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Abstract. Few-shot image classification aims at training a model from
only a few examples for each of the “novel” classes. This paper proposes
the idea of associative alignment for leveraging part of the base data by
aligning the novel training instances to the closely related ones in the
base training set. This expands the size of the effective novel training set
by adding extra “related base” instances to the few novel ones, thereby
allowing a constructive fine-tuning. We propose two associative align-
ment strategies: 1) a metric-learning loss for minimizing the distance
between related base samples and the centroid of novel instances in the
feature space, and 2) a conditional adversarial alignment loss based on
the Wasserstein distance. Experiments on four standard datasets and
three backbones demonstrate that combining our centroid-based align-
ment loss results in absolute accuracy improvements of 4.4%, 1.2%, and
6.2% in 5-shot learning over the state of the art for object recognition,
fine-grained classification, and cross-domain adaptation, respectively.

Keywords: associative alignment, few-shot image classification

1 Introduction

Despite recent progress, generalizing on new concepts with little supervision is
still a challenge in computer vision. In the context of image classification, few-
shot learning aims to obtain a model that can learn to recognize novel image
classes when very few training examples are available.

Meta-learning [9, 36, 42, 47] is a possible approach to achieve this, by extract-
ing common knowledge from a large amount of labeled data (the “base” classes)
to train a model that can then learn to classify images from “novel” concepts
with only a few examples. This is achieved by repeatedly sampling small subsets
from the large pool of base images, effectively simulating the few-shot scenario.
Standard transfer learning has also been explored as an alternative method [3, 14,
34]. The idea is to pre-train a network on the base samples and then fine-tune the
classification layer on the novel examples. Interestingly, Chen et al. [3] demon-
strated that doing so performs on par with more sophisticated meta-learning
strategies. It is, however, necessary to freeze the feature encoder part of the
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Fig. 1: The use of many related bases (circles) in addition to few novel classes
samples (diamonds) allows better discriminative models: (a) using directly re-
lated bases may not properly capture the novel classes; while (b) aligning both
related base and novel training instances (in the feature space) provides more
relevant training data for classification. Plots are generated with t-SNE [30] ap-
plied to the ResNet-18 feature embedding before (a) and after (b) the application
of the centroid alignment. Points are color-coded by class.

network when fine-tuning on the novel classes since the network otherwise over-
fits the novel examples. We hypothesize that this hinders performance and that
gains could be made if the entire network is adapted to the novel categories.

In this paper, we propose an approach that simultaneously prevents over-
fitting without restricting the learning capabilities of the network for few-shot
image classification. Our approach relies on the standard transfer learning strat-
egy [3] as a starting point, but subsequently exploits base categories that are
most similar (in the feature space) to the few novel samples to effectively pro-
vide additional training examples. We dub these similar categories the “related
base” classes. Of course, the related base classes represent different concepts
than the novel classes, so fine-tuning directly on them could confuse the network
(see fig. 1-(a)). The key idea of this paper is to align, in feature space, the novel
examples with the related base samples (fig. 1-(b)).

To this end, we present two possible solutions for associative alignment: by 1)
centroid alignment, inspired by ProtoNet [42], benefits from explicitly shrinking
the intra-class variations and is more stable to train, but makes the assumption
that the class distribution is well-approximated by a single mode. Adversarial
alignment, inspired by WGAN [1], does not make that assumption, but its train
complexity is greater due to the critic network. We demonstrate, through exten-
sive experiments, that our centroid-based alignment procedure achieves state-of-
the-art performance in few-shot classification on several standard benchmarks.
Similar results are obtained by our adversarial alignment, which shows the ef-
fectiveness of our associative alignment approach.

We present the following contributions. First, we propose two approaches
for aligning novel to related base classes in the feature space, allowing for ef-



Associative Alignment for Few-shot Image Classification 3

fective training of entire networks for few-shot image classification. Second, we
introduce a strong baseline that combines standard transfer learning [3] with an
additive angular margin loss [6], along with early stopping to regularize the net-
work while pre-training on the base categories. We find that this simple baseline
actually improves on the state of the art, in the best case by 3% in overall accu-
racy. Third, we demonstrate through extensive experiments—on four standard
datasets and using three well-known backbone feature extractors—that our pro-
posed centroid alignment significantly outperforms the state of the art in three
types of scenarios: generic object recognition (gain of 1.7%, 4.4% 2.1% in overall
accuracy for 5-shot on mini -ImageNet, tieredImageNet and FC100 respectively),
fine-grained classification (1.2% on CUB), and cross-domain adaptation (6.2%
from mini -ImageNet to CUB) using the ResNet-18 backbone.

