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Abstract. We introduce BLSM, a bone-level skinned model of the hu-
man body mesh where bone scales are set prior to template synthesis,
rather than the common, inverse practice. BLSM first sets bone lengths
and joint angles to specify the skeleton, then specifies identity-specific
surface variation, and finally bundles them together through linear blend
skinning. We design these steps by constraining the joint angles to respect
the kinematic constraints of the human body and by using accurate mesh
convolution-based networks to capture identity-specific surface variation.
We provide quantitative results on the problem of reconstructing a col-
lection of 3D human scans, and show that we obtain improvements in
reconstruction accuracy when comparing to a SMPL-type baseline. Our
decoupled bone and shape representation also allows for out-of-box inte-
gration with standard graphics packages like Unity, facilitating full-body
AR effects and image-driven character animation. Additional results and
demos are available from the project webpage: http://arielai.com/blsm

Keywords: 3D human body modelling, Graph convolutional networks

1 Introduction

Mesh-level representations of the human body form a bridge between computer
graphics and computer vision, facilitating a broad array of applications in mo-
tion capture, monocular 3D reconstruction, human synthesis, character anima-
tion, and augmented reality. The articulated human body deformations can be
captured by rigged modelling where a skeleton animates a template shape; this
is used in all graphics packages for human modelling and animation, and also in
state-of-the-art statistical models such as SMPL or SCAPE [6,23].

Our work aims at increasing the accuracy of data-driven rigged mesh repre-
sentations. Our major contribution consists in revisiting the template synthesis
process prior to rigging. Current models, such as SMPL, first synthesize the
template mesh in a canonical pose through an expansion on a linear basis. The
skeleton joints are then estimated post-hoc by regressing from the synthesized
mesh to the joints. Our approach instead disentangles bone length variability
from acquired body traits dependent e.g. on exercise or dietary habits.
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Fig. 1: Overview of our Bone-Level Skinned Model (BLSM): The top row shows
skeleton synthesis: starting from a canonical, bind pose, we first scale the bone
lengths and then apply an articulated transformation. The bottom row shows
shape control: the canonical mesh template is affected by the bone scaling trans-
form through Bone-Scaling Blend Shapes, and then further updated to capture
identity-specific shape variation. The skeleton drives the deformation of the re-
sulting template through Linear Blend Skinning, yielding the posed shape.

Based on this, we first model bone length-driven mesh variability in isola-
tion, and then combine it with identity-specific updates to represent the full
distribution of bodies. As we show experimentally, this disentangled represen-
tation results in more compact models, allowing us to obtain highly-accurate
reconstructions with a low parameter count.

Beyond this intuitive motivation, decoupling bone lengths from identity-
specific variation is important when either is fixed; e.g. when re-targeting an
outfit to a person we can scale the rigged outfit’s lengths to match those of the
person, while preserving the bone length-independent part of the outfit shape.
In particular, we model the mesh synthesis as the sequential specification of
identity-specific bone length, pose-specific joint angles, and identity-specific sur-
face variation, bundled together through linear blend skinning.

We further control and strengthen the individual components of this process:
Firstly, we constrain joint angles to respect the kinematic constraints of human
body, reducing body motion to 43 pose atoms, amounting to joint rotations
around a single axis. Alternative techniques require either restricting the form of
the regressor [14] or penalizing wrong estimates through adversarial training [18].

Secondly, we introduce accurate mesh convolution-based networks to capture
identity-specific surface variation. We show that these largely outperform their
linear basis counterparts, demonstrating for the first time the merit of mesh
convolutions in rigged full-body modelling (earlier works [21] were applied to
the setup of the face mesh).

We provide quantitative results on the problem of reconstructing a collection
of 3D human scans, and show that we obtain systematic gains in average vertex
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reconstruction accuracy when comparing to a SMPL-type baseline. We note that
this is true even though we do not use the pose-corrective blendhapes of [23];
these can be easily integrated, but we leave this for future work.

Beyond quantitative evaluation, we also show that our decoupled bone and
shape representation facilitates accurate character animation in-the-wild. Our
model formulation allows for out-of-box integration with standard graphics pack-
ages like Unity, leading to full-body augmented reality experiences.

