
Grounded Situation Recognition 19

Supplementary Material for paper ID #1987

(Grounded Situation Recognition)

Here we provide a more detailed explanation of methods introduced in this
work and provide additional qualitative results demonstrating the e�cacy of our
proposed model. In Section A we discuss the details of Semantic Image Retrieval
as mentioned in Section 6. In Section B we provide the implementation details
of our baseline model (ISL) and proposed model (JSL). In Section C we discuss
the model changes we make to JSL in order to create the Conditional Situation
Localizer as discussed in Section 6. Finally, in Section E we provide qualitative
results comparing the localization of ISL and JSL as well as qualitative results
visualizing the situations generated for the top-5 verbs predicted by JSL.

A Semantic Image Retrieval

+ All kitchen scenes  
+ All contain hands and bowls 
- Semantics do not match

+ Hands centered in image 
- Semantics do not match 
- Scene location do not match

+ Mostly kitchen scenes  
- Most semantics do not match  

+ All kitchen scenes  
+ All semantics match  
+ Many perspectives match
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Query Image Retrieval 1 Retrieval 2 Retrieval 3 Retrieval 4 Retrieval 5

+ All mountain scenes  
- Semantics do not match

+ All contain centered 
groups of people  
- Scenes do not match 
- Semantics do not match

+ All mountain scenes  
+ Mostly groups of people 
- Semantics do not match

+ All mountains scenes  
+ All groups of people 
+ Semantics match 
+ Similar perspectives
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Query Image Retrieval 1 Retrieval 2 Retrieval 3 Retrieval 4 Retrieval 5

Fig. 10. Additional qualitative results for semantic image retrieval. For the
query figure of a baker kneading dough or multiple hikers walking, ResNet and Object
Detection based methods struggle to match the semantics of the image. Grounded
situation based retrieval leads to the correct semantics with matching viewpoints

In Fig. 6 and Fig. 10 we show qualitative examples of semantic image retrieval
implemented with nearest neighbor computations and a collection of di↵erent
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similarity functions. In particular, we divide our validation set into a query set
(1008 images, 2 images per verb) and search set (24192 images, 48 images per
verb). For each of the images in our query set, we compute the similarity of
the query image with all images in search set and save the top-5 most similar
images to the query. We now describe how we compute image similarity using
ResNet-50 features, bag-of-words object detections, situation predictions, and
grounded situation predictions.

A.1 ResNet-50

We compute a featurization of each image using a ResNet-50 model pretrained
on the ImageNet dataset. Similarity between images is then computed as the
negative of the L2 distance between these featurizations (so that images with
nearer featurizations are more similar).

A.2 Object Detections

For each image I we compute object detections using the modified RetinaNet
described in Section 4. We find these detections by computing the maximum
likelihood category for each box. If the logits corresponding to probability of the
maximum category is greater than -1 we consider it a valid detection. To prevent
multiple detections of the same object we use NMS to remove any overlapping
boxes of the same object category. We save the predicted class labels {cI1, ..., cINI

}
and bounding-boxes {bI1, ..., bINI

}. Similarity between two images I, J is then
computed as

ObjSim(I, J) =
1

N

NX

i=1

max{1[cIi=cJj ]
· (1 + IoU(bIi , b

J
j )) | 1  j  M} (1)

so that ObjSim(I, J) will be maximal when the objects detected in I have the
same classes and bounding-boxes as those in J .

A.3 Situation Recognition

For each image I in our validation set, we compute vI1 , ..., v
I
5 the top-5 predicted

activities (verbs) associated with I. For each of these verbs v
I
i , we additionally

predict the entities associated with the roles of that verb, eIi,1, ..., e
I
i,N

vI
i

. We then

compute the situation similarity between two images I, J as

SitSim(I, J) = max{
1[vI

i =vJ
j ]

i · j ·Nv

N
vI
iX

k=1

1[eIi,k=eJj,k]
| 1  i, j  5}. (2)

