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In this document, we cover the details of the implementation and experi-
ments for our work. We also provide additional ablation studies and analysis.
Specifically, we have:

° describes how we decide the NP-MPJPE threshold based on
its effect on visual pose similarity.

° provides additional implementation details on model training,
keypoint definition and normalization, downstream task experiment setup,
etc.

° provides additional ablation studies, including the effect of key
hyperparameters, ordered embedding variance visualizations, and embedding
space visualization.

. provides additional quantitative pose retrieval result com-
parisons with image-based EpipolarPose model [5] for view-invariant pose
retrieval.

e [Section 5| provides additional qualitative pose retrieval results.

e [Section 6|describes the qualitative video alignment experiment. Please
refer to https://drive.google.com/open?id=1kTc_UTOEqOH2ZBgfEoh8qEIMFBouc-Wv for the video
synchronization results.

1 Visualization of 3D Visual Similarity

The 3D pose space is continuous, and we use the NP-MPJPE as a proxy to quan-
tify visual similarity between pose pairs. Fig. [1| shows pairs of 3D pose keypoints
with their corresponding NP-MPJPE, where each row depicts a different NP-
MPJPE range. This plot demonstrates the effect of choosing different , which
controls matching threshold between 3D poses. If we choose k = 0.05, then only
the first row in Fig. [I|would be considered matching, and the rest of the rows are
non-matching. Our current value of £ = 0.10 corresponds to using the first two
rows as matching pairs and the rest of the rows as non-matching ones. By loos-
ening k, poses with greater differences will be considered as matching, as shown
by different rows in Fig. [I} We note that pairs in rows 3 and 4 shows significant
visual differences compared with the first two rows. We further investigate the
effects of different x during training and evaluation in Section


https://drive.google.com/open?id=1kTc_UT0Eq0H2ZBgfEoh8qEJMFBouC-Wv

2 J.J. Sun et al.

NP-MPJPE: 0.011

NP-MPJPE: 0.065

NP-MPJPE: 0.111

NP-MPJPE: 0.159

NP-MPJPE: 0.026

NP-MPJPE: 0.074

NP-MPJPE: 0.121

NP-MPJPE: 0.174

NP-MPJPE: 0.033

NP-MPJPE: 0.085

NP-MPJPE: 0.134

NP-MPJPE: 0.185

NP-MPJPE: 0.049

NP-MPJPE: 0.091

NP-MPJPE: 0.145

NP-MPJPE: 0.192

Fig. 1: 3D pose pairs with different NP-MPJPE, where the NP-MPJPE increases with
each row. The poses are randomly sampled from the hold-out set of H3.6M. Row 1
shows pairs with 0.00 to 0.05 NP-MPJPE, row 2 shows pairs with 0.05 to 0.10 NP-
MPJPE, row 3 shows pairs with 0.10 to 0.15 NP-MPJPE, and row 4 shows pairs with
0.15 to 0.20 NP-MPJPE.

2 Additional Implementation Details

The backbone network architecture for our model is based on [7]. We use two
residual blocks, batch normalization, 0.3 dropout, and no maximum weight norm
constraint [7]. During training, we use exponential moving average with 0.9999
decay rate and normalize matching probabilities to within [0.05,0.95] for numer-
ical stability. We use Adagrad optimizer [2] with fixed learning rate 0.02 and
batch size N = 256.

Keypoint Definition Fig. 2] illustrates the keypoints that we use in our
experiments. The 3D poses used in our experiments are the 17 keypoints cor-
responding to the H3.6M [4] skeleton used in [7], shown in Fig. We use
this keypoint definition to compute NP-MPJPE for 3D poses and evaluate re-
trieval accuracy. The Pr-VIPE training and inference process do not depend on
a particular 2D keypoint detector. Here, we use PersonLab (ResNet152 single-
scale) [§] in our experiments. Our 2D keypoints are selected from the keypoints
in COCO [6], which is the set of keypoints detected by PersonLab [8]. We use
the 12 body keypoints from COCO and select the “Nose” keypoint as the head,
shown in Fig.

Pose Normalization We normalize our 2D and 3D poses such that camera
parameters are not needed during training and inference. For 3D poses, our
normalization procedure is similar to that in [I]. We translate a 3D pose so
that the hip located at the origin. We then scale the hip to spine to thorax
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(a) 17 keypoints based on H3.6M. (b) 13 keypoints based on COCO.

Fig. 2: Visualization of pose keypoints used in our experiments.

distance to a unit scale. For 2D poses, we translate the keypoints so that the
center between LHip and RHip is at the origin. Then we normalize the pose
such that the maximum distance between shoulder and hip joints is 0.5. This
maximum distance is computed between all pairwise distances among RShoulder,
LShoulder, RHip, and LHip.

Downstream Task Experiments For the action recognition experiment,
we follow the standard evaluation protocol [I0] and remove action “strum guitar”
and several videos in which less than one third of the target person is visible. We
use the official train/test split and report the averaged per-class accuracy. For
the view-invariant action recognition experiments in which the index set only
contains videos from a single view, we exclude the actions that have zero or
only one sample under a particular view. We take the bounding boxes provided
with the dataset and use [9] (ResNet101) for 2D pose keypoint estimation. For
frames of which the bounding box is missing, we copy the bounding box from
the nearest frame. Finally, since our embedding is chiral, but certain actions can
be done with either body side (pitching a baseball with left or right hand), when
we compare two frames, we extract our embeddings from both the original and
the mirrored version of each frame, and use the minimum distance between all
the pairwise combinations as the frame distance.

