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Abstract. Automatically generating sentences to describe events and
temporally localizing sentences in a video are two important tasks that
bridge language and videos. Recent techniques leverage the multimodal
nature of videos by using off-the-shelf features to represent videos, but
interactions between modalities are rarely explored. Inspired by the fact
that there exist cross-modal interactions in the human brain, we propose
a novel method for learning pairwise modality interactions in order to
better exploit complementary information for each pair of modalities in
videos and thus improve performances on both tasks. We model modality
interaction in both the sequence and channel levels in a pairwise fashion,
and the pairwise interaction also provides some explainability for the pre-
dictions of target tasks. We demonstrate the effectiveness of our method
and validate specific design choices through extensive ablation studies.
Our method turns out to achieve state-of-the-art performances on four
standard benchmark datasets: MSVD and MSR-VTT (event captioning
task), and Charades-STA and ActivityNet Captions (temporal sentence
localization task).

Keywords: Temporal Sentence Localization · Event Captioning in Videos
· Modality Interaction

1 Introduction

Neuroscience researches [5,3,15] have discovered that the early sensory process-
ing chains in the human brain are not unimodal, information processing in one
modality (e.g., auditory) can affect another (e.g., visual), and there is a sys-
tem in the brain for modulating cross-modal interactions. However, modality
interactions are largely overlooked in the research of high-level video under-
standing tasks, such as event captioning [71,57,58] and temporal sentence lo-
calization [17,34,8]. Both tasks involve natural language descriptions and are

? Part of the work is done when the author was an intern at Tencent AI Lab.
?? Corresponding author.



2 S. Chen et al.

substantially more challenging than recognition tasks. Thus, it is crucial to uti-
lize information from each of the available modalities and capture inter-modality
complementary information to better tackle these tasks.

Recent event captioning methods [37,47,60,9,26] mostly adopt an encoder-
decoder structure, where the encoder aggregates video features and the decoder
(usually LSTM [24] or GRU [13]) generates sentences based on the aggregation
results. The video features stem mainly from the visual appearance modality,
which are usually extracted with off-the-shelf CNNs (Convolutional Neural Net-
works) [50,21,51,46] that are pre-trained to recognize objects and can output
high-level visual representations for still images. Using features from the vi-
sual modality solely can generally work well on video event captioning. Recent
works [73,37,9,44,11,43,41] suggest that further improvements can be obtained
by additionally leveraging motion and audio representations. However, the lim-
itation of these works is that the features from multiple modalities are simply
concatenated without considering their relative importances or the high-level
interactions among them, so the great potential of multiple modalities has not
been fully explored. There exist a few works [28,25,76,69] that learn to assign
importance weights to individual modalities via cross-modal attention in the
encoder, but modality interactions are still not explicitly handled. Temporal
sentence localization in videos is a relatively new problem [17]. Although var-
ious approaches [49,74,10] have been proposed and significant progresses have
been made, this problem has not been discussed in a multimodal setting. Most
recently, Rahman et al. [41] emphasized the importance of jointly considering
video and audio to tackle dense event captioning, in which sentence localization
is a subtask. Apart from the visual, motion, and audio modalities, utilizing se-
mantic attributes is gaining popularity in recent methods [1,36,10,64] for both
event captioning and sentence localization.

In order to better exploit multimodal features for understanding video con-
tents, we propose a novel and generic method for modeling modality interactions
that can be leveraged to effectively improve performances on both the sentence
localization and event captioning tasks. Our proposed Pairwise Modality Inter-
action (PMI) explicitly models sequence-level interactions between each pair of
feature sequences by using a channel-gated bilinear model, and the outputs of
each interacting pair are fused with importance weights. Such a modeling pro-
vides some explainability for the predictions.

Our main contributions are as follows:

– We propose a novel multimodal interaction method that uses a Channel-
Gated Modality Interaction model to compute pairwise modality interactions
(PMI), which better exploits intra- and inter-modality information in videos.
Utilizing PMI achieves significant improvements on both the video event
captioning and temporal sentence localization tasks.

– Based on modality interaction within video and text, we further propose a
novel sentence localization method that builds video-text local interaction
for better predicting the position-wise video-text relevance. To the best of
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our knowledge, this is also the first work that addresses sentence localization
in a multimodal setting.