2 Related Work

3D Human Body Modelling Linear Blend Skinning (LBS) is widely used
to model 3D human bodies due to its ability to represent articulated motions.
Some early works have focused on synthesizing realistic 3D humans by modifying
the LBS formulation. PSD [20] defines deformations as a function of articulated
pose. [3] use the PSD approach learned from 3D scans of real human bodies.
Other authors have focused on learning parametric model of human body shapes
independently from the pose [2, 25, 30]. Following these works, [6, 11, 13, 15, 16]
model both body shape and pose changes with triangle deformations. These
work has been extended to also model dynamic soft-tissue motion [26].

Closely related to [4], SMPL [23] propose an LBS-based statistical model of
the human mesh, working directly on a vertex coordinate space: T-posed shapes
are first generated from a PCA-based basis, and then posed after updating joint
locations. More recent works have focused on improving the representational
power of the model by combining part models, e.g. for face and hands [17, 29],
without however modifying the body model. One further contribution of [23]
consists in handling artefacts caused by LBS around the joints when posing the
template through the use of pose-corrective blend shapes [23]. Our formulation
can be easily extended to incorporate these, but in this work we focus on our
main contribution which is modelling of the shape at the bone level.

Graph Convolutions for 3D Human Bodies Different approaches have
been proposed to extend convolutional neural networks to non-euclidean data
such as graphs and manifolds [9, 10, 12, 22, 27, 32]. Among these, [9, 10, 22, 32]
have attempted to model and reconstruct 3D human bodies using convolutional
operators defined on meshes. While these methods achieve good performance on
shape reconstruction and learning correspondences, their generalisation is not
comparable to LBS based methods. Furthermore, the process of synthesising
new articulated bodies using mesh convolutional networks is not easy to control
since the latent vector typically encodes both shape and pose information.

3 Bone-Level Skinned Model

We start with a high-level overview, before presenting in detail the components
of our approach. As shown in Fig. 1, when seen as a system, our model takes
as input bone scales, joint angles, and shape coefficients and returns an array
of 3-D vertex locations. In particular, BLSM operates along two streams, whose



4 H. Wang et al.

results are combined in the last stage. The upper stream, detailed in Sec. 3.1,
determines the internal skeleton by first setting the bone scales through bone
scaling coefficients cb, delivering a bind pose. This is in turn converted to a new
pose by specifying joint angles θ, yielding the final skeleton T (cb,θ).

The bottom stream, detailed in Sec. 3.2, models the person-specific template
synthesis process: Starting from a mesh corresponding to an average body type,
V̄, we first absorb the impact of bone scaling by adding a shape correction term,
Vb. This is in turn augmented by an identity-specific shape update Vs, modelled
by a mesh-convolutional network. The person template is obtained as

V = V̄ + Vb + Vs . (1)

Finally, we bundle the results of these two streams using Linear Blend Skin-
ning, as described in Sec. 3.3, delivering the posed template V̂:

V̂ = LBS(V, T (cb,θ)) . (2)

3.1 Skeleton Modeling

Kinematic Model Our starting point for human mesh modelling is the skele-
ton. As is common in graphics, the skeleton is determined by a tree-structured
graph that ties together human bones through joint connections.

Starting with a single bone, its ‘bind pose’ is expressed by a template ro-
tation matrix Rt and translation vector Ot that indicate the displacement and
rotation between the coordinate systems at the two bone joints. We model the
transformation with respect to the bind pose through a rotation matrix R and
a scaling factor s, bundled together in a 4× 4 matrix T:

T =

[
sI 0
0 1

] [
R 0
0 1

]
︸ ︷︷ ︸

deformation

[
Rt Ot

0 1

]
︸ ︷︷ ︸
resting bone

. (3)

We note that common models for character modelling use s = 1 and only allow
for limb rotation. Any change in object scale, or bone length is modelled by
modifying the displacement at the bind pose, O. This is done only implicitly,
by regressing the bind pose joints from a 3D synthesized shape. By contrast,
our approach gives us a handle on the scale of a limb through the parameter s,
making the synthesis of the human skeleton explicitly controllable.

