
Generative Sparse Detection Networks
for 3D Single-shot Object Detection

JunYoung Gwak1, Christopher Choy2, and Silvio Savarese1

1 Stanford University {jgwak,ssilvio}@stanford.edu
2 NVIDIA cchoy@nvidia.com

Abstract. 3D object detection has been widely studied due to its poten-
tial applicability to many promising areas such as robotics and augmented
reality. Yet, the sparse nature of the 3D data poses unique challenges to
this task. Most notably, the observable surface of the 3D point clouds is
disjoint from the center of the instance to ground the bounding box pre-
diction on. To this end, we propose Generative Sparse Detection Network
(GSDN), a fully-convolutional single-shot sparse detection network that
efficiently generates the support for object proposals. The key component
of our model is a generative sparse tensor decoder, which uses a series
of transposed convolutions and pruning layers to expand the support of
sparse tensors while discarding unlikely object centers to maintain mini-
mal runtime and memory footprint. GSDN can process unprecedentedly
large-scale inputs with a single fully-convolutional feed-forward pass, thus
does not require the heuristic post-processing stage that stitches results
from sliding windows as other previous methods have. We validate our
approach on three 3D indoor datasets including the large-scale 3D indoor
reconstruction dataset where our method outperforms the state-of-the-art
methods by a relative improvement of 7.14% while being 3.78 times faster
than the best prior work.

Keywords: Single shot detection, 3D object detection, generative sparse
network, point cloud

1 Introduction

3D reconstructions have become more commonplace as a complete reconstruction
pipeline become built into consumer devices, such as mobile phones or head-
mounted displays, for applications in robotics and augmented reality. Among
these applications, perceptions on 3D reconstructions is the first step allowing
users to interact with a virtual world in 3D. For example, indoor navigation
applications can aid a user to localize objects, and mixed reality applications
need to track objects to give users information relevant to the current status of
their surroundings. Many of these virtual-reality and mixed-reality applications
require identifying and detecting 3D objects in real-time.

However, unlike 2D images where the input is in a densely packed array, 3D
data is scanned or reconstructed as a set of points or a triangular mesh. These

2 J. Gwak et al.

Input Surface Voxelized Input Conv Output Conv Output ConvTr Output Pruned Output BBox Preds

Fig. 1: The top-down view of the cross-section of our simplified 3D sparse anchor
generation pipeline: a 3D scanner samples the surface of an object which we
convert to a sparse tensor. Then, an encoder extracts hierarchical sparse tensor
features with a series of convolutions. During the decoder stage, we apply a
transposed convolution to upsample and expand the support of the sparse tensor.
Finally, we prune out unnecessary supports that do not contain anchors and
make bounding box anchor predictions.

data occupy a small portion of the 3D space and pose unique challenges for 3D
object detection. First, the space of interest is three dimensional which requires
cubic complexity to save or process data. Second, the data of interest is very
sparse, and all information is sampled from the surface of objects.

Many previous 3D object detectors proposed various methods to process
cubically growing sparse 3D data, and can be categorized into one of two branches:
3D object detection by converting sparse 3D data into a dense representation [19,
28, 1, 15, 13] or by directly feeding a set of points into multi-layer perceptrons [24,
35]. First, dense 3D representation for indoor object detection [28, 1, 13] uses
volumetric features which have memory and computational complexity of O(N3)
where N is the resolution of the space. This representation requires large memory,
which prevents the utilization of deep networks and requires cropping the scenes
and stitching the results to process large or high-resolution scenes. Second, multi-
layer perceptrons that process a scene as a set of points limit the number of
points a network can process. Thus, as the size of the point cloud increases, the
method suffers from either low-resolution input which makes it difficult to scale
the method up for larger scenes (see Section 5.2) or apply sliding-window style
cropping and stitching which prevents the network to see a larger context [35].

We instead propose to resolve the cubic complexity with our hierarchical
sparse tensor encoder, adopting a sparse tensor network [8] to efficiently process a
large scene fully-convolutionally. As we use a sparse representation, our network
is fast and memory-efficient compared with a single-shot method that uses dense
tensors [13]. It allows our network to adopt extremely deep architectures while
requiring a fraction of the memory and computation. Also, compared with multi-
layer perceptrons, our method scales to large scenes without sacrificing point
density or the receptive field size of a network by cropping a scene into smaller
windows [24, 35].

Another key challenge of a 3D object detector is that the support of the input
3D scans and the support of the object bounding box anchors are disjoint. In
other words, we have samples of 3D points on the surface of the objects, but

Generative Sparse Detection Networks for 3D Single-shot Object Detection 3

Fig. 2: Detection results on the entire S3DIS building 5: Our proposed method
can process 78M points, 13984m3, 53 room building as a whole in a single fully-
convolutional feed-forward pass, only using 5G of GPU memory. Left: bird-eye-view
of the entire building 5, Right: partial view of the same building.

not on the center of the object where a bounding box anchor is located. This
is due to the fact that many objects are convex and we cannot directly observe
the object center. For this, we propose a generative sparse tensor decoder that
repeatedly upsamples the support of input to expand and cover the support of
anchors while discarding unlikely object centers to maintain minimal runtime
and memory footprint (Fig. 1).