2 Related work

The main few-shot learning approaches can be broadly categorized into meta-
learning and standard transfer learning. In addition, data augmentation and
regularization techniques (typically in meta-learning) have also been used for
few-shot learning. We briefly review relevant works in each category below. Note
that several different computer vision problems such as object counting [58],
video classification [59], motion prediction [16], and object detection [52] have
been framed as few-shot learning. Here, we mainly focus on works from the image
classification literature.

Meta-learning This family of approaches frames few-shot learning in the form
of episodic training [7, 9, 36, 39, 42, 46, 52, 54]. An episode is defined by pretend-
ing to be in a few-shot regime while training on the base categories, which are
available in large quantities. Initialization- and metric-based approaches are two
variations on the episodic training scheme relevant for this work. Initialization-
based methods [9, 10, 22] learn an initial model able to adapt to few novel sam-
ples with a small number of gradient steps. In contrast, our approach performs a
larger number of updates, but requires that the alignment be maintained between
the novel samples and their related base examples. Metric-based approaches [2,
12, 21, 25, 27, 33, 42, 44, 45, 47, 53, 57] learn a metric with the intent of reducing
the intra-class variations while training on base categories. For example, Pro-
toNet [42] were proposed to learn a feature space where instances of a given class
are located close to the corresponding prototype (centroid), allowing accurate
distance-based classification. Our centroid alignment strategy borrows from such
distance-based criteria but uses it to match the distributions in the feature space
instead of building a classifier.

Standard transfer learning The strategy behind this method is to pre-train a net-
work on the base classes and subsequently fine-tune it on the novel examples [3,
14, 34]. Despite its simplicity, Chen et al. [3] recently demonstrated that such an
approach could result in similar generalization performance compared to meta-
learning when deep backbones are employed as feature extractors. However, they
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have also shown that the weights of the pre-trained feature extractor must re-
main frozen while fine-tuning due to the propensity for overfitting. Although
the training procedure we are proposing is similar to standard fine-tuning in
base categories, our approach allows the training of the entire network, thereby
increasing the learned model capacity while improving classification accuracy.

Regularization trick Wang et al. [51] proposed regression networks for regular-
ization purposes by refining the parameters of the fine-tuning model to be close
to the pre-trained model. More recently, Lee et al. [24] exploited the implicit
differentiation of a linear classifier with hinge loss and L2 regularization to the
CNN-based feature learner. Dvornik et al. [8] uses an ensemble of networks to
decrease the classifiers variance.

Data augmentation Another family of techniques relies on additional data for
training in a few-shot regime, most of the time following a meta-learning training
procedure [4, 5, 11, 15, 17, 31, 40, 49, 55, 56]. Several ways of doing so have been
proposed, including Feature Hallucination (FH) [17], which learns mappings be-
tween examples with an auxiliary generator that then hallucinates extra training
examples (in the feature space). Subsequently, Wang et al. [49] proposed to use
a GAN for the same purpose, and thus address the poor generalization of the
FH framework. Unfortunately, it has been shown that this approach suffers from
mode collapse [11]. Instead of generating artificial data for augmentation, others
have proposed methods to take advantage of additional unlabeled data [13, 37,
26, 50]. Liu et al. [29] propose to propagate labels from few labeled data to many
unlabeled data, akin to our detection of related bases. We also rely on more data
for training, but in contrast to these approaches, our method does not need any
new data, nor does it require to generate any. Instead, we exploit the data that is
already available in the base domain and align the novel domain to the relevant
base samples through fine-tuning.

Previous work has also exploited base training data, most related to ours are
the works of [4] and [28]. Chen et al. [4] propose to use an embedding and de-
formation sub-networks to leverage additional training samples, whereas we rely
on a single feature extractor network which is much simpler to implement and
train. Unlike random base example sampling [4] for interpolating novel example
deformations in the image space, we propose to borrow the internal distribution
structure of the detected related classes in feature space. Besides, our alignment
strategies introduce extra criteria to keep the focus of the learner on the novel
classes, which prevents the novel classes from becoming outliers. Focused on ob-
ject detection, Lim et al. [28] proposes a model to search similar object categories
using a sparse grouped Lasso framework. Unlike [28], we propose and evaluate
two associative alignments in the context of few-shot image classification.