Notice that SitSim(I, J) is only non-zero if there is at least one verb shared in
the top-5 verb predictions of I and J . Moreover, the similarity will be at its
maximum value of 1 if any only if both I and J have the same top-1 verb and,
for that verb, all predicted entities (conditioned on that top-1 verb) for both
images are the same.
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A.4 Grounded Situation Recognition

As above, we have, for an image I top-5 verb predictions v
I
1 , ..., v

I
5 and entity

predictions {eIi,ki
| 1  i  5, 1  ki  NvI

i
}. For grounded situation predic-

tions we also have, for each entity e
I
i,k a bounding-box prediction b

I
i,k. We then

compute similarity between two images I, J as

GrSitSim(I, J)

= max{
1[vI

i =vJ
j ]

i · j ·Nv

N
vI
iX

k=1

1[eIi,k=eJj,k]
· (1 + IoU(bIi,k, b

J
j,k)) | 1  i, j  5}. (3)

Notice that GrSitSim is nearly identical to SitSim except that GrSitSim will be
larger when predicted entities have similar bounding boxes, as measured by their
intersection over union.

B Implementation Details

B.1 RNN

Architecture We use a ResNet-50 backbone pretrained on ImageNet. The
embedding size for nouns is 512 and the embedding size for verbs is 256. We use
a single layer LSTM as the the RNN with a hidden size of 1024 and an input
size of 2816 (2048 image features, 512-dimensional embedding of the previous
noun, 256-dimensional embedding of the verb). The LSTM is initialized with
orthogonal weights. The 512-dimensional noun vector is initialized with zeros
for the first noun prediction. The LSTM predicts a sequence length of 6 as this
is the maximum length frame. Frames with less than this length are padded
to length 6. The ground truth verb embedding is used as input to the LSTM
for all of training, as incorrect verb predictions are always marked as having
incorrect noun predictions, so there is no benefit to training with incorrect verb
predictions.

Training We train the RNN using the Adam Optimizer [27] with � = (0.9, 0.999).
The initial learning rate is set to 1e-4 which is decreased by a factor of 10 at
epoch 12 and 24. Additionally, we begin training by freezing the ResNet weights
and only begin to propagate the gradients through ResNet at epoch 14. We
train with a batch size of 32 for 100 epochs, which takes 40 hours on one 12GB
TITAN V GPU and use the weights from the best performing epoch.

B.2 Object Detector

Architecture The majority of this architecture is unchanged from the origi-
nal RetinaNet architecture. We ResNet-50 backbone pretrained on ImageNet.
The majority of the di↵erences from the original RetinaNet take place in the
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adjustments to the network which allow for detection of 10,000 categories. As
mentioned in in Section 4, we adjust the network by predicting the likelihood
that each anchor box contains an object, rather than predicting a distribution
over all object categories for each anchor box. We then perform NMS to remove
low scoring boxes which have a high overlap with other boxes. We take the top
100 boxes most likely to contain an object and obtain the features corresponding
to these boxes in the final spatial layer of ResNet using RoI align. We then lin-
early transform the feature vectors into a vector the size of the noun vocabulary
to obtain a predicted distribution. For training, if these boxes overlap with a
ground truth annotation with an IoU of at least 0.5, they are labeled will all the
categories attributed to the ground truth box. A ground truth box may have
multiple categories as there are multiple annotators. If it does not overlap with
any ground truth box it is not labeled with any category. If it overlaps with
multiple ground truth boxes, we duplicate the predicted box and each one is
considered to overlap with one ground truth box. We then use binary cross en-
tropy on these labels and the predicted distribution. When combining the RNN
output and RetinaNet outputs, a box is assigned to a noun category if it has the
highest predicted value for that noun category out of all 100 boxes. If none of the
boxes reach a certain threshold for that noun category, then the noun is label as
ungrounded in the image. We tune this threshold to be -4 for our model, so if
none of the logits are above this value for the desired category, it is ungrounded.

Training We train with a batch size of 64 using the Adam Optimizer [27] with
� = (0.9, 0.999). We use a learning rate of 1e-4 for all of training. We train until
convergence and then use the weights from the epoch (26) which achieved the
highest accuracy on the dev set. We train the network for ⇠72 hours on eight
12GB TITAN V GPUs. Despite the modifications we made to the RetinaNet
model, training is still relatively slow as we must still perform 100 classifications
for every image.