To sum, we propose Generative Sparse Detector Network (GSDN), a deep
fully-convolutional single-shot 3D object detection algorithm with a sparse tensor
network. Our single-shot 3D object detection network consists of two components:
an hierarchical sparse tensor encoder which efficiently extracts deep hierarchical
features, and a generative sparse tensor decoder which expands the support of the
sparse input to ground object proposals on. Experimentally, GSDN outperforms
the state-of-the-art methods on two large-scale indoor datasets while being faster
than the best prior work. We also analyze the speed and memory footprint of
the model and demonstrate the extreme scalability of our method on orders of
magnitudes larger 3D scenes (Fig. 2).

2 Related Work

3D Indoor Object Detection. In a 3D indoor setting or 3D indoor datasets [5,
1], the distribution of object placement creates unique challenges: objects such
as lamps and ceiling lights can be placed on a wall or a ceiling, or objects can be
placed on top of another object such as a desk or a bed. However, such challenging
setup does not exist in outdoor datasets and most 3D outdoor object detectors
simply project the 3D problem into a 2D ground plane [19, 15, 38].

Thus, in this section, we cover 3D indoor object detection specifically. The
indoor 3D object detection using neural networks can be classified into one of the
following categories: sliding-window with classification, clustering-based methods,
bounding-box proposal, or combinations of the above methods. First, the sliding

4 J. Gwak et al.

window with classification extracts a 3D patch for object classification which is
used as a simple object detector [28, 1].

Second, clustering-based methods learn features or vectors in a metric space
where clustering results in instance segmentation. Lahoud et al. [14] uses metric
learning to train the feature space. Liu et al. [17], Yi et al. [36], Wang et al. [33],
and Qi et al. [24] predict object centers per 3D point and cluster the center votes.

Third, the bounding box proposal methods adopt 2D rectangular bounding
box proposal methods to 3D. Wang et al. [32] proposed Vote3D, which predicts
3D bounding boxes on a sparse grid for object detection. Yang et al. [35] directly
predicts bounding boxes from MLP of global point cloud features. Hou et al. [13]
makes a straight-forward 3D extension of region proposal networks on dense
voxels. GSDN is a bounding box proposal method with a crucial difference
in maintaining the sparsity of the input point cloud and target anchor space,
enabling much faster inference on many orders of magnitude larger scene with
better performance than state-of-the-art methods.
3D Generative Networks. Generating 3D shapes from a neural network can be
classified into two broad categories: continuous 3D point representations [20, 23, 37,
31] and discrete grid representations [4, 30, 2, 7, 6]. Specifically, within the discrete
representations, some use sparse representations for 3D reconstruction which
allow a high-resolution voxel or signed-distance-function (SDF) reconstruction [30,
2, 7, 6]. Unlike previous works that focus on the shapes of objects, we use the
generative process to predict the bounding box anchors. Also, compared with
some sparse generative processes that subdivide voxels [30, 6], our method extends
the support with transposed convolutions to cover bounding box anchors which
are located behind 3D surface observations.
Sparse Tensor Networks. A conventional neural network processes a dense
tensor such as temporal data, images, or videos using a series of linear operations
and non-linear operations. Most of the linear operations also use dense tensors
for parametrization. In mobile and embedded systems, a sparse parametrization
of neural networks [10, 22, 21] has been widely studied to compress a neural
network. Graham et al. [9] instead proposes to take spatially sparse tensors as
inputs and generate spatially sparse feature maps. Using a sparse tensor as an
input has gained more popularity since its success on 3D data processing [8, 9, 2,
3]. We adopt these spatially sparse networks, or sparse tensor networks to scale
detection networks to an unprecedented depth and to handle extremely large
scenes. Additionally, we propose to dynamically generate new coordinates to
efficiently support bounding box center coordinates that are often missing in
surface-scanned inputs.

3 Preliminaries

In this section, we briefly go over the basic 3D representation, a sparse tensor,
and introduce basic operations that are critical for the generative sparse tensor
network. Throughout the paper, we will use lowercase letters for variable scalars, t;
uppercase letters for constants, N ; lowercase bold letters for vectors, v; uppercase

Generative Sparse Detection Networks for 3D Single-shot Object Detection 5

bold letters for matrices, R; Euler scripts for tensors, T ; and calligraphic symbols
for sets, C.

3.1 Sparse Tensor

A tensor is a multi-dimensional array that can represent high-dimensional data.
A sparse tensor of order-D, T ∈ RN1×N2×...×ND , is a D-dimensional array
where majority of its elements are 0. Adopting the conventional sparse matrix
representation, a sparse matrix can be represented as a set of non-zero coordinates
C = supp(T) where supp is the set-theoretic support operator as in standard
mathematical terminology, and corresponding features F .

T [x1i , x
2
i , · · · , xDi] =

{
fi if (x1i , x

2
i , · · · , xDi) ∈ C

0 otherwise
(1)

where xid denotes d-th axis coordinate of the i-th non-zero element and fi is the
feature associated to the i-th non-zero element. These non-zero elements contain
information that are equivalent to a sparse tensor T ⇔ (C,F). These sets can
also be converted to matrices of COOrdinate representation (COO) C,F where
each row is an element of the corresponding coordinate and feature sets (C,F).