The full skeleton is constructed recursively, propagating from the root node
to the leaf nodes along a kinematic chain. Every bone transformation encodes a
displacement, rotation, and scaling between two adjacent bones, i and j, where
i is the parent and j is the child node. To simplify notation, we will describe the
modelling along a single kinematic chain, meaning j = i+1, and denote the local
transformation of a bone by Ti. The global transformation Tj from the local
coordinates of bone j to world coordinates is given by: Tj =

∏
i≤j Ti, where we

compose the transformations for every bone on the path from the root to the
j-th node. This product accumulates the effects of consecutive transformations:
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for instance a change in the scale of a bone will incur the same scaling for all of
its descendants. These descendants can in turn have their own scale parameters,
which are combined with those of their ancestors. The 3D position of each bone
j can be read from the last column of Tj , while the upper-left 3× 3 part of Tj

provides the scaling and orientation of its coordinate system.

Parametric Bone Scaling We model human proportions by explicitly scaling
each bone. For this we perform PCA on bone lengths, as detailed in Sec. 4.2 and
use the resulting principal components to express individual bone scales as:

b = b̄ + cbPb (4)

where cb are the bone scaling coefficients, Pb is the bone-scaling matrix, and b̄
is the mean bone scale.

From Eq. 4 we obtain individual bone scales. However, the bone scales s that
appear in Eq. 3 are meant to be used through the kinematic chain recursion,
meaning that the product of parent scales delivers the actual bone scale, bj =∏

i≤j si; this can be used to transform the predictions of Eq. 4 into a form that
can be used in Eq. 3:

si =

{
bi/bi−1, i > 0

1 i = 0
(5)

Kinematically Feasible Posing We refine our modeling of joint angles to
account for the kinematic constraints of the human body. For instance the knee
has one degree of freedom, the wrist has two, and the neck has three. For each
joint we set the invalid degrees of freedom to be identically equal to zero, and
constrain the remaining angles to be in a plausble range (e.g. ±45 degrees for
an elbow). In Fig. 2 we show sample meshes synthesized by posing a template
along one valid degree of freedom.

Right-Wrist Down
Right-Arm Twist Upper-Spine Down

Left-Shoulder Up
Left-Leg Up

Left-Leg Left Spine Left

Fig. 2: 7 out of the 47 degrees of freedom corresponding to kinematically feasible
joint rotations for our skeleton.

For this, for each such degree of freedom we use an unconstrained variable
x ∈ R and map it to a valid Euler angle θ ∈ [θmin, θmax] by using a hyperbolic
tangent unit:

θ =
θmax − θmin

2
tanh(x) +

θmin + θmax

2
(6)
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This allows us to perform unconstrained optimization when fitting our model to
data, while delivering kinematically feasible poses. The resulting per-joint Euler
angles are converted into a rotation matrix, delivering the matrix R in Eq. 3.

Using Eq. 6 alleviates the need for restricting the regressor form [14] or
adversarial training [18], while at the same time providing us with a compact,
interpretable dictionary of 47 body motions. We provide samples of all such
motions in the supplemental material.

3.2 Template Synthesis

Having detailed skeleton posing, we now turn to template synthesis. We start by
modeling the effect of bone length on body shape, and then turn to modelling
identity-specific variability.

Bone-Dependent Shape Variations Bone length can be used to account for
a substantial part of body shape variability. For example, longer bones correlate
with a male body-shape, while limb proportions can correlate with ectomorph,
endomorph and mesomorph body-type variability. We represent the bone-length
dependent deformation of the template surface through a linear update:

Vb = cbPbc (7)

where Pbc is the matrix of bone-corrective blendshapes.

-3σ            +3σ -3σ            +3σ -3σ            +3σ-3σ            +3σ

LBS 
bone scaling

LBS 
bone scaling + 

corrective blendshapes

LBS 
bone scaling

LBS 
bone scaling + 

corrective blendshapes

Bone Coeff. 1 Bone Coeff. 2

Fig. 3: Impact of bone length variation on the template. Plain linear blend skin-
ning results in artifacts. The linear, bone-corrective blendshapes eliminate these
artifacts, and capture correlations of bone lengths with gender and body type.

