR and RefSR branches.

3.5 Loss Function

Reconstruction Loss. Generally, the mean squared error (MSE) loss function
is used in the SR task to achieve high PSNR. While in our work, we adopt the
L1 norm to precisely measure the pixel difference. The L1 norm can sharpen the
super-resolution image compared to that of MSE loss [25], though its PSNR is
slightly lower than that of MSE loss.

Lrec =
∥∥ISR −GT

∥∥
1
. (8)

Adversarial Loss. We introduce adversarial learning in our RefSR method,
the loss function is define as:

LD = −Exreal
[log (D (xreal, xfake))]− Exfake

[log (1−D (xfake, xreal))] , (9)

where D is an relativistic average discriminator[8]. Respectively, xreal and xfake
are the groundtruth and generated output of our network.

LG = −Exreal
[log (1−D (xreal, xfake))]− Exfake

[log (D (xfake, xreal))] , (10)

It is observed using this adversarial loss [8] can make our training faster
and more stable compared to a standard GAN objective. We also empirically
conclude that the generated results possess higher perceptual quality than that
of a standard GAN objective.

4 Experiments

4.1 Implementation Details

The proposed method is trained on CUFED[20], consisting of around 100,000
images. During training, a GAN-based SISR is firstly pre-trained on CUFED.
Then followed by the end-to-end training of both SISR and RefSR. Specifically,
each image of CUFED will be cropped within random bounding boxes twice, to
generate two different patches with similar content. The crops image pair (input
and reference) will be used for end-to-end training. Adam optimizer is used with
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Table 1. A quantitative comparison of our approach with other SR methods on
CUFED5 and SUN Hays dataset. The used super-resolution ratio is 4 × 4. PSNR
and SSIM are used as the evaluation metrics.

CUFED5[24] SUN Hays[15]

Method PSNR SSIM PSNR SSIM

Bicubic 22.64 0.646 27.25 0.742
DRCN[10] 23.56 0.692 - -
EnhanceNet[13] 22.58 0.651 25.46 0.669
SRGAN[11] 22.93 0.656 26.42 0.696
Ours-SISR 23.75 0.697 26.72 0.712

Landmark[22] 23.23 0.674 - -
SRNTT[24] 23.64 0.684 26.79 0.727
E2ENT2-MSE(ours) 24.24 0.724 28.50 0.789
E2ENT2(ours) 24.01 0.705 28.13 0.765

Table 2. A quantitative comparison of our approach with other SR methods on
Flickr1024 dataset. The used super-resolution ratio is 4 × 4. PSNR and SSIM are
used as the evaluation metrics.

Method
Flickr1024 Test Set[19]

PSNR SSIM

SteroSR[6] 21.77 0.617
PASSRnet[18] 21.31 0.600
SRGAN[11] 21.67 0.567
SRNTT[24] 22.02 0.637
E2ENT2(ours) 22.89 0.680

a learning rate of 1e-4 throughout the training. The weights for Lrec,Ladv, is 1e-2
and 1e-5, respectively. The number of residual blocks is 16 for both encoder and
decoder. The network is trained with the CUFED dataset for 20 epochs with
two basic losses. In all our designated experiments, no augmentation other than
image translation is applied.

The proposed method is evaluated on the datasets CUFED5[24], SUN hays[15]
and Flickr1024[19], containing 126, 80 and 112 image pairs respectively. Each
image pair contains one input image and one reference image for the evalua-
tion of reference-based SR methods. To evaluate single-image SR methods, all
images in these datasets are viewed as individual images. Moreover, compared
with CUFED5 and SUN hays datasets, Flickr1024 is a stereo image dataset
with higher resolution and similarity, and we use its testset for evaluation. The
evaluation relies on two common metrics, including PSNR and SSIM.
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4.2 Evaluations

The proposed method is compared with some related methods, which are clas-
sified into two groups. Methods in the first group are designed for single-image
SR, including Bicubic, DRCN [10], EnhanceNet [13] and SRGAN [11]. Methods
in the second groups are designed for reference-based SR, including Landmark
[22], SRNTT [24], SteroSR [6] and PASSRnet [18]. The quantitative results are
summarized in Table 1 and Table 2.