3.2 Sparse Tensor for 3D Data Representation

The 3D data of interest in this work uses point clouds or meshes to represent
3D surfaces. We can represent a mesh or a point cloud as a sparse tensor by
discretizing the coordinates of vertices or points. This process requires defining
the discretization step size (voxel size) which is a hyperparameter that affects
the performance of a neural network [3, 2].

4 Generative Sparse Detection Networks

In this section, we propose the generative sparse detection networks for 3D object
detection. Unlike the 2D object detection networks [16, 27], we use a sparse tensor
as the 3D representation throughout the network including the intermediate
features. Thus, all layers such as convolution and batch normalization are well
defined for sparse tensors [8, 2]. Throughout the paper, we will implicitly refer to
all tensors as sparse tensors and layers as sparse tensor counterparts.

The network consists mainly of two parts: a hierarchical sparse tensor encoder
and a generative sparse tensor decoder. The first part of the network generates
sparse tensor feature maps that can sufficiently capture geometry and identity of
objects and the second part proposes new supports based on the feature maps.

6 J. Gwak et al.

Sparse Tensor

Conv1 Pool1
Block1

Block2

Block3

Block4

ConvTr3

ConvDet4

BBox Pred Lvl.4

BBox Pred Lvl.3

BBox Pred Lvl.2

BBox Pred Lvl.1

+

+

+

: Convolution

: MaxPool

: Residual Block

: Transposed Convolution

: Pruning

Generative Sparse Tensor DecoderHierarchical Sparse Tensor Encoder

Generative Sparse Detection Network

Fig. 3: Network overview: generative sparse detection networks process a sparse
tensor input first with a series of strided convolutions followed by a few residual
network blocks to generates hierarchical sparse tensor feature maps (Sec. 4.1).
The second stage upsamples the sparse tensor feature maps using transposed
convolution and pruning (Sec. 4.2). Note that all feature maps are sparse tensors
and all layers process sparse tensors fully-convolutionally.

4.1 Hierarchical Sparse Tensor Encoder

We use residual networks [12], specifically high-dimensional variants proposed in
Choy et al. [2], as the backbone of our model. Note that the backbone network
can be replaced with more modern and recent variants. The network consists of
residual blocks and strided convolutions that reduce the resolution of the space
and increase the receptive field size exponentially. First, the network takes a high-
resolution sparse tensor as an input T0 and generate hierarchical feature maps
Tl with a series of downsampling and residual blocks fl(·;Wl) for l ∈ [1, ..., L].
The encoder can be represented succinctly as

Tl ← fl(Tl−1;Wl) for l ∈ [1, ..., L]

We cache all of the hierarchical sparse tensor feature maps Tl for l ∈ [1, ..., L]
which will be fed into the generative sparse tensor decoder.

4.2 Generative Sparse Tensor Decoder

The second half of the network expands the support of the hierarchical sparse
tensors feature maps Tl to cover the support for bounding box anchors. We
approximate this process with transposed convolutions (also known as upcon-
volution, deconvolution). Given an input sparse tensor T , we create an output
sparse tensor T ′ that supp(T) ⊂ supp(T ′). Yet, not all voxels generated from
this process contain bounding box anchors and can be dynamically removed
to save the memory and computation cost. Thus, we propose sparsity pruning,

Generative Sparse Detection Networks for 3D Single-shot Object Detection 7

where we dynamically determine which coordinates to prune based on learned
parameters. By applying a transposed convolution followed by sparsity pruning,
we increase the resolution of the space while limiting the memory and compu-
tation cost. Without pruning, the number of coordinates grows cubically after
every transposed convolution and our training pipeline fails from lack of memory.
Additionally, we make skip connections between the hierarchical sparse tensor
feature maps and the upsampled sparse tensors to recover the fine details of the
input.

4.2.1 Transposed Convolution and Sparsity Pruning We use transposed
convolutions with the kernel size greater than 2 to not just upsample, but expand
the support of a sparse tensor. This process affects the sparsity pattern of a
sparse tensor and the support of the output sparse tensor is the stencil or
outer-product of the convolution kernel shape on the input sparsity pattern
supp(T ′) = C ⊗ [−K, ...,K]3. Mathematically, a transposed convolution on a 3D
sparse tensor T with supp(T) = C can be defined as follows:

T ′[x, y, z] =
∑

i,j,k∈N (x,y,z)

W[x− i, y − j, z − k]T [i, j, k] for (x, y, z) ∈ C′ (2)

where C′ = C⊗[−K, ...,K]3,N (x, y, z) = {(i, j, k)||x−i| ≤ K, |y−j| ≤ K, |z−k| <
K, (i, j, k) ∈ C}, W is the 3D convolution kernel weights and 2K + 1 is the
convolution kernel size. This results in denser sparsity pattern on the output
tensor T ′ with supp(T ′) = C ⊗ [−K, ...,K]3. Note that unlike the subdivision,
the transposed convolution expands a sparse point into an arbitrarily large dense
region and multiple regions could overlap with each other (Fig. 4).

A

B

C

1

2

3

4

5

6

7

8

P (·)

P (·)

P (·)

P (·)

P (·)

P (·)

P (·)

P (·)

1’

4’

5’

7’

8’

ConvTr Prediction Pruning

Fig. 4: Expansion and pruning: trans-
posed convolution upsamples a low-
resolution sparse tensor into a high-
resolution sparse tensor. Then, we
prune out some of the upsampled co-
ordinates with sparsity predictions
Ps(·).