Graph Convolutional Shape Modelling Having accounted for the bone
length-dependent part of shape variability, we turn to the remainder of the
person-specific variability. The simplest approach is to use a linear update:

Vs = csPs (8)



BLSM: A Bone-Level Skinned Model of the Human Mesh 7

where cs are the shape coefficients, and Ps is the matrix of shape components;
we refer to this baseline as the linear model. By contrast, we propose a more
powerful, mesh-convolutional update. For this we use multi-layer mesh convolu-
tion decoder that precisely models the nonlinear manifold of plausible shapes in
its output space.

We represent the triangular mesh as a graph (V, E) with vertices V and
edges E and denote the convolution operator on a mesh as:

(f ? g)x =

L∑
l=1

glf(xl) (9)

where gl denotes the filter weights, and f(xl) denotes the feature of the l-th
neighbour of vertex x. The neighbours are ordered consistently across all meshes,
allowing us to construct a one-to-one mapping between the neighbouring features
and the filter weights. Here we adapt the setting of [10], where the ordering is
defined by a spiral starting from the vertex x, followed by the d-ring of the
vertex, i.e. for a vertex x, xl is defined by the ordered sequence:

S(x) = {x,R1
1(x), R1

2(x), ...., Rh
‖Rh‖}, (10)

where h is the patch radius and Rd
j (x) is the j-th element in the d-ring.

We use a convolutional mesh decoder to model the normalised deformations
from the bone-updated shape. The network consists of blocks of convolution-
upsampling layers similar to [27]. We pre-compute the decimated version of the
template shape with quadratic edge collapse decimation to obtain the upsam-
pling matrix. Given the latent vector z, shape variation is represented as

Vs = D(z) (11)

where D is the learned mesh convolutional decoder.

3.3 Linear Blend Skinning

Having detailed the skeleton and template synthesis processes, we now turn to
posing the synthesized template based on the skeleton. We use Linear Blend
Skinning (LBS), where the deformation of a template mesh V is determined
by the transformations of the skeleton. We consider that the bind pose of the
skeleton is described by the matrices T̂j , where the 3D mesh vertices take their
canonical values vi ∈ V, while the target pose is described by Tj .

According to LBS, each vertex is influenced by every bone j according to a
weight wij ; the positions of the vertices v̂i at the target pose are given by:

v̂k =
∑
j

wijTjT̂
−1
j vk. (12)

In the special case where T = T̂, we recover the template shape, while in the
general case, Eq. 12 can be understood as first charting every point vk with
respect to the bind bone (by multiplying it with T̂−1j ), and then transporting to
the target bone (by multiplying with Tj).
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4 Model training

Having specified BLSM, we now turn to learning its parameters from data. For
this we use the CAESAR dataset [28] to train the shape model, which contains
high resolution 3D scans of 4400 subjects wearing tight clothing. This mini-
mal complexity due to extraneous factors has made CAESAR appropriate for
the estimation of statistical body models, such as SMPL. For training skinning
weights we use D-FAUST [8] dataset. Our training process consists in minimising
the reconstruction error of CAESAR and D-FAUST through BLSM.

Since BLSM is implemented as a multi-layer network in pytorch, one could
try to directly minimize the reconstruction loss with respect to the model pa-
rameters using any standard solver. Unfortunately however, this is a nonlinear
optimisation problem with multiple local minima; we therefore use a carefully
engineered pipeline that solves successively demanding optimization problems,
as detailed below, and use automatic differentiation to efficiently compute any
derivatives required during optimization.

4.1 Unconstrained Landmark-based Alignment

Each CAESAR scan Sn is associated with 73 anatomical landmarks, Ln that
have been localised in 3D. We start by fitting our template to these landmarks
by gradient descent on the joint angles θn and bone scales sn, so as to minimize
the 3D distances between the landmark positions and the respective template
vertices. More specifically, the following optimization problem is solved:

θn, sn = argminθ,s‖ALBS(VT , T (s,θ))− Ln‖2 (13)

where A selects the subset of landmarks from the template.
This delivers an initial fitting which we further refine by registering our

BLSM-based prediction Ŝn = LBS(VT , T (sn,θn)) to each scan Sn with Non-
Rigid ICP (NICP) [5]. This alignment stage does not use yet a statistical model
to constrain the parameter estimates, and as such can be error-prone; the follow-
ing steps recover shapes that are more regularized, but the present result acts
like a proxy to the scan that is in correspondence with the template vertices.