– Extensive experiments on the MSVD, MSR-VTT, ActivityNet Captions,
and Charades-STA datasets verify the superiority of our method compared
against state-of-the-art methods on both tasks.

2 Related Works

Temporal Sentence Localization Gao et al. [17] proposed the temporal sen-
tence localization task recently, and it has attracted growing interests from both
the computer vision and natural language processing communities. Approaches
for this task can be roughly divided into two groups, i.e., proposal-based methods
and proposal-free methods. TALL [17] uses a multimodal processing module to
fuse visual and textual features for sliding window proposals, and then predicts
a ranking score and temporal boundaries for each proposal. NSGV [8] performs
interaction between sequentially encoded sentence and video via an LSTM, and
then predicts K proposals at each time step. Proposal-free methods usually
regress the temporal boundaries. As the most representative one, ABLR [74]
iteratively applies co-attention between visual and textual features to encourage
interactions, and finally uses the interacted features to predict temporal bound-
aries.

Event Captioning The S2VT [57] method is the first attempt at solv-
ing video captioning using an encoder-decoder network, in which two layers
of LSTMs [24] first encode the CNN-extracted video features and then pre-
dict a sentence word-by-word. Later works are mostly based on the encoder-
decoder structure, and improvements are made for either the encoder or de-
coder. Yao et al. [71] applied temporal attention to the video features, which
enables the encoder to assign an importance weight to each video feature dur-
ing decoding, and this method is also widely adopted by the following works.
Some works [37,4,12,78,61] tried to improve the encoder by considering the tem-
poral structures inside videos. Another group of works [70,33,9] are focused on
exploiting spatial information in video frames by applying a dynamic attention
mechanism to aggregate frame features spatially. Utilizing multimodal (appear-
ance, motion, and audio) features is also common in recent works, but only a
few works [25,76,69,36] tried to handle the relative importances among differ-
ent modalities using cross-modal attention. Most recently, some works [1,75,36]
have proven that incorporating object/semantic attributes into video captioning
is effective. As for the decoder, LSTM has been commonly used as the decoder
for video captioning, and some recent attempts have also been made to using
non-recurrent decoders such as CNN [7] or the Transformer [77] structure.

Modality Interaction There are some works trying to use self-attention
to model modality interaction. Self-attention has been proven effective on both
vision [65] and language [55] tasks. Its effectiveness in sequence modeling can
be attributed to that it computes a response at one position by attending to
all positions in a sequence, which better captures long-range dependencies. Au-
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toInt [48] concatenates features from different modalities and then feeds them to
a multi-head self-attention module for capturing interactions. For the referred
image segmentation task, Ye et al. [72] introduced CMSA (Cross-Modal Self-
Attention), which operates on the concatenation of visual features, word embed-
dings, and spatial coordinates to model long-range dependencies between words
and spatial regions. DFAF [18] is a visual question answering (VQA) method,
which applies self-attention for regional feature sequences and word embedding
sequences to model inter-modality interactions, and also models intra-modality
interactions for each sequence. We note that modality interaction is common in
VQA methods, but they usually pool the multimodal feature sequences into a
single vector using bilinear or multi-linear pooling [16,30,31,35]. And VQA meth-
ods are more focused on the interaction between visual and textual modalities,
so they do not fully exploit the modality interactions within videos.

Compared to these existing methods, our proposed Pairwise Modality Inter-
action (PMI) has two distinctive features: (1) modality interactions are captured
in a pairwise fashion, and information flow between each pair of modalities in
videos is explicitly considered in both the sequence level and channel level; (2)
the interaction does not pool the feature sequences (i.e., temporal dimension is
preserved), and the interaction results are fused by their importance weights to
provide some explainability.

3 Proposed Approach

3.1 Overview

We first give an overview of our approach. As shown in Fig. 1, multimodal
features are first extracted from a given video and then fed to a video modality
interaction module, where a Channel-Gated Modality Interaction is performed
for all pairs of modalities to exploit intra- and inter-modality information. The
interaction results are tiled into a high-dimensional tensor and we then use a
simple fully-connected network to efficiently compute the importance weights to
transform this tensor into a feature sequence. This process to model pairwise
modality interaction is abbreviated as PMI.