After a transposed convolution, not all
the newly created coordinates contain ob-
ject bounding box anchors. Thus, we re-
move some of these voxels that have a
small probability of containing bounding
box anchors. We denote a function that
returns the probability given features at
each voxel as Ps(·) and remove all voxels
Ps(·) < τ , where τ is the sparsity pruning
confidence threshold.

p = Ps(T ;WP) (3)

T ′ = SparsityPruning(T ,p < τ) (4)

4.2.2 Skip Connection and Sparse
Tensor Addition The upsampled sparse
tensor feature maps from the generative
process have gone through extreme spatial

8 J. Gwak et al.

compression that allows neurons to see larger context, but have lost spatial
resolution. To recover the fine details of the input, we create the skip connections
to the cached feature map from the encoder [2, 3]. Since both the upsampled
feature map and the lower layer feature map are all sparse tensors, we use sparse
tensor addition. This process also expands the support to be the union of the
supports of both sparse tensors.

4.3 Multi-scale Bounding Box Anchor Prediction

Every voxel after the sparsity pruning potentially contains bounding box anchors.
Therefore, we make a direct prediction of the bounding box parameters for every
layer of the pruned sparse tensors. Specifically, for each k anchor box, the network
predicts 1 object anchor likelihood score, 6 offsets relative to the anchor box, and
c semantic class scores. This results in (c+ 7)k outputs per voxel.

To capture as many shape variations, we use bounding box anchors with
different aspect ratios. Specifically, for each anchor ratio seed ar, we use all unique

permutations of
[√

ar,
√
ar,

1√
ar

]
as the aspect ratios of an anchor. In total, we

use k = 13 anchors with ar ∈ {1, 2, 4, 12 ,
1
4} including the identity ratio.

However, even with these various anchor ratios, it is difficult to capture the
extreme scale variation among 3D objects. Thus, we predict anchors at various
stages of the decoder to capture the scale variation of 3D objects similar to Liu et
al. [18]. We construct the anchors at each level to double the size of the anchors
at the previous level.

4.4 Summary of GSDN Feed Forward

We summarize the feed forward pass of the generative sparse detection networks
in Alg. 1. The algorithm generates L levels of hierarchical sparse tensor feature
maps from the previous level feature maps on Line 3. Then, during the generative
phase, we extract anchors and associated bounding box information (Line 8),
predict sparsity and prune out voxels (Line 10), and apply transposed convolution
(Line 12). We add the upsampled sparse tensor to the corresponding sparse tensor
feature map from the encoder (Line 7).

4.5 Losses

The generative sparse detection network has to predict four types of outputs:
sparsity prediction, anchor prediction, semantic class, and bounding box regres-
sion. First, the sparsity and anchor prediction are binary classification problems.
However, the majority of the predictions are negative as many voxels does not
contain positive anchors. Thus, we use balanced cross entropy loss:

Lb(ŷ,y) = − 1

2|P|
∑
i∈P

log(P (ŷi))−
1

2|N |
∑
i∈N

log(1− P (ŷi))

Generative Sparse Detection Networks for 3D Single-shot Object Detection 9

Algorithm 1: Generative Sparse Detection Networks

Input: T , fl(·;Wl), f
Tr
l (·;WTr

l), gbl (·;Wb
l), Ps(·;Gs

l) for l ∈ [1, ..., L], τs
Output: {Bl}l for l ∈ [1, ..., L]

1 T0 ← T
/* Hierarchical Sparse Tensor Encoder § 4.1 */

2 for l← 1, ...L do
3 Tl ← fl(Tl−1) // Hierarchical feature tensors

/* Generative Sparse Tensor Decoder § 4.2 */

4 T Tr
L ← TL

5 for l← L, ..., 1 do
6 if l < L then
7 T Tr

l ← T Tr
l + Tl // Skip connection §4.2.2

8 Bl ← gbl (T Tr
l) // Anchor predictions §4.3

9 pl ← P s
l (T Tr

l) // Sparsity predictions

10 T Tr
l ← SparsityPruning(T Tr

l ,pl < τ) // Pruning §4.2.1
11 if l > 1 then
12 T Tr

l+1 ← fTr
l (T Tr

l) // Transposed convolution §4.2.1

13 return {Bl}l

where P = {i|yi = 1} and N = {i|yi = 0} are the set of indices with positive
and negative labels respectively. We define an anchor to be positive if any of the
anchors in a voxel overlaps with any ground-truth bounding boxes for 3D IoU
> 0.35 and negative if 3D IoU < 0.2. As the sparsity prediction must contain
all anchors in subsequent levels, we define a sparsity to be positive if any of the
subsequent positive anchor associated to the current voxel is positive. We do not
enforce loss on anchors that have 0.2 <3D IoU < 0.35.

Finally, for positive anchors, we train semantic class prediction of the highest
overlapping ground-truth bounding box class with the standard cross entropy,
Lclass, and bounding box center and size regression parameterized by difference
of the center location relative to the size of the anchor and the log difference of
the size of the bounding box with the Huber loss [27], Lreg. The final loss is the
weighted sum of all losses:

L = λsLs + λancLanc + λclassLclass + λregLreg

where we use λs = 1, λanc = 1, λclass = 1, λreg = 0.1 for all of our experiments.