4.2 Bone Basis and Bone-corrective Blendshapes

We start learning our model by estimating a linear basis for bone scales. For each
shape Ŝn we estimate the lengths of the bones obtained during the optimization
process described in the previous section.

We perform PCA on the full set of CAESAR subjects and observe that linear
bases capture 97% of bone length variability on the first three eigenvectors. We
convert the PCA-based mean vector and basis results from bone lengths into the
mean bone scaling factor b̄ and bone scaling basis Pb used in Eq. 4 by dividing
them by the mean length of the respective bone along each dimension.
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Having set the bone scaling basis, we use it as a regularizer to re-estimate
the pose θn and bone scale coefficients cnb used to match our template VT to

each registration Ŝn by solving the following optimisation problem:

θn, cnb = argminθ,cb
‖LBS(VT , T (cb,θ))− Ŝn‖2 (14)

Finally we optimize over the bone-corrective basis Pb and mean shape V̄:

P∗bc, V̄
∗ = argminPb,V̄

N∑
n=1

‖LBS(V̄ + cnb Pbc, T (cnb ,θ
n))− Ŝn‖2 (15)

Given that VT and Ŝn are in one-to-one correspondence, we no longer need
ICP to optimize Eq. 14 and Eq. 15, allowing us instead to exploit automatic
differentiation and GPU computation for gradient descent-based optimization.

4.3 Shape Blendshapes

Once bone-corrected blendshapes have been used to improve the fit of our model
to the registered shape Ŝn, the residual in the reconstruction is attributed only
to identity-specific shape variability. We model these residuals as vertex displace-
ments VD

n and estimate them for each registration Ŝn by setting:

LBS(V̄ + Vn
b + VD

n, T (cnb ,θ
n)) = Ŝn (16)

to ensure that the residual is defined in the T-pose coordinate system.
For the linear alternative described in Sec. 3.2 the shape basis Ps is computed

by performing PCA analysis of {VD
n}. To train the graph convolutional system

described in Sec. 3.2, we learn the parameters of the spiral mesh convolutional
decoder D and the latent vectors zn that minimize the following loss:

argminD,z

N∑
n=1

‖VD
n −D(zn)‖ (17)

4.4 Blending Weights

So far the blending weights of our LBS formulation are manually initialised,
which can be further improved from the data. For this purpose we use the D-
FAUST dataset [8], which contains registrations of a variety of identity and
poses. For each registration Sn in the dataset, we first estimate the parameters
of our model, namely cnb , cns , θn, as well as the residual V̂n

D which is the error on
the T-pose coordinate system after taking into account the shape blendshapes.
Then we optimize instead the blending weights to minimize the following error:

argminW

N∑
n=1

‖Sn − LBSW(V̄ + Vn
b + Vn

s + V̂n
D, T (cnb ,θ

n))‖2 (18)
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where we use the mapping:

W =
f(W′)∑
j f(W′)ij

with f(X) =
√

X2 + ε (19)

to optimize freely W′ while ensuring the output weights W satisfy the LBS
blending weights constraints:

∑
j Wij = 1, and mathbfWij ≥ 0.

5 Evaluation

5.1 Implementation Details

Baseline Implementation The publicly available SMPL model [23] has 10
shape bases, a mesh topology that is different to that of our model, and pose-
corrective blendshapes, making any direct comparison to our model inconclusive.

In order to have directly comparable results across multiple shape coefficient
dimensionalities we train a SMPL-like model (referred to as SMPL-reimpl) using
the mesh topology, kinematic structure, and blending weight implementation of
our model, and SMPL’s PCA-based modeling of shape variability in the T-pose.
We further remove any pose-corrective blendshape functionality, allowing us to
directly assess the impact of our disentangled, bone-driven modeling of mesh
variability against a baseline that does not use it.