For sentence localization, the text features are also processed with modality
interaction to exploit its intra-modality information. Then video and textual fea-
tures are locally interacted in order to capture the complex association between
these two modalities at each temporal location. Finally, a light-weight convolu-
tional network is applied as the localization head to process the feature sequence
and output the video-text relevance score and boundary prediction.

For video captioning, since the focus of this paper is to fully exploit multi-
modal information, we do not adopt a sophisticated decoder architecture and
only use a two-layer LSTM with temporal attention on top of the video modal-
ity interaction. However, due to the superiority of PMI, state-of-the-art per-
formances are still achieved. Note that video modality interaction can be used
in either a sentence localization model or an event captioning model, but the
models are trained separately.
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Fig. 1. The framework of our approach. The multimodal features from a video are pro-
cessed with Channel-Gated Modality Interaction (see Fig. 2) for each pair of modalities,
and a weighted modality-wise fusion is then executed to obtain an aggregated video fea-
ture(Blue box). Note that this feature can also be used for video captioning,
but the two tasks are not jointly trained. For temporal sentence localization,
the word embedding features also interact with themselves to exploit intra-sentence
information, resulting in a textual feature. The video and textual features then inter-
act locally at each temporal position (Green box), and the resulting feature is fed to
a light-weight convolutional network with layer-wise norm regularization to produce
predictions (Orange box). Each colored circle represents a feature vector.

3.2 Video Modality Interaction

Given an input video V = {fi}Fi=1, where fi is the i-th frame, multimodal
features can be extracted using off-the-shelf deep neural networks. In this pa-
per, three apparent modalities in videos are adopted, which are visual modality,
motion modality, and audio modality. Given features from these modalities, a
sequence of features can be learned to represent the latent semantic modality3.
The corresponding feature sequences from the above modalities are denoted by
Xv = {xv

n}Nn=1, Xm = {xm
n }Nn=1, Xa = {xa

n}Nn=1, and X l = {xl
n}Nn=1, respec-

tively. The dimensionalities of the feature vectors in each modality are denoted
as dv, dm, da, and dl, respectively.

We propose to explicitly model modality interaction between a pair of feature
sequences, denoted by Xp and Xq, where p ∈ {a,m, v, l} and q ∈ {a,m, v, l}.
Note that p and q can be the same modality, and in that case, the interaction

3 For fair comparison, we do not include this modality when comparing with state-
of-the-art methods, but will demonstrate some qualitative results with the latent
semantic modality. The corresponding learning method is placed in the Supplemen-
tary Material.
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Fig. 2. Overview of Channel-Gated Modality Interaction. The Channel-Level Inter-
action results are used as a gating variable to modulate Sequence-Level Interaction
results. Details are illustrated below in Eqs (1)-(6).

exploits intra-modality information. As shown in Fig. 2, the interaction can be
formulated as

INT(Xp,Xq) = FFN
(
BA(Xp,Xq)� CG(Xp,Xq)⊕Xp

)
, (1)

where BA(·) is the bilinear attention model that performs sequence-level modal-
ity interaction, CG(·) is a channel gating mechanism based on the channel-level
interaction and is used to modulate the sequence-level interaction output, a
residual connection is introduced with ⊕Xp, and FFN(·) is a position-wise feed-
forward network that projects its input into a lower dimension4.

Sequence-Level Interaction We use a low-rank bilinear model to consider
the interaction between each pair of elements in feature sequences Xp and Xq:

Apq
ij = pT

(
ρ(Xp

i U
p)� ρ(Xq

jU
q)
)
, Apq

ij = Softmaxj(A
pq
ij ), (2)

where Xp
i is the i-th element of Xp, Xq

j is the j-th element of Xq, and Up ∈
Rdp×d and U q ∈ Rdq×d are low-rank projection matrices (d < min(dp, dq)). �
denotes element-wise multiplication (Hadamard product), and ρ denotes ReLU
non-linearity. p ∈ Rd projects the element interaction into a scalar, so that
Apq ∈ RN×N can be normalized into a bilinear attention map by applying
column-wise softmax. Then the output of the bilinear model is

BA(Xp,Xq) = Apq(XqW q). (3)

In the matrix multiplication of Apq and XqW q, a relative position embed-
ding [42] is injected to make the sequence-level interaction to be position-aware.