4.6 Prediction post-processing

We train the network to overestimate the number of bounding box anchors as
we label all anchors with 3D IoU >0.35 as positives. We filter out overlapping
predictions with non-maximum suppression and merge them by computing score-
weighted average of all removed bounding boxes to fine tune the final predictions
similar to Redmon et al. [26].

10 J. Gwak et al.

Method Single Shot mAP@0.25 mAP@0.5

DSS [28, 13] 7 15.2 6.8
MRCNN 2D-3D [11, 13] 7 17.3 10.5
F-PointNet [25] 7 19.8 10.8
GSPN [36, 24] 7 30.6 17.7
3D-SIS [13] 3 25.4 14.6
3D-SIS [13] + 5 views 3 40.2 22.5
VoteNet [24] 7 58.6 33.5

GSDN (Ours) 3 62.8 34.8

Table 1: Object detection mAP on the ScanNet v2 validation set. DSS, MRCNN
2D-3D, FPointNet are from [13]. GSPN from [24]. Our method, despite being
single-shot, outperforms all previous state-of-the-art methods.

cab bed chair sofa tabl door wind bkshf pic cntr desk curt fridg showr toil sink bath ofurn mAP

Hou et al. [13] 12.75 63.14 65.98 46.33 26.91 7.95 2.79 2.30 0.00 6.92 33.34 2.47 10.42 12.17 74.51 22.87 58.66 7.05 25.36
Hou et al. [13] + 5 views 19.76 69.71 66.15 71.81 36.06 30.64 10.88 27.34 0.00 10.00 46.93 14.06 53.76 35.96 87.60 42.98 84.30 16.20 40.23
Qi et al. [24] 36.27 87.92 88.71 89.62 58.77 47.32 38.10 44.62 7.83 56.13 71.69 47.23 45.37 57.13 94.94 54.70 92.11 37.20 58.65

GSDN (Ours) 41.58 82.50 92.14 86.95 61.05 42.41 40.66 51.14 10.23 64.18 71.06 54.92 40.00 70.54 99.97 75.50 93.23 53.07 62.84

Table 2: Class-wise mAP@0.25 object detection result on the ScanNet v2 valida-
tion set. Our method outperforms previous state-of-the-art on majority of the
semantic classes.

5 Experiments

We evaluate our method on three 3D indoor datasets and compare with state-of-
the-art object detection methods (5.1). We also make a detailed analysis of the
speed and memory footprint of our method (5.2). Finally, we demonstrate the
scalability of our proposed method on extremely large scenes (5.3).
Datasets. We evaluate our method on the ScanNet dataset [5], annotated 3D
reconstructions of 1500 indoor scenes with instance labels of 18 semantic classes.
We follow the experiment protocol of Qi et al. [24] to define axis-aligned bounding
boxes that encloses all points of an instance without any margin as the ground
truth bounding boxes.

The second dataset is the Stanford Large-Scale 3D Indoor Spaces (S3DIS)
dataset [1]. It contains 3D scans of 6 buildings with 272 rooms, each with instance
and semantic labels of 7 structural elements such as floor and ceiling, and five
furniture classes. We train and evaluate our method on the official furniture
split and use the most-widely used Area 5 for our test split. We follow the same
procedure as above to generate ground-truth bounding boxes from instance labels.

Finally, we demonstrate the scalability of GSDN on the Gibson environ-
ment [34] as it contains high-quality reconstructions of 575 multi-story buildings.
Metrics. We adopt the average precision (AP) and class-wise mean AP (mAP) to
evaluate the performance of object detectors following the widely used convention
of 2D object detection. We consider a detection as a positive match when a
3D intersection-over-union(IoU) between the prediction and the ground-truth
bounding box is above a certain threshold.

Generative Sparse Detection Networks for 3D Single-shot Object Detection 11

0.0 0.2 0.4 0.6 0.8 1.0
recall

0.0

0.2

0.4

0.6

0.8

1.0

pr
ec

is
io

n

P/R curve of ScanNetv2 val @ IoU0.25

0.0 0.2 0.4 0.6 0.8 1.0
recall

0.0

0.2

0.4

0.6

0.8

1.0

pr
ec

is
io

n

P/R curve of ScanNetv2 val @ IoU0.5
cabinet
bed
chair
sofa
table
door
window
bookshelf
picture
counter
desk
curtain
refrigerator
shower curtain
toilet
sink
bathtub
otherfurniture

Fig. 5: Per-class precision/recall curve of ScanNetV2 validation object detection.

G.T. Hou et al. [13] Qi et al. [24] Ours

Fig. 6: Qualitative object detection results on the ScanNet dataset.

Training hyper-parameters. We train our models using SGD optimizer with
exponential decay of learning rate from 0.1 to 1e-3 for 120k iterations with the
batch size 16. As our model can process an entire scene fully-convolutionally, we
do not make smaller crops of a scene. We use high-dimensional ResNet34 [2, 12]
for the encoder. For all experiments, we use voxel size of 5cm, transpose kernel
size of 3, with L = 4 scale hierarchy, sparsity pruning confidence τ = 0.3, and 3D
NMS threshold 0.2.