In order to train SMPL-reimpl, we first define manually the joint regressor
required by [23] by taking the mean of the ring of vertex that lies around a
certain joint; we then train the blending weights and joint regressor on the D-
FAUST dataset, as described in [23]. The shape blendshapes are then trained
with the CAESAR dataset using the same method described in [23].

We further note that our evaluations focus on the gender-neutral versions
of both SMPL-reimpl and BLSM - and may therefore be skewed in favour of
BLSM’s ability to easily capture large-scale, gender-dependent bone variations.
This is however relevant to the performance of most downstream, CNN-driven
human mesh reconstruction systems that do not know in advance the subject’s
gender [18] [14] [19], and have therefore adopted the neutral model. More recent
work [24] has shown improvements based on exploiting gender attributes in tan-
dem with the gender-specific SMPL models. We leave a more thorough ablation
of the interplay between gender and reconstruction accuracy in future work.

Mesh Convolutional Networks For graph convolutional shape modelling, we
train networks with 4 convolutional layers, with (48, 32, 32, 16) filters for each
layer, respectively. Convolutional layers are followed by batch normalisation and
upsampling layers with factors (2, 2, 2, 4) respectively. For the convolutional
layers, we use ELU as the activation function. Finally, the output layer is a
convolutional layer with filter size 3 and linear activation, which outputs the
normalised vertex displacements. We train our network with an Adam optimiser,
with a learning rate of 1e-3 and weight decay of 5e-5 for the network parameters,
and learning rate of 0.1 and weight decay 1e-7 for the latent vectors. The learning
rates are multiplied by a factor of 0.99 after each epoch.
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5.2 Quantitative Evaluation

We evaluate the representation power of our proposed BLSM model on the
CAESAR dataset and compare its generalisation ability against the SMPL-type
baseline on D-FAUST dataset and our in-house testset. D-FAUST contains 10
subjects, each doing 14 different motions. We further expand the testset with
our in-house dataset. Captured with a custom-built multi-camera active stereo
system (3dMD LLC, Atlanta, GA), our in-house testset consists of 4D sequences
at 30 FPS of 20 individuals spanning different body types and poses. Each
instance contains around 50K vertices. These scans are registered to our template
as described in Sec. 4.1, while using NICP with temporal consistency constraints.

The models that we compare are aligned to the registered meshes by min-
imising the L2 distance between each vertex. We use an Adam optimiser with
learning rate 0.1 to optimise parameters for all models, and reduce the learning
rate by a factor of 0.9 on plateau. To avoid local minima, we use a multi-stage
optimization approach as in [7]. We first fit the vertices on the torso (defined by
the blending weights of the torso bones on our template) by optimising over the
shape coefficients and the joint angles of the torso bones. Then for second and
third stage, upper-limbs and lower-limbs are added respectively. In the last stage,
all the vertices are used to fine-tune the fitted parameters. In the following, we
report the mean absolute vertex errors (MABS) of gender neutral models.

CAESAR In Fig. 4 we plot the fitting errors on the CAESAR dataset as
a function of the number of shape coefficients, namely shape blendshapes for
SMPL-reimpl, bone blendshapes and shape blendshapes for BLSM-linear and
latent space dimension for BLSM-spiral.

We observe that our BLSM-linear model attains lower reconstruction error
compared to the SMPL-reimpl baseline. The sharpest decrease happens for the
first three coefficients, corresponding to bone-level variability modelling. Starting
from the fourth coefficient the error decreases more slowly for the linear model,
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Fig. 4: Mean absolute vertex error on the CAESAR dataset (left) and our in-
house testset (right) against number of shape coefficients.
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but the BLSM-spiral variant further reduces errors. These results suggest that
our BLSM method captures more of the shape variation with fewer coefficients
compared to the SMPL-reimpl baseline.