From the alignment perspective, our work is related to Jiang et al. [20] which
stays in the context of zero-shot learning, and proposes a coupled dictionary
matching in visual-semantic structures to find matching concepts. In contrast,
we propose associative base-novel class alignments along with two strategies for
enforcing the unification of the related concepts.
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3 Preliminaries

Let us assume that we have a large base dataset X b = {(xb
i , y

b
i )}Nb

i=1, where
xb
i ∈ Rd is the i-th data instance of the set and ybi ∈ Yb is the corresponding class

label. We are also given a small amount of novel class data Xn = {(xn
i , y

n
i )}Nn

i=1,
with labels yni ∈ Yn from a set of distinct classes Yn. Few-shot classification
aims to train a classifier with only a few examples from each of the novel classes
(e.g., 5 or even just 1). In this work, we used the standard transfer learning
strategy of Chen et al. [3], which is organized into the following two stages.

Pre-training stage The learning model is a neural network composed of a feature
extractor f(·|θ), parameterized by θ, followed by a linear classifier c(x|W) ≡
W>f(x|θ), described by matrix W, ending with a scoring function such as
softmax to produce the output. The network is trained from scratch on examples
from the base categories X b.

Fine-tuning stage In order to adapt the network to the novel classes, the network
is subsequently fine-tuned on the few examples from Xn. Since overfitting is likely
to occur if all the network weights are updated, the feature extractor weights θ
are frozen, with only the classifier weights W being updated in this stage.

4 Associative alignment

Freezing the feature extractor weights θ indeed reduces overfitting, but also limits
the learning capacity of the model. In this paper, we strive for the best of both
worlds and present an approach which controls overfitting while maintaining
the original learning capacity of the model. We borrow the internal distribution
structure of a subset of related base categories, X rb ⊂ X b. To account for the
discrepancy between the novel and related base classes, we propose to align the
novel categories to the related base categories in feature space. Such a mapping
allows for a bigger pool of training data while making instances of these two sets
more coherent. Note that, as opposed to [4], we do not modify the related base
instances in any way: we simply wish to align novel examples to the distributions
of their related class instances.

In this section, we first describe how the related base classes are determined.
Then, we present our main contribution: the “centroid associative alignment”
method, which exploits the related base instances to improve classification per-
formance on novel classes. We conclude by presenting an alternative associative
alignment strategy, which relies on an adversarial framework.

4.1 Detecting the related bases

We develop a simple, yet effective procedure to select a set of base categories
related to a novel category. Our method associates B base categories to each
novel class. After training c(f(·|θ)|W) on X b, we first fine-tune c(·|W) on Xn
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Fig. 2: Results of related base algorithm in a 5-way 5-shot scenario. Each column
represents a different novel class. The top row shows the 5 novel instances, while
the bottom row shows 60 randomly selected related base instances with B = 10.

while keeping θ fixed. Then, we define M ∈ RKb×Kn

as a base-novel similarity
matrix, where Kb and Kn are respectively the number of classes in X b and Xn.
An element mi,j of the matrix M corresponds to the ratio of examples associated
to the i-th base class that are classified as the j-th novel class:

mi,j =
1

|X b
i |

∑
(xb

l ,·)∈X
b
i

I
[
j =

Kn

arg max
k=1

(
ck(f(xb

l |θ) |W)
)]
, (1)

where ck(f(x|θ)|W) is the classifier output c(·|W) for class k. Then, the B base
classes with the highest score for a given novel class are kept as the related base
for that class. Fig. 2 illustrates example results obtained with this method in a
5-shot, 5-way scenario.

4.2 Centroid associative alignment

Let us assume the set of instances Xn
i belonging to the i-th novel class i ∈ Yn,

Xn
i = {(xn

j , y
n
j ) ∈ Xn | ynj = i}, and the set of related base examples X rb

i be-
longing to the same novel class i according to the g(·|M) mapping function,
X rb

i = {(xb
j , y

b
j) ∈ X rb | g(yj |M) = i}. The function g(yj |M) : Yb → Yn

maps base class labels to the novel ones according to the similarity matrix M.
We wish to find an alignment transformation for matching probability densities
p(f(xn

i,k | θ)) and p(f(xrb
i,l | θ)). Here, xn

i,k is the k-th element from class i in the

novel set, and xrb
i,l is the l-th element from class i in the related base set. This

approach has the added benefit of allowing the fine-tuning of all of the model
parameters θ and W with a reduced level of overfitting.

We propose a metric-based centroid distribution alignment strategy. The idea
is to enforce intra-class compactness during the alignment process. Specifically,
we explicitly push the training examples from the i-th novel class Xn

i towards
the centroid of their related examples X rb

i in feature space. The centroid µi of
X rb

i is computed by

µi =
1

|X rb
i |

∑
(xj ,·)∈X rb

i

f(xj |θ) , (2)
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Algorithm 1:
Centroid alignment.