5.1 Object detection performance analysis

We compare the object detection performance of our proposed method with
the previous state-of-the-art methods on Table 1 and Table 2. Our method,
despite being a single-shot detector, outperforms all two-stage baselines with
4.2% mAP@0.25 and 1.3% mAP@0.5 performance gain and outperforms the
state-of-the-art on the majority of semantic classes.

12 J. Gwak et al.

G.T. Ours G.T. Ours

Fig. 7: Qualitative object detection results on the S3DIS dataset.

IoU Thres. Metric Method table chair sofa bookcase board avg

0.25
AP

Yang et al. [35]* 27.33 53.41 9.09 14.76 29.17 26.75
GSDN (ours) 73.69 98.11 20.78 33.38 12.91 47.77

Recall
Yang et al. [35]* 40.91 68.22 9.09 29.03 50.00 39.45

GSDN (ours) 85.71 98.84 36.36 61.57 26.19 61.74

0.5
AP

Yang et al. [35]* 4.02 17.36 0.0 2.60 13.57 7.51
GSDN (ours) 36.57 75.29 6.06 6.46 1.19 25.11

Recall
Yang et al. [35]* 16.23 38.37 0.0 12.44 33.33 20.08

GSDN (ours) 50.00 82.56 18.18 18.52 2.38 34.33

Table 3: Object detection result on furniture subclass of S3DIS dataset building
5. *: Converted the instance segmentation results to bounding boxes for reference

We also report the S3DIS detection results on Table 3. We compare the
performance of our method against Yang et al. [35], a detection-based instance
segmentation method, where we use the scene-level instance segmentation result
as a proxy of the object detection the network learned at 1m×1m blocks. Our
method in contrast to Yang et al. [35] takes the whole scene as an input, thus
does not require slow pre-processing and post-processing, and is not limited by
the cropped receptive field.

We plot class-wise precision-recall curves of ScanNet validation set on Figure 5.
We found that some of the PR curves drop sharply, which indicates that the
simple aspect-ratio anchors have a low recall.

Finally, we visualize qualitative results of our method on Figure 6 and Figure 7.
In general, we found that our method suffers from detecting thin structures such
as bookcase and board, which may be resolved by adding more extreme-shaped
anchors. Please refer to the supplementary materials for the class-wise breakdown
of mAP@0.5 on the ScanNet dataset and class-wise precision-recall curves for
the S3DIS dataset.

5.2 Speed and Memory Analysis

We analyze the memory footprint and runtime in Figure 9 and Figure 8. For the
memory analysis, we compare our method with the dense object detector [13] and
measured the peak memory usage on ScanNetV2 validation set. As expected, our

Generative Sparse Detection Networks for 3D Single-shot Object Detection 13

53 93 134 174 215 255 296 337 377 418
of points in the original point cloud (k)

0.0

0.1

0.2

0.3

0.4

ru
m

ti
m

e
p

er
sc

en
e

(s
)

Runtime per input size

ours

votenet

6.9 15.0 23.2 31.4 39.5 47.7 55.8 64.0 72.1 80.3
point cloud floor area (m2)

0.0

0.1

0.2

0.3

0.4

ru
m

ti
m

e
p

er
sc

en
e

(s
)

Runtime per floor area

ours

votenet

Fig. 8: Runtime comparison on ScanNet v2 validation set: Qi et al. [24] samples
a constant number of points from a scene and their post-processing is inversely
proportional to the density, whereas our method scales linearly to the number of
points, and sublinearly to the floor area while being significantly faster.

ResNet18 ResNet34 ResNet50 ResNet101
Backbone Model

0

500

1000

1500

2000

2500

3000

Pe
ak

 m
eo

ry
 u

sa
ge

 (M
B

)

Peak GPU memory usage during evaluation
sparse (ours)
dense

53 93 134 174 215 255 296 337 377 418
of points in the original point cloud (k)

0

500

1000

1500

2000

2500
in

pu
t d

en
si

ty
 (i

np
ut

 #
 o

f p
oi

nt
s /

 v
ol

um
e) Input point cloud density

ours
votenet

Fig. 9: Left: Memory usage comparison on ScanNet dataset evaluation: Our
proposed sparse encoder and decoder maintains low memory usage compared
to the dense counterparts. Right: Point cloud density on ScanNet dataset. Our
model maintains constant input point cloud density compared to Qi et al. [24],
which samples constant number of points regardless of the size of the input.

proposed network maintains extremely low memory consumption regardless of
the depth of the network while that of the dense counterparts grows noticeably.

For runtime analysis, we compare the network feed forward and post-processing
time of our method with Qi et al. [24] in Figure 8. On average, our method
takes 0.12 seconds while Qi et al. [24] takes 0.45 seconds to process a scene of
ScanNetV2 validation set. Moreover, the runtime of our method grows linearly
to the number of points and sublinearly to the floor area of the point cloud, due
to the sparsity of our point representation. Note that Qi et al. [24] subsamples a
constant number of points from input point clouds regardless of the size of the
input point clouds. Thus, the point density of Qi et al. [24] changes significantly
as the point cloud gets larger. However, our method maintains the constant
density as shown in Figure 9, which allows our method to scale to extremely

14 J. Gwak et al.

Fig. 10: Detection on a Gibson environment scene Uvalda [34]: GSDN can process
a 17-room building with 1.4M points in a single fully-convolutional feed-forward.

large scenes as shown in Section 5.3. In sum, we achieve 3.78× speed up and
4.2% mAP@0.25 performance gain compared to Qi et al. [24] while maintaining
the same point density from small to large scenes.