B.3 JSL

Architecture As with the RNN, we use a single layer LSTM with hidden size
1024, noun embeddings of size 512 and verb embeddings of size 256. We initialize
the ResNet-50 backbone with imagenet weights and initialize the LSTM with
orthogonal weights. Additionally we pad shorter frames to be of length 6 and
label all of the pad symbols to be ungrounded. Like the RNN model, we always
use the embedding of the ground truth verb during training, as the nouns are
always considered incorrect if the verb prediction is incorrect so there is no
benefit to training with the incorrect verb prediction. Additionally, for the first
5 epochs of training, we use the ground truth bounding boxes when obtaining
the local features for noun classification and we use the previous ground truth
noun when embedding the previous noun for the LSTM. When combining the
output of the LSTM with the features from the FPN before the classification
and regression branches (see Figure 5) we concatenate the FPN features with a



Grounded Situation Recognition 23

linear projection of size 256 of the hidden state of the LSTM. Additionally we
concatenate an element wise product of these two vectors, resulting in a final
input vector with a channel dimension of 768.

Training We train with a batch size of 64 using the Adam Optimizer [27] with
� = (0.9, 0.999). We use an initial learning rate of 6e-4 which we decrease by
a factor of 10 at epochs 10 and 20. Like with the RNN, we begin by freezing
the ResNet weights and only begin to propagate the weights to the ResNet
backbone at epoch 12. We train until convergence and use the weights which
have the highest performance on the validation set (epoch 27). Training takes
⇠20 hours on four 24GB TITAN RTX GPUs.

Verb Prediction Network As mentioned in Section 4, we find using a separate
network to predict the verb increases the accuracy of verb prediction, while
keeping the total number of parameters equal to that of the independent model.
To train the verb classifier, we use a ResNet backbone with a linear layer on top
of the final feature vector of size 2048, just after the final average pooling. We use
the Adam Optimizer with an initial learning rate of 1e-4 which we decrease by a
factor of 10 at epoch 18. We train just the final linear layer for the first 5 epochs,
then just the linear layer and final block for the next 5 epochs. We continue this
pattern, unfreezing one additional ResNet block every 5 epochs until epoch 15.
We never propagate through the first block as we find this decreases the overall
accuracy, likely due to overfitting. We use standard cross entropy loss and a
batch size of 256. Training takes ⇠1 hour on eight 12GB TITAN V GPUs.

C Conditional Situation Recognition
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Fig. 11. Model schematics for the CSL model. Di↵erences between JSL and CSL are
highlighted in yellow.
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The Conditional Situation Localizer (CSL) is a modification of JSL which
conditions its output on a specific bounding-box, as illustrated by Figure 7. The
network architecture of CSL is illustrated by Figure 11, with di↵erences from JSL
highlighted in yellow. Rather than predicting the verb via a separate network,
the verb prediction is done from the local features inside the bounding-box. As
in JSL, these local features are obtained by performing RoI Align on the last
spatial features of ResNet. Then the verb prediction and these local features are
used to predict the role that the object within the box plays with respect to the
verb. For example in Figure 7A1, the local features surrounding the query were
first used to predict the action as ‘Calling’ and then this verb prediction and
those local features where used to predict that the object in the bounding-box
fills the second role for this verb, which corresponds to ‘Tool’ in this case.

CSL then works exactly as JSL except the input bounding-box is used for
the predicted role. So if the model predicts that the bounding-box corresponds
to the second role for the predicted verb, then on the second pass of the LSTM,
the bounding-box prediction made by the classification and regression branches
are overwritten by the position of the input bounding-box. This is demonstrated
by the “check role” portion of Figure 11. At each pass, the network checks if
the current iteration is equal to the role predicted by the input bounding-box.
If it is, then that bounding-box is used, otherwise the predicted bounding-box
is used.