Channel-Level Interaction In order to modulate the sequence-level in-
teraction result, we devise a gate function based on fine-grained channel-level
interaction. We first obtain a channel representation of Xp and Xp as

X
p

= Meann(XpV p), X
q

= Meann(XqV q), (4)

4 Details about this FFN can be found in the Supplementary Material.
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where Mean(·) is sequence-wise mean-pooling, and V p,V q are used to project
Xp and Xp to lower dimension for efficient processing. Similarly, we also com-
pute a channel-to-channel attention map

Spq
ij = fchn

(
X

p

i ,X
q

j

)
, Spq

ij = Softmaxi(S
pq
ij ), (5)

where fchn(·) is a function for computing channel-level interaction. Since each
element in X

p
and X

q
is a scalar, we simply use fchn(a, b) = −(a − b)2. Then

the output of the gate function is

CG(Xp,Xq) = σ
(
FFN(XpSpq)

)
, (6)

where σ is the Sigmoid function, so the output has values in [0, 1].
Modality-Wise Fusion. Given M modalities, there will be M2 pairs of

interacting modalities, and they are tiled as a high-dimensional tensor XMI ∈
RN×M2×d. The information in XMI needs to be further aggregated before feed-
ing it to target tasks. Simple concatenation or pooling can achieve this purpose.
Here, we consider the importance of each interacting result by using a position-
wise fully-connected layer to predict importance weights:

en = XMI
n W a

n + ban, αn = Softmaxm(en),

X̂n =
∑M2

m=1
αnmX

MI
nm .

(7)

Finally, the fusion result X̂ ∈ RN×d is the modality-interacted representation of
a video.

3.3 Sentence Localization

The sentence is represented as a sequence of word-embedding vectors Y =
{wl}Ll=1, which is also processed with the CGMI to exploit its intra-modality

information, yielding a textual feature Ŷ . For sentence localization, it is crucial
to capture the complex association between the video and textual modalities at
each temporal location, and then predict each location’s relevance to the sen-
tence.

Video-Text Local Interaction Based on the above intuition, we propose

Video-Text Local Interaction. For each temporal location t ∈ [1, N ] of X̂, a local

window X̃ = {X̂n}t+w
n=t−w is extracted to interact with the textual feature Ŷ .

As shown in Fig. 1, the local video-to-text interaction is modeled as

Zxy
t = BA(Mean(X̃), Ŷ ), Ẑxy

t = MM(Zxy
t ,Mean(X̃)). (8)

Here instead of gating, we use a more efficient multimodal processing unit
MM(a, b) = W T [a||b||a � b||a ⊕ b] to encourage further interaction of both

modalities. Likewise, text-to-video interaction Ẑyx
t is computed given X̃ and

Mean(Ŷ ), and then fused with the video-to-text interaction result

Zt = Ẑxy
t ⊕ Ẑ

yx
t . (9)
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Localization Head We apply a light-weight convolutional network upon
the video-text interacted sequence Z to produce predictions. Each layer can be
formulated as

Ck = Conv(Ck−1||Mean(Ŷ )), (10)

where k = 1, ..,K, and C0 = Z. We apply Instance Normalization [54] and
LeakyReLU [66] activation to each layer’s output. Since we are computing the
video-text relevance in a layer-wise fashion, we impose an `2 norm regularization
on each layer’s output to obtain a more robust feature

Lossnorm =

N∑
n=1

(||Ck
n||2 − βk)2, (11)

where || · || is the `2 norm of a vector. The K-th layer output CK has 1 output
channel, which is normalized using Softmax, representing the Video-Text Rele-
vance r ∈ [0, 1]N . Then a fully connected layer with two output units is applied
to r to produce a boundary prediction b ∈ R2. The loss for the predictions is

Losspred = Huber(b− b̂)− λr
∑

n r̂n log(rn)∑
n r̂n

, (12)

where b̂ is the ground-truth temporal boundary, Huber(·) is the Huber loss
function, and r̂n = 1 if n is in the ground-truth temporal region, otherwise
r̂n = 0. The overall loss is

Lossloc = Losspred + λnLossnorm, (13)

where λn, λr are constant weights used to balance the loss terms.