Input: pre-trained model c(f(·|θ)|W),
novel class Xn, related base set X rb.

Output: fine-tuned c(f(·|θ)|W).
while not done do

X̃n ← sample a batch from Xn
X̃ rb ← sample a batch from X rb

evaluate Lca(X̃n, X̃ rb), (eq. 3)

θ ← θ − ηca∇θLca(X̃n, X̃ rb)

evaluate Lclf(X̃ rb), (eq. 7)

W←W − ηclf∇WLclf(X̃ rb)
evaluate Lclf(X̃n), (eq. 7)

W←W − ηclf∇WLclf(X̃n)

θ ← θ − ηclf∇θLclf(X̃n)
end

( | )f 
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i

C(∙|W)

nŷi

ℒaa

( | )f 

C(∙|W)

ℒclf

ℒaa

x rb
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i

ℒca

Fig. 3: Schematic overview of our cen-
troid alignment. The feature learner
f(·|θ) takes an example from novel
category xn and an example related
base xrb

i . A Euclidean centroid based
alignment loss Lca (red arrow) aligns
the encoded xn

i and xrb
i . Blue arrows

represent classification loss Lclf .

where Nn and Nrb are the number of examples in Xn and X rb, respectively.
This allows the definition of the centroid alignment loss as

Lca(Xn) = − 1

NnNrb

Kn∑
i=1

∑
(xj ,·)∈Xn

i

log
exp[−‖f(xj |θ)− µi‖22]∑Kn

k=1 exp[−‖f(xj |θ)− µk‖22]
. (3)

Our alignment strategy bears similarities to [42] which also uses eq. 3 in a meta-
learning framework. In our case, we use that same equation to match distri-
butions. Fig. 3 illustrates our proposed centroid alignment, and algorithm 1
presents the overall procedure. First, we update the parameters of the feature
extraction network f(·|θ) using eq. 3. Second, the entire network is updated
using a classification loss Lclf (defined in sec. 5).

4.3 Adversarial associative alignment

As an alternative associative alignment strategy, and inspired by WGAN [1], we
experiment with training the encoder f(·|θ) to perform adversarial alignment us-
ing a conditioned critic network h(·|φ) based on Wasserstein-1 distance between
two probability densities px and py:

D(px, py) = sup
‖h‖L≤1

Ex∼px
[h(x)]− Ex∼py

[h(x)] , (4)

where sup is the supremum, and h is a 1-Lipschitz function. Similarly to Ar-
jovsky et al. [1], we use a parameterized critic network h(·|φ) conditioned by
the concatenation of the feature embedding of either xn

i or xrb
j , along with the
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Algorithm 2:
Adversarial alignment

Input: pre-trained model c(f(·|θ)|W),
novel class Xn, related base set X rb.

Output: fine-tuned c(f(·|θ)|W).
while not done do

X̃n ← sample a batch from Xn
X̃ rb ← sample a batch from X rb

for i = 0,. . . ,ncritic do

evaluate Lh(X̃n, X̃ rb), (eq. 5)
. update critic:
φ← φ+ ηh∇φLh(X̃n, X̃ rb)
φ← clip(φ,−0.01, 0.01)

end

evaluate Laa(X̃n), (eq. 6)

θ ← θ − ηaa∇θLaa(X̃n)

evaluate Lclf(X̃ rb), (eq. 7)

W←W − ηclf∇WLclf(X̃ rb)
evaluate Lclf(X̃n), (eq. 7)

W←W − ηclf∇WLclf(X̃n)

θ ← θ − ηclf∇θLclf(X̃n)
end
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Fig. 4: Overview of our adversarial
alignment. The feature learner f(·|θ)
takes an image xn

i from the i-th novel
class and an example xrb

i of the re-
lated base. The critic h(·|φ) takes the
feature vectors and the one-hot class
label vector. Green, red and blue ar-
rows present the critic Lh, adversar-
ial Laa and classification Lclf losses
respectively.

corresponding label yni encoded as a one-hot vector. Conditioning h(·|φ) helps
the critic in matching novel categories and their corresponding related base cat-
egories. The critic h(·|φ) is trained with loss

Lh(Xn,X rb) =
1

Nrb

∑
(xrb

i ,yrb
i )∈X rb

h
(
[f(xrb

i |θ) yrbi ] |φ
)

− 1

Nn

∑
(xn

i ,y
n
i )∈Xn

h ([f(xn
i |θ) yni ] |φ) , (5)

where, [·] is the concatenation operator. Then, the encoder parameters θ are
updated using

Laa(Xn) =
1

Kn

∑
(xn

i ,y
n
i )∈Xn

h ([f(xn
i |θ) yni ]|φ) . (6)

Algorithm 2 summarizes our adversarial alignment method. First, we perform the
parameter update of critic h(·|φ) using eq. 5. Similar to WGAN [1], we perform
ncritic iterations to optimize h, before updating f(·|θ) using eq. 6. Finally, the
entire network is updated by a classification loss Lclf (defined in sec. 5).
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5 Establishing a strong baseline

Before evaluating our alignment strategies in sec. 6, we first establish a strong
baseline for comparison by following the recent literature. In particular, we build
on the work of Chen et al. [3] but incorporate a different loss function and
episodic early stopping on the pre-training stage.