D-FAUST For D-FAUST, we select one male and one female subject (50009 and
50021) for evaluation, and the rest for training blending weights for both models
and joint regressors for SMPL-reimpl. We evaluate first shape generalisation
error by fitting the models to all sequences of the test subjects (Fig. 5 left). We
observe that our BLSM-linear model obtain lower generalisation error compared
to SMPL-reimpl baseline, and the result is improved further with BLSM-spiral.

We also evaluate the pose generalisation error of our models (Fig. 5 right).
The errors are obtained by first fitting the models to one random frame of each
subject, then fit the pose parameter to rest of the frames while keeping the shape
coefficients fixed. This metric suggests how well a fitted shape generalise to new
poses. We observe that both of our linear and spiral models generalises better
than our SMPL-reimpl baseline. We argue that by introducing bone scales to
the model, the fitted poses are well regularized, thus during training it is more
straight forward to decouple the shape and pose variations in the dataset, while
avoiding the need to learn subject specific shapes and joints as in SMPL.

In-house Testset In Fig. 4, we also report the average MABS across all se-
quences in our in-house testset as a function of the number of shape coefficients
used. We observe that our proposed models are able to generalise better than the
SMPL-reimpl model on our testset. Our proposed models are compact and able
to represent variations in our testset with a smaller number of shape coefficients
than SMPL-reimpl.

In Fig. 6, we show the mean per-vertex error heatmaps on all sequences and
on some example registrations in our testset. Compared to SMPL-reimpl, our
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Fig. 5: Shape generalisation error (left) and pose generalisation error (right) on
D-FAUST dataset against number of shape coefficients.
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Fig. 6: Mean absolute vertex error and example of reconstructions on the testset.
Left to right: SMPL-reimpl, BLSM-Linear, BLSM-Spiral. For linear models we
show result with 125 coefficients allowed. For BLSM-spiral the latent size is 128.

proposed models are able to fit closely across the full body, while the SMPL-
reimpl model produces larger error on some of the vertices. The result suggests
that our proposed model generalise better on surface details than the SMPL-
reimpl baseline model.

5.3 Qualitative Evaluation

In Fig. 8 we show samples from our linear model by varying the bone bases, as
well as identity-specific shape coefficients from -3σ to +3σ. We observe that our
model captures a variety of body shapes and the method successfully decouples
bone length-dependent variations and identities specific shape variations.

This decoupling allows us to perform simple and accurate character anima-
tion driven by persons in unconstrained environments as shown in Fig. 7. In an
offline stage, we rig several characters from [1] to our model’s skeleton. Given
an image of a person, we first fit our model to it using a method similar to [18].
We then apply the estimated bone transformations (scales and rotations) to the
rigged characters. This allows accurate image-driven character animation within
any standard graphics package like Unity.

Alternative methods require either solving a deformation transfer problem
[31] [33], fixed shape assumptions, or approximations to a constant skeleton,
while our approach can exactly recover the estimated skeleton position as it is
part of the mesh construction.

Please note that many recent works that predict model parameters for image
alignment are applicable to our model [18] [14] [19]; in this work we focus on
showing the merit of our model once the alignment is obtained, and provide
multiple CNN-driven results on the project’s webpage.

We also assess the representational power of our mesh convolutional networks
by examining the samples from each dimension of the latent space (Fig. 8). We
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Fig. 7: Image-driven character animation: we rig two characters from [1] using
our model’s bone structure. This allows us to transform any person into these
characters, while preserving the pose and body type of the person in the image.

observe that while capturing large deformations such as gender and body type,
the network also captures details such as different body fat distributions.

6 Conclusion

In this paper we propose BLSM, a bone-level skinned model of the 3D human
body mesh where bone modelling and identity-specific variations are decoupled.
We introduce a data-driven approach for learning skeleton, skeleton-conditioned
shape variations and identity-specific variations. Our formulation facilitates the
use of mesh convolutional networks to capture identity specific variations, while
explicitly modeling the range of articulated motion through built-in constraints.

We provide quantitative results showing that our model outperforms existing
SMPL-like baseline on the 3D reconstruction problem. Qualitatively, we also
show that by virtue of being bone-level our formulation allows us to perform
accurate character retargeting in-the-wild.
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Fig. 8: Linear (left) vs. graph convolutional (right) modeling of shape variation.
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