3.4 Event Captioning

After the video modality interaction result is obtained, we use a standard bi-
directional LSTM for encoding and a two-layer LSTM network with temporal
attention [71] to generate sentences as in previous works [59,9,69]. The sentence
generation is done in a word-by-word fashion. At every time step, a set of tempo-
ral attention weights is computed based on the LSTM hidden states and video
features, which is then used to weighted-sum the video features into a single
vector. This dynamic feature vector is fed to the LSTM with the previously gen-
erated word to predict the next word5. We would like to emphasize again that
video modality interaction can be used as a basic video feature encoding tech-
nique for either sentence localization or event captioning, but we do not perform
multi-task training for these two.

5 Due to the space limit and that caption decoder is not the focus of this work, we
omit formal descriptions here. We also move some experiments and analysis below
to the Supplementary Material.
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4 Experiments

In this section, we provide experimental analysis of our model design and present
comparisons with the state-of-the-art methods on both temporal sentence local-
ization and video captioning.

4.1 Experimental Settings

MSVD Dataset [6]. MSVD is a well-known video captioning dataset with 1,970
videos. The average length is 9.6 seconds, and each video has around 40 sentence
annotations on average. We adopt the same common dataset split as in prior
works [71,69,4]. Thus, we have 1, 200 / 100 / 670 videos for training, validation,
and testing, respectively.

MSR-VTT Dataset [68]. MSR-VTT is a large-scale video captioning dataset
with 10, 000 videos. The standard split [68] for this dataset was provided. Hence,
we use 6, 513 / 497 / 2, 990 videos for training, validation, and testing, respec-
tively, in our experiments. In this dataset, each video is associated with 20 sen-
tence annotations and is of lenght 14.9 seconds on average.

ActivityNet Captions Dataset [32](ANet-Cap). ANet-Cap is built on the
ActivityNet dataset [22] with 19, 994 untrimmed videos (153 seconds on average).
The standard split is 10, 009 / 4, 917 / 5, 068 videos for training, validation, and
testing, respectively. There are 3.74 temporally localized sentences per video on
average. Since the testing set is not publicly available, we evaluate our method
on the validation set as previous works [62,67].

Charades-STA Dataset [17]. Charades-STA is built on 6, 672 videos from
the Charades [45] dataset. The average duration of the videos is 29.8 seconds.
There are 16, 128 temporally localized sentence annotations, which give 2.42 sen-
tences per video. The training and testing sets contain 12, 408 and 3, 720 anno-
tations, respectively.

We evaluate the captioning performance of our method on MSVD and MSR-
VTT with commonly used metrics, i.e., BLEU [38], METEOR [14], and CIDEr [56].
ANet-Cap and Charades-STA are used to evaluate sentence localization perfor-
mance. We adopt the same evaluation metric used by previous works [17], which
computes “Recall@1,IoU=m” (denoted by r(m, si)), meaning the percentage of
the top-1 results having IoU larger than m with the annotated segment of a
sentence si. The overall performance on a dataset of N sentences is the average
score of all the sentences 1

N

∑N
i=1 r(m, si).

Implementation Details. The sentences in all datasets are converted to
lowercase and then tokenized. For the captioning task, randomly-initialized word
embedding vectors of dimension 512 are used, which are then jointly fine-tuned
with the model. For the sentence localization task, we employ the GloVe [40] word
embedding as previous works. We use Inception-ResNet v2 [50] and C3D [52] to
extract visual and motion features. For the audio features, we employ the MFCC
(Mel-Frequency Cepstral Coefficients) on the captioning task and SoundNet [2]
on the sentence localization task. We temporally subsample the feature sequences
to length 32 for event captioning, and 128 for sentence localization. The bilinear
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Table 1. Performance comparison of video modality interaction strategies on MSVD.

# Method B@4 M C
0 Concat w/o Interact (Baseline) 45.28 31.60 62.57
1 Concat + Interact 46.24 32.03 66.10
2 Pairwise Interact + Concat Fusion 47.86 33.73 75.30
3 Pairwise Interact + Sum Fusion 51.37 34.01 78.42
4 Pairwise Interact + Weighted Fusion (ours) 54.68 36.40 95.17
5 Intra-modality Interactions only 49.92 34.76 88.46
6 Inter-modality Interactions only 47.30 32.72 70.20
7 (Intra+Inter)-modality (ours) 54.68 36.40 95.17

Table 2. Performances (%) of different localizer settings on the Charades-STA dataset.