5.1 Classification loss functions

Deng et al. [6] have shown that an additive angular margin (“arcmax” here-
after) outperforms other metric learning algorithms for face recognition. The
arcmax has a metric learning property since it enforces a geodesic distance mar-
gin penalty on the normalized hypersphere, which we think can be beneficial for
few-shot classification by helping keep class clusters compact and well-separated.

Let z be the representation of x in feature space. As per [6], we transform
the logit as w>j z = ‖wj‖‖z‖ cosϕj , where ϕj is the angle between z and wj , the
j-th column in the weight matrix W. Each weight ‖wj‖ = 1 by l2 normalization.
Arcmax adds an angular margin m to the distributed examples on a hypersphere:

Lclf = − 1

N

N∑
i=1

log
exp(s cos(ϕyi

+m))

exp(s cos(ϕyi +m)) +
∑
∀j 6=yi

exp(s cosϕj)
, (7)

where s is the radius of the hypersphere on which z is distributed, N the number
of examples, and m and s are hyperparameters (see sec. 6.1). The overall goal
of the margin is to enforce inter-class discrepancy and intra-class compactness.

5.2 Episodic early stopping

A fixed number of epochs in the pre-training stage has been commonly used (e.g.,
[3, 9, 42, 47]), but this might hamper performance in the fine-tuning stage. Using
validation error, we observe the necessity of early-stopping in pre-training phase
(see supp. mat. for a validation error plot). We thus make the use of episodic
early stopping using validation set at pre-training time, specifically by stopping
the training when the mean accuracy over a window of recent epochs starts to
decrease. The best model in the window is selected as the final result.

6 Experimental validation

In the following, we are conducting an experimental evaluation and comparison
of the proposed associative alignment strategies for few-shot learning. First, we
introduce the datasets used and evaluate the strong baseline from sec. 5.
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6.1 Datasets and implementation details

Datasets We present experiments on four benchmarks: mini -ImageNet [47],
tieredImageNet [37], and FC100 [33] for generic object recognition; and CUB-
200-2011 (CUB) [48] for fine-grained image classification. mini -ImageNet is a
subset of the ImageNet ILSVRC-12 dataset [38] containing 100 categories and
600 examples per class. We used the same splits as Ravi and Larochelle [36],
where 64, 16, and 20 classes are used for the base, validation, and novel classes,
respectively. As a larger benchmark, the tieredImageNet [37] is also a subset
of ImageNet ILSVRC-12 dataset [38], this time with 351 base, 97 validation,
and 160 novel classes respectively. Derived from CIFAR-100 [23], the FC100
dataset [33] contains 100 classes grouped into 20 superclasses to minimize class
overlap. Base, validation and novel splits contain 60, 20, 20 classes belonging to
12, 5, and 5 superclasses, respectively. The CUB dataset [48] contains 11,788 im-
ages from 200 bird categories. We used the same splits as Hilliard et al. [19] using
100, 50, and 50 classes for the base, validation, and novel classes, respectively.

Network architectures We experiment with three backbones for the feature
learner f(·|θ): 1) a 4-layer convolutional network (“Conv4”) with input image
resolution of 84× 84, similar to [9, 36, 42]; 2) a ResNet-18 [18] with input size of
224× 224; and 3) a 28-layers Wide Residual Network (“WRN-28-10”) [41] with
input size of 80 × 80 in 3 steps of dimension reduction. We use a single hidden
layer MLP of 1024 dimensions as the critic network h(·|φ) (c.f. sec. 4.3).