D Language Only Baselines

D.1 Language Baseline

We conduct several experiments to examine if language-only baseline models are
able to exploit some inherent bias in grounded situation recognition to solve the
task. Mallya et al. [36] test for bias in the imSitu dataset (which SWiG builds
upon) by running their model without access to image pixels. They obtain a
value accuracy of 52.12 under the ground truth verb setting, substantially lower
than 70.48 for models with access to pixels.

We have similar results with JSL: a value score of 53.44 when run with-
out access to pixels compared to 73.53 otherwise. Additionally, when the most
common answer per role is predicted this yields a value of 53.67. Predicting
the most common answer per role and average of all locations per role yields
a grounded value of 16.25. Predicting the most common answer per role and
that they are ungrounded yields a grounded value of 22.44. Both of these value
are slightly below the grounded value score of 28.38 for JSL without pixels and
well below the grounded value score of 57.50 for JSL with pixels. This di↵erence
reveals that the task cannot be solved merely by exploiting biases in the dataset.

D.2 Object Baseline

The models may additionally be solving the task by exploiting the bias of simply
identifying what objects are in the image without needing to understand their
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role or interactions. The ideal study to test if models are relying on this bias
would be to predict the situations given ground truth bounding boxes of all ob-
jects in the image for all SWiG categories, however this is prohibitively expensive
to collect, so we consider several evocative variants. For all our experiments, we
input object categories and detections of the form [x1, y1, x2, y2] into an LSTM
and use the final hidden state to predict the verb. We run this experiment using
(1) ground truth SWiG boxes (in a random order to prevent the model from
taking advantage of the role order), (2) detections from the ISL object detector,
and (3) detections from RetinaNet pretrained on COCO. We get the below verb
accuracy scores:

(1) SWiG ground truth: 63.94
(2) SWiG object detector: 13.22
(3) COCO object detector: 7.34

Not surprisingly, (1) has a very high accuracy as all objects involve the verb
and the number of objects is fixed for a verb. This is likely a large over-estimation
of our ideal experiment. However, (2) and (3) are well below JSL’s verb accuracy
of 39.60. While these are perhaps an underestimation of the ideal input due to
detection errors, they indicate that situation prediction is di�cult given only the
label and location of objects.

E Qualitative

We present additional qualitative results further demonstrating the e�cacy of
JSL. Figure 12 shows a comparison between groundings generated by JSL and
ISL for the same image. We illustrate these di↵erences on a sample of images
where both ISL and JSL are able to classify the nouns correctly, but ISL fails
to correctly locate the entities in the frame. Here we show two common rea-
sons that ISL fails to locate the correct object. The first 2 rows of Figure 12
demonstrate the case where there are multiple people in the scene and ISL is
unable to pick the correct one for a given role. Because ISL cannot condition its
detection on situation, it is often unable to select the correct object when there
are multiple objects of the same category present in an image. The bottom 2
rows of Figure 12 show cases where ISL correctly locates the object, but fails
to create an accurate bounding box around that object. This demonstrates a
potential advantage of JSL as predicting the objects in sequence may allow for
more accurate localization.

Additionally, Figure 13 shows the generated situations for di↵erent verbs
given the same image. For each image we obtain the top 5 most probable verbs
and then generate the grounded situations for each of these verbs. The top two
rows of Figure 13 are examples where the top verb guess is correct. The first row
demonstrates the model’s ability to describe the scene in terms of the interaction
between two participants as well as what actions they are doing together. In this
case, it is clear that both girls are studying, but one is explaining something to
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the other. Looking at multiple possible verbs captures these complexities. The
following two rows are examples where the correct verb is in the top 5 and the
bottom two rows show examples where the correct verb is not in the top 5.
This tends to happen when the action is very unusual or occurring in a strange
context, such as purposefully spilling a cup of water on a keyboard.
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Fig. 12. For all images, the detections generated by JSL are shown first followed by
the detections generated by ISL. Incorrect detections are shown with dotted lines and
boxes are colored to correspond with roles.
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Fig. 13. Top-5 predictions for a sample of images in the SWiG dev set. The ground
truth verb is indicated on the left of each row.
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