# PMI VTLI `2-Norm IoU=0.3 IoU=0.5 IoU=0.7
0 7 7 7 51.46 35.34 15.81
1 3 7 7 53.22 37.05 17.36
2 3 3 7 54.37 38.42 18.63
3 3 3 3 55.48 39.73 19.27

attention adopts 8 attention heads, and the loss weights λr and λn are set to 5
and 0.001, respectively. In all of our experiments, the batch size is set to 32 and
the Adam optimizer with learning rate 0.0001 is used to train our model.

4.2 Ablation Studies

Firstly, we perform extensive experiments to validate the design choices in our
approach. We study the effect of different modality interaction strategies on the
MSVD dataset, and the effects of sentence localizer components on the Charades-
STA dataset. All experiments use Inception-ResNet v2 and C3D features.

On the MSVD dataset, we design 8 different variants and their performances
are summarized in Table 1. In variant 0, which is a baseline, multimodal features
are concatenated and directly fed to the caption decoder. Variant 1 treats the
concatenated features as one modality and performs intra-modality interaction.
In variants 2-4, PMI is performed and different fusion strategies are adopted. In
variants 5-7, we study the ablation of intra- and inter-modality interactions.

Why pairwise? We perform modality interaction in a pairwise fashion in our
model, and this is the main distinctive difference from existing methods [48,72],
which employ feature concatenation. As shown in Table 1, while concatenating
all modalities into one and performing intra-modality interaction can gain perfor-
mance improvements over the baseline (#1 vs. #0), concatenating after pairwise
interaction has a more significant advantage (#2 vs. #1). We also compare the
effects of different aggregation strategies after pairwise interaction (#2-4), and
weighted fusion (in PMI) yields the best result with a clear margin, which also
indicates that the interactions between different modality pairs produce unique
information of different importances.

Effect of inter-modality complementarity. We then inspect the intra-
and inter-modality interactions separately. Table 1 (#5-7) shows that intra-
modality interaction can already effectively exploit information in each modality
compared to the baseline. Inter-modality complementarity alone is not sufficient
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Table 3. Video captioning performances of our proposed PMI and other state-of-the-
art multimodal fusion methods on the MSVD dataset. Meanings of features can be
found in Table 4.

Method Features B@4 M C
AF [25] V+C 52.4 32.0 68.8

TDDF [76] V+C 45.8 33.3 73.0
MA-LSTM [69] G+C 52.3 33.6 70.4
MFATT [36] R152+C 50.8 33.2 69.4
GRU-EVE [1] IRV2+C 47.9 35.0 78.1
XGating [59] IRV2+I3D 52.5 34.1 88.7
HOCA [28] IRV2+I3D 52.9 35.5 86.1
PMI-CAP V+C 49.74 33.59 77.11
PMI-CAP G+C 51.55 34.64 74.51
PMI-CAP R152+C 52.07 34.34 77.35
PMI-CAP IRV2+C 54.68 36.40 95.17
PMI-CAP IRV2+I3D 55.76 36.63 95.68

Table 4. Performances of our proposed model and other state-of-the-art methods on
the MSVD and MSR-VTT datasets. R*, G, V, C, IV4, R3D, IRV2, Obj, and A mean
ResNet, GoogLeNet, VGGNet, C3D, Inception-V4, 3D ResNeXt, Inception-ResNet v2,
Object features, and audio features, respectively. Note that audio track is only available
on MSR-VTT, and for fair comparison, we use the MFCC audio representation as [9,11].
Please refer to the original papers for the detailed feature extraction settings.