Implementation details Recall from sec. 3 that training consists of two stages:
1) pre-training using base categories X b; and 2) fine-tuning on novel categories
Xn. For pre-training, we use the early stopping algorithm from sec. 5.2 with
a window size of 50. Standard data augmentation approaches (i.e., color jitter,
random crops, and left-right flips as in [3]) have been employed, and the Adam
algorithm with a learning rate of 10−3 and batch size of 64 is used for both
pre-training and fine-tuning. The arcmax loss (eq. 7) is configured with s = 20
and m = 0.1 which are set by cross validation. In the fine-tuning stage, episodes
are defined by randomly selecting N = 5 classes from the novel categories Xn.
k examples for each category are subsequently sampled (k = 1 and k = 5 in
our experiments). As in Chen et al. [3], no standard data augmentation was
used in this stage. We used episodic cross-validation to find s and m with a
fixed encoder. More specifically, (s,m) were found to be (5, 0.1) for the Conv4
and (5, 0.01) for the WRN-28-10 and ResNet-18 backbones. The learning rate
for Adam was set to 10−3 and 10−5 for the centroid and adversarial alignments
respectively. Similarly to [1], 5 iterations (inner loop of algorithm 2) were used
to train the critic h(·|φ). We fix the number of related base categories as B = 10
(see supp. mat. for an ablation study on B). For this reason, we used a relatively
large number of categories (50 classes out of the 64 available in mini -ImageNet).
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Table 1: Preliminary evaluation using mini -ImageNet and CUB, presenting 5-
way classification accuracy using the Conv4 backbone, with ± indicating the
95% confidence intervals over 600 episodes. The best result is boldfaced, while
the best result prior to this work is highlighted in blue. Throughout this paper,
“–” indicates when a paper does not report results in the corresponding scenario.

mini-ImageNet CUB
Method 1-shot 5-shot 1-shot 5-shot

m
et

a
le

a
rn

in
g Meta-LSTM [36] 43.44 ± 0.77 55.31 ± 0.71 – –

MatchingNet‡ [47] 43.56 ± 0.84 55.31 ± 0.73 60.52 ± 0.88 75.29 ± 0.75

ProtoNet‡ [42] 49.42 ± 0.78 68.20 ± 0.66 51.31 ± 0.91 70.77 ± 0.69

MAML‡ [10] 48.07 ± 1.75 63.15 ± 0.91 55.92 ± 0.95 72.09 ± 0.76

RelationNet‡ [44] 50.44 ± 0.82 65.32 ± 0.70 62.45 ± 0.98 76.11 ± 0.69

tr
.

le
a
rn

in
g

softmax† 46.40 ± 0.72 64.37 ± 0.59 47.12 ± 0.74 64.16 ± 0.71

softmax†� 46.99 ± 0.73 65.33 ± 0.60 45.68 ± 0.86 66.94 ± 0.84

cosmax† 50.92 ± 0.76 67.29 ± 0.59 60.53 ± 0.83 79.34 ± 0.61

cosmax†� 52.04 ± 0.82 68.47 ± 0.60 60.66 ± 1.04 79.79 ± 0.75

our baseline (sec. 5) 51.90 ± 0.79 69.07 ± 0.62 60.85 ± 1.07 79.74 ± 0.64

a
li
g
n
.

adversarial 52.13 ± 0.99 70.78 ± 0.60 63.30 ± 0.94 81.35 ± 0.67

centroid 53.14 ± 1.06 71.45 ± 0.72 62.71 ± 0.88 80.48 ± 0.81

† our implementation � with early stopping ‡ implementation from [3] for CUB

6.2 mini-ImageNet and CUB with a shallow Conv4 backbone

We first evaluate the new baseline presented in sec. 5 and our associative align-
ment strategies using the Conv4 backbone on the mini -ImageNet (see supp. mat.
for evaluations in higher number of ways) and CUB datasets, with corresponding
results presented in table 1. We note that arcmax with early stopping improves
on using cosmax and softmax with and without early stopping for both the 1-
and 5-shot scenarios, on both the mini -ImageNet and CUB datasets. We followed
the same dataset split configuration, network architecture, and implementation
details given in [3] for our testing. Our centroid associative alignment outper-
forms the state of the art in all the experiments, with gains of 1.24% and 2.38%
in 1- and 5-shot over our baseline on mini -ImageNet. For CUB, the adversarial
alignment provides an additional gain of 0.6% and 0.87% over the centroid one.