For the evaluation of reference-based SR methods, the proposed method
also outperforms other methods and boosts PSNR by 0.6 dB on CUFED5 and
1.71 dB on SUN Hays against the previous state-of-the-art method (SRNTT).
The SSIM gain over SRNTT is also substantial, being 0.040 and 0.062 for
CUFED5 and SUN Hays, respectively. E2ENT2-MSE denotes that the MSE
loss is used to replace the L1 reconstruction loss. When evaluated on a stereo
dataset (Flickr1024), as shown in Table 2, where the reference images are highly
relevant, the proposed method shows a great advantage over the SISR method
(SRGAN) and other RefSR based methods, demonstrating its robustness under
different similarity levels between LR input images and HR reference images.

Some visualization comparisons are reported in Fig.7, including indoor ob-
jects, buildings, and natural scenes. For a clear illustration, some image patches
are zoomed in to fully demonstrate the exquisite textures and details of the SR
images generated by the proposed method. A user study is conducted, seven al-
gorithms, including both single/reference-based image super-resolution results,
are given to the respondents. The statistical results are shown in Fig. 8, com-
pared with single image super-resolution methods, respondents favor the results
of reference-based methods more.

4.3 Ablation study

Impact of feature encoding module. The first ablation study is about the
impact of different feature encoding methods, with the comparisons reported in
Table 3.

To do this, firstly, the SISR branch is pre-trained on the SR dataset, and the
encoder of this pre-trained SISR will be utilized later. Then, SISR and RefSR
are trained in an end-to-end way on the CUFED dataset, obtaining the feature
encoding method E2ENT2 in Table 3. Secondly, we replace the feature encoding
module of E2ENT2 with VGG (pre-trained on ImageNet[2]) and train the re-
maining network to obtain the model Feature-VGG. Similarly, by replacing the
feature encoding module of E2ENT2 with the encoder of the pre-trained SISR
in the first step, we train the model Feature-preSISR. As can be observed from
Table 3, E2ENT2 obtains the highest PSNR and SSIM among all settings. The
results demonstrate the effectiveness of the proposed trainable feature encoding
module.

Besides, we calculate the feature distance (L1) between the swapped feature
map F and that of the ground truth HR image without the match and swap
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Fig. 7. Visualizations of generated images with different SR methods on CUFED5 (first
4 rows) and Flickr1024 datasets (last rows). Best viewed in color, and zoom-in mode.

module. The small feature distance of E2ENT2 indicates that the feature of
E2ENT2 is closer to the feature of the HR ground truth image than others.

Table 3. A comparison study of three different feature coding methods. The used
super-resolution ratio is 4× 4. PSNR and SSIM are used as the evaluation metrics.

Feature Type PSNR SSIM Feature Distance

Feature-VGG 22.85 0.647 106.77

Feature-preSISR 23.46 0.678 58.94

E2ENT2(ours) 24.01 0.705 25.77

Impact of gradient allocation. The second ablation study is about the influ-
ence of gradient allocation, which is controlled through variable weights (α1, α2,
α3) in Eq.(5). As can be observed from Table 4, parameter set (α1, α2, α3) =
(0.25, 0.25, 0.50) outperforms (1, 0, 0), (0, 1, 0) and (0, 0, 1), indicating that only
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Fig. 8. The user study results. Our method is compared with different SR algorithms,
more respondents favor our E2ENT results than that of SRNTT.

to consider the gradient for one feature in {φ(Iin), φ(I↓ref ), φ(Iref )} is not suffi-
cient for the proposed method. We allocate slightly higher value to α3 (α3 = 0.5),
because the selected image patch in φ(Iref ) will be finally used in F . However,
the similarity metric in the matching operation relies on both the LR features
φ(Iin) and the reference features φ(I↓ref ), meaning that we can not neglect them
during the gradient propagation process; thus, we set α1 = α2 = 0.25.

Table 4. A comparison of different settings for (α1, α2, α3).

weights different combinations

(α1, α2, α3) (1, 0, 0) (0, 1, 0) (0, 0, 1) (0.25, 0.25, 0.5)

PSNR 23.75 23.67 23.83 24.01

SSIM 0.697 0.672 0.695 0.705

5 Conclusions

In this paper, we explored a generalized problem for image super-resolution
by utilizing high-resolution reference images. We proposed a match and swap
module to obtain similar texture and high-frequency information from reference
images, where end-to-end learning is enabled by properly distributing the gra-
dients to the prior feature encoding module. Experiment results indicating that
the matching feature is important in RefSR. For future work, we are going to
study a better similarity metric for feature matching.
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