Dataset MSVD MSR-VTT
Method Features B@4 M C Features B@4 M C

STAT [53] G+C+Obj 51.1 32.7 67.5 G+C+Obj 37.4 26.6 41.5
M3 [63] V+C 51.78 32.49 - V+C 38.13 26.58 -

DenseLSTM [79] V+C 50.4 32.9 72.6 V+C 38.1 26.6 42.8
PickNet [12] R152 52.3 33.3 76.5 R152 41.3 27.7 44.1
hLSTMat [47] R152 53.0 33.6 73.8 R152 38.3 26.3 -

VRE [44] R152 51.7 34.3 86.7 R152+A 43.2 28.0 48.3
MARN [39] R101+R3D 48.6 35.1 92.2 R101+R3D 40.4 28.1 47.1

OA-BTG [75] R200+Obj 56.9 36.2 90.6 R200+Obj 41.4 28.2 46.9
RecNet [60] IV4 52.3 34.1 80.3 IV4 39.1 26.6 42.7
XGating [59] IRV2+I3D 52.5 34.1 88.7 IRV2+I3D 42.0 28.1 49.0
MM-TGM [11] IRV2+C 48.76 34.36 80.45 IRV2+C+A 44.33 29.37 49.26
GRU-EVE [1] IRV2+C 47.9 35.0 78.1 IRV2+C 38.3 28.4 48.1
MGSA [9] IRV2+C 53.4 35.0 86.7 IRV2+C+A 45.4 28.6 50.1
PMI-CAP IRV2+C 54.68 36.40 95.17 IRV2+C 42.17 28.79 49.45
PMI-CAP - - - - IRV2+C+A 43.96 29.56 50.66

for captioning, but it can be combined with intra-modality information to ob-
tain a further performance boost, which again validates our design of pairwise
interaction.

Effect of sentence localizer components. The PMI, video-text local in-
teraction (VTLI), and `2-norm regularization are the key components of the
sentence localization model. As can be observed from Table 2, incorporating
each component consistently leads to a performance boost.

4.3 Comparison with State-of-the-Art Methods

Results on the Video Event Captioning Task. We abbreviate our ap-
proach as PMI-CAP for video captioning. To demonstrate the superiority of
our proposed pairwise modality interaction, we first compare our method with
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Table 5. Performances (%) of our proposed model and other state-of-the-art methods
on the Charades-STA dataset. * means our implementation.

Method IoU=0.3 IoU=0.5 IoU=0.7
Random 14.16 6.05 1.59

VSA-RNN [29] - 10.50 4.32
VSA-STV [29] - 16.91 5.81

MCN [23] 32.59 11.67 2.63
ACRN [34] 38.06 20.26 7.64
ROLE [35] 37.68 21.74 7.82
SLTA [27] 38.96 22.81 8.25
CTRL [17] - 23.63 8.89
VAL [49] - 23.12 9.16
ACL [19] - 30.48 12.20
SAP [10] - 27.42 13.36

SM-RL [64] - 24.36 11.17
QSPN [67] 54.7 35.6 15.8
ABLR* [74] 51.55 35.43 15.05
TripNet [20] 51.33 36.61 14.50
CBP [62] - 36.80 18.87

PMI-LOC (C) 55.48 39.73 19.27
PMI-LOC (C+IRV2) 56.84 41.29 20.11

PMI-LOC (C+IRV2+A) 58.08 42.63 21.32

Table 6. Performances (%) of our proposed model and other state-of-the-art methods
on the ActivityNet Captions dataset.

Method IoU=0.3 IoU=0.5 IoU=0.7
Random 12.46 6.37 2.23

QSPN [67] 45.3 27.7 13.6
TGN [8] 43.81 27.93 -

ABLR [74] 55.67 36.79 -
TripNet [20] 48.42 32.19 13.93
CBP [62] 54.30 35.76 17.80

PMI-LOC (C) 59.69 38.28 17.83
PMI-LOC (C+IRV2) 60.16 39.16 18.02

PMI-LOC (C+IRV2+A) 61.22 40.07 18.29

state-of-the-art methods that focus on the fusion of multimodal features for video
captioning. For fair comparison, we use the same set of features as each compared
method. As shown in Table 3, our PMI-CAP has outperformed all the compared
methods when using the same features. The improvement in the CIDEr metric
is especially significant, which is 10.8% on average. This shows that our pairwise
modality interaction can really utilize multimodal features more effectively.

Table 4 shows the performance comparison on the MSVD and MSR-VTT
datasets. We adopt the set of features commonly used by recent state-of-the-
art methods [59,1,9], which are Inception-ResNet v2 and C3D for visual and
motion modalities, respectively. Among the competitive methods, OA-BTG [75]
utilizes object-level information from an external detector, and MARN [39] uses
a more advanced 3D CNN to extract motion features. We do not exploit spatial
information like MGSA [9] and VRE [44], or use a sophisticated decoder as
hLSTMat [47] and MM-TGM [11], while we emphasize that PMI may be used
along with most of these methods. Overall, our PMI-CAP achieves state-of-the-
art performances on both MSVD and MSR-VTT.
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Sentence: The men are seen sitting over a hole fishing on the ice and holding up fish.