6.3 mini-ImageNet and tieredimageNet with deep backbones

We now evaluate our proposed associative alignment on both the mini -ImageNet
and tieredimageNet datasets using two deep backbones: ResNet-18 and WRN-28-
10. Table 2 compares our proposed alignment methods with several approaches.

mini-ImageNet Our centroid associative alignment strategy achieves the best
1- and 5-shot classification tasks on both the ResNet-18 and WRN-28-10 back-
bones, with notable absolute accuracy improvements of 2.72% and 1.68% over
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Table 2: mini -ImageNet and tieredImageNet results using ResNet-18 and WRN-
28-10 backbones. ± denotes the 95% confidence intervals over 600 episodes.

mini-ImageNet tieredImageNet
Method 1-shot 5-shot 1-shot 5-shot

R
es

N
et

-1
8

TADAM [33] 58.50 ± 0.30 76.70 ± 0.30 – –

ProtoNet‡ [42] 54.16 ± 0.82 73.68 ± 0.65 61.23 ± 0.77 80.00 ± 0.55

SNAIL [32] 55.71 ± 0.99 68.88 ± 0.92 – –
IDeMe-Net [4] 59.14 ± 0.86 74.63 ± 0.74 – –
Activation to Param. [35] 59.60 ± 0.41 73.74 ± 0.19 – –
MTL [43] 61.20 ± 1.80 75.50 ± 0.80 – –
TapNet [54] 61.65 ± 0.15 76.36 ± 0.10 63.08 ± 0.15 80.26 ± 0.12

VariationalFSL [57] 61.23 ± 0.26 77.69 ± 0.17 – –
MetaOptNet∗ [24] 62.64 ± 0.61 78.63 ± 0.46 65.99 ± 0.72 81.56 ± 0.53

our baseline (sec. 5) 58.07 ± 0.82 76.62 ± 0.58 65.08 ± 0.19 83.67 ± 0.51

adversarial alignment 58.84 ± 0.77 77.92 ± 0.82 66.44 ± 0.61 85.12 ± 0.53

centroid alignment 59.88 ± 0.67 80.35 ± 0.73 69.29 ± 0.56 85.97 ± 0.49

W
R

N
-2

8
-1

0

LEO [39] 61.76 ± 0.08 77.59 ± 0.12 66.33 ± 0.09 81.44 ± 0.12

wDAE [15] 61.07 ± 0.15 76.75 ± 0.11 68.18 ± 0.16 83.09 ± 0.12

CC+rot [13] 62.93 ± 0.45 79.87 ± 0.33 70.53 ± 0.51 84.98 ± 0.36

Robust-dist++ [39] 63.28 ± 0.62 81.17 ± 0.43 – –
Transductive-ft [7] 65.73 ± 0.68 78.40 ± 0.52 73.34 ± 0.71 85.50 ± 0.50

our baseline (sec. 5) 63.28 ±0.71 78.31 ±0.57 68.47 ±0.86 84.11 ±0.65
adversarial alignment 64.79 ±0.93 82.02 ±0.88 73.87 ±0.76 84.95 ±0.59
centroid alignment 65.92 ± 0.60 82.85 ± 0.55 74.40 ± 0.68 86.61 ±0.59

‡ Results are from [3] for mini-ImageNet and from [24] for tieredImageNet, * ResNet-12

MetaOptNet [24] and Robust-dist++ [8] respectively. The single case where a
previous method achieves superior results is that of MetaOptNet, which outper-
forms our method by 2.76% in 1-shot. For the WRN-28-10 backbone, we achieve
similar results to Transductive-ft [7] for 1-shot, but outperform their method by
4.45% in 5-shot. Note that unlike IDeMe-Net [4], SNAIL [32] and TADAM [33],
which make use of extra modules, our method achieves significant improvements
over these methods without any changes to the backbone.

tieredImageNet Table 2 also shows that our centroid associative alignment out-
performs the compared methods on tieredImageNet in both 1- and 5-shot sce-
narios. Notably, our centroid alignment results in a gain of 3.3% and 4.41% over
MetaOptNet [24] using the ResNet-18. Likewise, our centroid alignment gains
1.06% and 1.11% over the best of the compared methods using WRN-28-10.

6.4 FC100 and CUB with a ResNet-18 backbone

We present additional results on the FC100 and CUB datasets with a ResNet-18
backbone in table 3. In FC100, our centroid alignment gains 0.73% and 2.14%
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Table 3: Results on the FC100 and CUB dataset using ResNet-18 backbones.
± denotes the 95% confidence intervals over 600 episodes. The best result is
boldfaced, while the best result prior to this work is highlighted in blue.