5.3 Scalability and generalization of GSDN on extremely large
inputs

We qualitatively demonstrate the scalability and generalization ability of our
method on large scenes from the S3DIS dataset [1] and the Gibson environ-
ment [34]. First, we process the entire building 5 of S3DIS which consists of
78M points, 13984m3 volume, and 53 rooms. GSDN takes 20 seconds for a single
feed-forward of the entire scene including data pre-processing and post-processing.
The model uses 5G GPU memory to detect 573 instances of 3D objects, which
we visualized on Figure 2.

Similarly, we train our network on ScanNet dataset [5] which only contain
single-floor 3D scans. However, we tested the network on multi-story buildings.
On Figure 10, we visualize our detection results on the scene named Uvalda
from Gibson, which is a 3-story building with 173m2 floor area. Note that our
fully-convolutional network, which was only trained on single-story 3D scans,
generalizes to multi-story buildings without any ad-hoc pre-processing or post-
processing. GSDN takes 2.2 seconds to process the building from the raw point
cloud and takes up 1.8G GPU memory to detect 129 instances of 3D objects.

6 Conclusion

In this work, we present the Generative Sparse Detection Network (GSDN) for
single-shot fully-convolutional 3D object detection. GSDN maintains sparsity
throughout the network by generating object centers using the proposed generative
sparse tensor decoder. GSDN can efficiently process large-scale point clouds
without cropping the scene into smaller windows to take advantage of the full
receptive field. Thus, GSDN outperforms the previous state-of-the-art method by
4.2 mAP@0.25 while being 3.78× faster. In the follow-up work, we will examine
and adopt various image detection techniques to boost the accuracy of GSDN.

Generative Sparse Detection Networks for 3D Single-shot Object Detection 15

References

1. Armeni, I., Sener, O., Zamir, A.R., Jiang, H., Brilakis, I., Fischer, M., Savarese,
S.: 3d semantic parsing of large-scale indoor spaces. In: Proceedings of the IEEE
International Conference on Computer Vision and Pattern Recognition (2016)

2. Choy, C., Gwak, J., Savarese, S.: 4d spatio-temporal convnets: Minkowski convo-
lutional neural networks. In: Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition. pp. 3075–3084 (2019)

3. Choy, C., Park, J., Koltun, V.: Fully convolutional geometric features. In: ICCV
(2019)

4. Choy, C.B., Xu, D., Gwak, J., Chen, K., Savarese, S.: 3d-r2n2: A unified approach
for single and multi-view 3d object reconstruction. In: Proceedings of the European
Conference on Computer Vision (ECCV) (2016)

5. Dai, A., Chang, A.X., Savva, M., Halber, M., Funkhouser, T., Nießner, M.: Scannet:
Richly-annotated 3d reconstructions of indoor scenes. In: Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition. pp. 5828–5839 (2017)

6. Dai, A., Diller, C., Nießner, M.: Sg-nn: Sparse generative neural networks for
self-supervised scene completion of rgb-d scans. arXiv preprint arXiv:1912.00036
(2019)

7. Dai, A., Ritchie, D., Bokeloh, M., Reed, S., Sturm, J., Nießner, M.: Scancomplete:
Large-scale scene completion and semantic segmentation for 3d scans. In: Proc.
Computer Vision and Pattern Recognition (CVPR), IEEE (2018)

8. Graham, B., Engelcke, M., van der Maaten, L.: 3D semantic segmentation with
submanifold sparse convolutional networks. CVPR (2018)

9. Graham, B., van der Maaten, L.: Submanifold sparse convolutional networks. arXiv
preprint arXiv:1706.01307 (2017)

10. Han, S., Mao, H., Dally, W.J.: Deep compression: Compressing deep neural net-
works with pruning, trained quantization and huffman coding. arXiv preprint
arXiv:1510.00149 (2015)

11. He, K., Gkioxari, G., Dollár, P., Girshick, R.: Mask r-cnn. In: Proceedings of the
IEEE international conference on computer vision. pp. 2961–2969 (2017)

12. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition.
In: Proceedings of the IEEE conference on computer vision and pattern recognition.
pp. 770–778 (2016)

13. Hou, J., Dai, A., Nießner, M.: 3d-sis: 3d semantic instance segmentation of rgb-d
scans. In: Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition. pp. 4421–4430 (2019)

14. Lahoud, J., Ghanem, B., Pollefeys, M., Oswald, M.R.: 3d instance segmentation via
multi-task metric learning. In: Proceedings of the IEEE International Conference
on Computer Vision. pp. 9256–9266 (2019)

15. Li, B., Zhang, T., Xia, T.: Vehicle detection from 3d lidar using fully convolutional
network. arXiv preprint arXiv:1608.07916 (2016)