GT

V

VM
VMA

VMAL

79.14 s

111.57 s0 s

40.58 s

Video:

55.02 s

0 s 94.05 s

129.13 s

0 s

144.98 s

GT: Asian girl sings and plays guitar whilst standing on the road
V: A woman is singing a song
VM: A girl is playing a guitar
VMA: A girl is singing and playing the guitar
VMAL: A girl is playing the guitar and singing on the street

GT: Minecraft characters talk to each other in an animated show
V: A man is playing a video game
VM: A person is playing a video game
VMA: A video game character is talking to the camera
VMAL: A minecraft character is talking to each other

Sentence: A weight lifter walks over to the barbell and adjusts his uniform.

GT

V

VM

VMA

VMAL

0 s 13.42 s

5.77 s

11.53 s0 s

12.54 s

Video:

0.8 s

0 s 17.27 s

0 s

Fig. 3. Qualitative results of temporal sentence localization and event captioning. The
results are generated using our model but with different combinations of modalities.

Results on the Sentence Localization Task. As previously introduced,
current state-of-the-art methods for sentence localization haven’t considered this
problem in a multimodal setting and only use the C3D feature. Thus we present
results with only C3D feature to fairly compare with these methods and also
report performances under multimodal settings. Our approach is abbreviated
as PMI-LOC for sentence localization. Table 5 shows results on the widely-
used Charades-STA dataset. Our PMI-LOC outperforms all compared methods
in all metrics. Further experiments with multimodal features show even higher
localization accuracies, which verify the effectiveness of our modality interaction
method. As shown in Table 6, on the large-scale ActivityNet Captions dataset,
our method also achieves state-of-the-art performances.

4.4 Qualitative Results

We show some qualitative results in Figures 3, 4, and 5 to demonstrate the effec-
tiveness of our modality interaction method and how it provides expainability to
the final prediction of the target tasks. Note that in addition to the visual (V),
motion (M), and audio (A) modalities, we also utilize the previously mentioned
latent semantics (L) modality to comprehensively explore the video content.

Fig. 3 indicates that by utilizing more modalities, the model gets more com-
plementary information through modality interaction and achieves better perfor-
mance for both temporal sentence localization and event captioning. The event
captioning examples in Fig. 4 show that each type of events has its modality
interaction pattern. The sports video (top) has distinctive visual and motion
patterns that are mainly captured by visual-motion modality interaction. The
cooking video (middle) has unique visual cues and sounds made by kitchenware,
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GT: Person is describing how to play a game
VMAL: A man is shooting a gun in a video game

GT: A soccer player kicks a goal
VMAL: A soccer player is scoring a goal

GT: The man is peeling an onion while explaining
VMAL: A person is slicing ingredients with a knife in a kitchen

Fig. 4. Qualitative results of video event captioning with visualization of the modality
importance weights.

GT

VMAL 9.98 s

22.47 s 148.15 s

133.17 s

Sentence: The camera transitions into several shows of people fencing back and fourth while many watch on the sidelines.

Video:

GT

VMAL 0 s

0 s 12.90 s

15.29 s

Sentence: A chef is talking inside a kitchen as he fills a pan with frying oil and water.

Video:

Fig. 5. Qualitative results of temporal sentence localization with visualization of the
modality importance weights.

so the important interactions are between the visual and audio modalities and
within the audio modality. For the animated video (bottom), latent semantics
modality is important when the other modalities are not sufficient to capture
its contents. Similar observations can also be made on the sentence localization
examples in Fig. 5.

5 Conclusions

In this paper, we proposed pairwise modality interaction (PMI) for tackling
the temporal sentence localization and event captioning tasks, and performed
fine-grained cross-modal interactions in both the sequence and channel levels
to better understand video contents. The extensive experiments on four bench-
mark datasets on both tasks consistently verify the effectiveness of our proposed
method. Our future work will extend the proposed modality interaction method
to cope with other video understanding tasks.
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