FC100 CUB
Method 1-shot 5-shot 1-shot 5-shot

Robust-20 [8] – – 58.67 ± 0.65 75.62 ± 0.48

GNN-LFT [45] – – 51.51 ± 0.80 73.11 ± 0.68

RelationNet‡ [44] – – 67.59 ± 1.02 82.75 ± 0.58

ProtoNet‡ [42] 40.5 ± 0.6 55.3 ± 0.6 71.88 ± 0.91 87.42 ± 0.48

TADAM [33] 40.1 ± 0.4 56.1 ± 0.4 – –

MetaOptNet† [24] 41.1 ± 0.6 55.5 ± 0.6 – –
MTL [43] 45.1 ± 1.8 57.6 ± 0.9 – –
Transductive-ft [7] 43.2 ± 0.6 57.6 ± 0.6 – –

our baseline (sec. 5) 40.84 ± 0.71 57.02 ± 0.63 71.71 ± 0.86 85.74 ± 0.49

adversarial 43.44 ± 0.71 58.69 ± 0.56 70.80 ± 1.12 88.04 ± 0.54

centroid 45.83 ± 0.48 59.74 ± 0.56 74.22 ± 1.09 88.65 ± 0.55

‡ implementation from [3] for CUB, and from [24] for FC100

over MTL [43] in 1- and 5-shot respectively. We also observe improvements in
CUB with our associative alignment approaches, with the centroid alignment
outperforming ProtoNet [42] by 2.3% in 1-shot and 1.2% in 5-shot. We outper-
form Robust-20 [8], an ensemble of 20 networks, by 4.03% and 4.15% on CUB.

6.5 Cross-domain evaluation

We also evaluate our alignment strategies in cross-domain image classification.
Here, following [3], the base categories are drawn from mini -ImageNet, but the
novel categories are from CUB. As shown in table 4, we gain 1.3% and 5.4%
over the baseline in the 1- and 5-shot, respectively, with our proposed centroid
alignment. Adversarial alignment falls below the baseline in 1-shot by -1.2%, but
gains 5.9% in 5-shot. Overall, our centroid alignment method shows absolute ac-
curacy improvements over the state of the art (i.e., cosmax [3]) of 3.8% and 6.0%
in 1- and 5- shot respectively. We also outperform Robust-20 [8], an ensemble of
20 networks, by 4.65% for 5-shot on mini -ImageNet to CUB cross-domain.One
could argue that the three bird categories (i.e., house finch, robin, and toucan)
in mini -ImageNet bias the cross-domain evaluation. Re-training the approach
by excluding these classes resulted in a similar performance as shown in table 4.

7 Discussion

This paper presents the idea of associative alignment for few-shot image clas-
sification, which allows for higher generalization performance by enabling the
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Table 4: Cross-domain results from mini -ImageNet to CUB in 1-shot, 5-shot,
10-shot scenarios using a ResNet-18 backbone.

Method 1-shot 5-shot 10-shot

ProtoNet‡ [49] – 62.02 ± 0.70 –

MAML‡ [10] – 51.34 ± 0.72 –

RelationNet‡ [44] – 57.71 ± 0.73 –
Diverse 20 [8] – 66.17 ± 0.73 –

cosmax† [3] 43.06 ± 1.01 64.38 ± 0.86 67.56±0.77

our baseline (sec. 5) 45.60 ± 0.94 64.93 ± 0.95 68.95±0.78
adversarial 44.37 ± 0.94 70.80 ± 0.83 79.63 ±0.71
adversarial∗ 44.65 ± 0.88 71.48 ± 0.96 78.52 ±0.70
centroid 46.85 ± 0.75 70.37 ± 1.02 79.98 ±0.80
centroid∗ 47.25 ± 0.76 72.37 ± 0.89 79.46 ±0.72
∗ without birds (house finch, robin, toucan) in base classes

† our implementation, with early stopping, ‡ implementation from [3]

training of the entire network, still while avoiding overfitting. To do so, we de-
sign a procedure to detect related base categories for each novel class. Then, we
proposed a centroid-based alignment strategy to keep the intra-class alignment
while performing updates for the classification task. We also explored an adver-
sarial alignment strategy as an alternative. Our experiments demonstrate that
our approach, specifically the centroid-based alignment, outperforms previous
works in almost all scenarios. The current limitations of our work provide inter-
esting future research directions. First, the alignment approach (sec. 4) might
include irrelevant examples from the base categories, so using categorical se-
mantic information could help filter out bad samples. An analysis showed that
∼12% of the samples become out-of-distribution (OOD) using a centroid near-
est neighbour criteria on miniImageNet in 5-way 1- and 5-shot using ResNet-18.
Classification results were not affected significantly by discarding OOD exam-
ples at each iteration. Second, the multi-modality of certain base categories look
inevitable and might degrade the generalization performance compared to the
single-mode case assumed by our centroid alignment strategy. Investigating the
use of a mixture family might therefore improve generalization performance.
Finally, our algorithms compute the related base once and subsequently keep
them fixed during an episode, not taking into account the changes applied to
the latent space during the episodic training. Therefore, a more sophisticated
dynamic sampling mechanism could be helpful in the finetuning stage.
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