16. Lin, T.Y., Dollár, P., Girshick, R., He, K., Hariharan, B., Belongie, S.: Feature
pyramid networks for object detection. In: Proceedings of the IEEE conference on
computer vision and pattern recognition. pp. 2117–2125 (2017)

17. Liu, C., Furukawa, Y.: Masc: multi-scale affinity with sparse convolution for 3d
instance segmentation. arXiv preprint arXiv:1902.04478 (2019)

18. Liu, W., Anguelov, D., Erhan, D., Szegedy, C., Reed, S., Fu, C.Y., Berg, A.C.: Ssd:
Single shot multibox detector. In: European conference on computer vision. pp.
21–37. Springer (2016)

16 J. Gwak et al.

19. Maturana, D., Scherer, S.: VoxNet: A 3D Convolutional Neural Network for Real-
Time Object Recognition. In: IROS (2015)

20. Mescheder, L., Oechsle, M., Niemeyer, M., Nowozin, S., Geiger, A.: Occupancy
networks: Learning 3d reconstruction in function space. In: Proceedings IEEE Conf.
on Computer Vision and Pattern Recognition (CVPR) (2019)

21. Narang, S., Elsen, E., Diamos, G., Sengupta, S.: Exploring sparsity in recurrent
neural networks. arXiv preprint arXiv:1704.05119 (2017)

22. Parashar, A., Rhu, M., Mukkara, A., Puglielli, A., Venkatesan, R., Khailany, B.,
Emer, J., Keckler, S.W., Dally, W.J.: Scnn: An accelerator for compressed-sparse
convolutional neural networks. ACM SIGARCH Computer Architecture News 45(2),
27–40 (2017)

23. Park, J.J., Florence, P., Straub, J., Newcombe, R., Lovegrove, S.: Deepsdf: Learn-
ing continuous signed distance functions for shape representation. In: The IEEE
Conference on Computer Vision and Pattern Recognition (CVPR) (June 2019)

24. Qi, C.R., Litany, O., He, K., Guibas, L.J.: Deep hough voting for 3d object detection
in point clouds. In: Proceedings of the IEEE International Conference on Computer
Vision. pp. 9277–9286 (2019)

25. Qi, C.R., Liu, W., Wu, C., Su, H., Guibas, L.J.: Frustum pointnets for 3d object
detection from rgb-d data. In: Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition. pp. 918–927 (2018)

26. Redmon, J., Farhadi, A.: Yolo9000: better, faster, stronger. In: Proceedings of the
IEEE conference on computer vision and pattern recognition. pp. 7263–7271 (2017)

27. Ren, S., He, K., Girshick, R., Sun, J.: Faster r-cnn: Towards real-time object detec-
tion with region proposal networks. In: Advances in neural information processing
systems. pp. 91–99 (2015)

28. Song, S., Xiao, J.: Deep Sliding Shapes for amodal 3D object detection in RGB-D
images. In: CVPR (2016)

29. Tange, O., et al.: Gnu parallel-the command-line power tool. The USENIX Magazine
36(1), 42–47 (2011)

30. Tatarchenko, M., Dosovitskiy, A., Brox, T.: Octree generating networks: Effi-
cient convolutional architectures for high-resolution 3d outputs. In: IEEE Interna-
tional Conference on Computer Vision (ICCV) (2017), http://lmb.informatik.uni-
freiburg.de/Publications/2017/TDB17b

31. Tchapmi, L.P., Kosaraju, V., Rezatofighi, S.H., Reid, I., Savarese, S.: Topnet:
Structural point cloud decoder. In: The IEEE Conference on Computer Vision and
Pattern Recognition (CVPR) (2019)

32. Wang, D.Z., Posner, I.: Voting for voting in online point cloud object detection. In:
Robotics: Science and Systems. vol. 1, pp. 10–15607 (2015)

33. Wang, W., Yu, R., Huang, Q., Neumann, U.: Sgpn: Similarity group proposal
network for 3d point cloud instance segmentation. In: Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition. pp. 2569–2578 (2018)

34. Xia, F., R. Zamir, A., He, Z.Y., Sax, A., Malik, J., Savarese, S.: Gibson env: real-
world perception for embodied agents. In: Computer Vision and Pattern Recognition
(CVPR), 2018 IEEE Conference on. IEEE (2018)

35. Yang, B., Wang, J., Clark, R., Hu, Q., Wang, S., Markham, A., Trigoni, N.: Learning
object bounding boxes for 3d instance segmentation on point clouds. In: Advances
in Neural Information Processing Systems. pp. 6737–6746 (2019)

36. Yi, L., Zhao, W., Wang, H., Sung, M., Guibas, L.J.: Gspn: Generative shape
proposal network for 3d instance segmentation in point cloud. In: Proceedings of
the IEEE Conference on Computer Vision and Pattern Recognition. pp. 3947–3956
(2019)

Generative Sparse Detection Networks for 3D Single-shot Object Detection 17

37. Yuan, W., Khot, T., Held, D., Mertz, C., Hebert, M.: Pcn: Point completion network.
In: 3D Vision (3DV), 2018 International Conference on (2018)

38. Zhou, Y., Tuzel, O.: Voxelnet: End-to-end learning for point cloud based 3d object
detection. In: The IEEE Conference on Computer Vision and Pattern Recognition
(CVPR) (June 2018)