For the video alignment experiment, we follow the protocol in [3], exclud-
ing “jump rope” and “strum guitar” from our evaluation. For the evaluations
between videos under only the same or different views, we exclude actions that
have zero videos under a particular view from the average Kendall’s Tau compu-
tation. Since certain actions can be done with either body side, for a video pair
(v1,v2), we compute the Kendall’s Taus between (vi,v2) and (vy, mirror(vs)),
and use the larger number.
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3 Additional Ablation Studies

Effect of Number of Samples K and Margin Parameter  Table [ shows
the effect of the number of samples K and the margin parameter 8 (actual
triplet margin « = log ) on Pr-VIPE. The number of samples control how
many points we sample from the embedding distribution to compute matching
probability and 8 controls the ratio of matching probability between matching
and non-matching pairs. Our model is robust to the choice of S in terms of
retrieval accuracy as shown by Table [I} The main effect of § is on retrieval
confidence, as non-matching pairs are scaled to a smaller matching probability
for larger 8. Pr-VIPE performance with 10 samples is competitive with the
baselines in the main paper, but we do better with 20 samples. Increasing the
number of samples further has similar performance. For our experiments, we use
20 samples and B = 2.

Table 1: Additional ablation study results of Pr-VIPE on H3.6M with the number of
samples K and margin parameter 3.

Hyperparameter Value‘Hit@l Hit@10 Hit@20

10 0.744 0.948 0.971

K 20 10.762 0.956 0.977
30 [0.755 0.955 0.975

1.25 | 0.758 0.956 0.977

1.5 |0.759 0.956 0.977

A 2 10.762 0.956 0.977
3 10.760 0.955 0.976

Effect of Camera Augmentation We explore the effect of different ran-
dom rotations during camera augmentation on pose retrieval results in Table
All models are trained on the 4 chest-level cameras on H3.6M but the models
with camera augmentation also use projected 2D keypoints from randomly ro-
tated 3D poses. For the random rotation, we always use azimuth range of +180°,
and we test performance with different angle limits for elevation and roll. We see
that the model with no augmentation does the best on the H3.6M, which has
the same 4 camera views as training. With increase in rotation angles during
mixing, the performance on chest-level cameras drop while performance on new
camera views generally increases. The results demonstrate that mixing detected
and projected keypoints reduces model overfitting on camera views used dur-
ing training. Training using randomly rotated keypoints enables our model to
generalize much better to new views.

Effect of NP-MPJPE threshold x We train and evaluate with different
values of the NP-MPJPE threshold x in Table Bl s controls the NP-MPJPE
threshold for a matching pose pair and visualizations of pose pairs with different
NP-MPJPE are in Fig.[I] Table[3|shows that Pr-VIPE generally achieves the best
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Table 2: Additional ablation study results of Pr-VIPE on H3.6M and 3DHP using
different rotation thresholds for camera augmentation. The angle threshold for azimuth
is always +180° and the angle thresholds in the table are for elevation and roll. The
row for w/o aug. corresponds to Pr-VIPE without augmentation.

Hit@1 on evaluation dataset

Hyperparameter Range |[H3.6M 3DHP (all) 3DHP (chest)
w/o aug.| 0.762 0.199 0.255
. +15° | 0.747 0.252 0.289
Elevation and Roll Angle 130° | 0737 0.264 0.283
+45° 1 0.737 0.262 0.273

Table 3: Additional ablation study results of Pr-VIPE on H3.6M with different NP-
MPJPE threshold & for training and evaluation.

Hit@1 with evaluation
Training x| 0.05 0.10 0.15 0.20

0.05 ]0.495 0.761 0.908 0.962
0.10 0.489 0.762 0.909 0.963
0.15 0.462 0.753 0.910 0.965
0.20 0.429 0.731 0.906 0.965

accuracy for a given NP-MPJPE threshold when the model is trained with the
same matching threshold. Additionally, when we train with a tight threshold,
e.g., K = 0.05, we do comparatively well on accuracy at looser thresholds. In
contrast, when we train with a loose threshold, e.g., x = 0.20, we do not do
as well given a tighter accuracy threshold at evaluation. This is because when
we push non-matching poses using the triplet ratio loss, x = 0.20 only pushes
poses that are more than 0.20 NP-MPJPE apart, and does not explicitly push
poses less than the NP-MPJPE threshold. The closest retrieved pose will then
be within 0.20 NP-MPJPE but it is not guaranteed to be within any threshold
< 0.20 NP-MPJPE. But when we use x = 0.05 for training, poses that are more
than 0.05 NP-MPJPE are pushed apart, which also satisfies k = 0.20 threshold.

In the main paper, we use k = 0.1. For future applications with other match-
ing definitions, the Pr-VIPE framework is flexible and can be trained with dif-
ferent k to satisfy different accuracy requirements.

Additional Plots for Ordered Variances Similar to the main paper,
we retrieve poses using 2D NP-MPJPE for the top-3 2D poses with smallest
and largest variances in Fig. [3] Fig. [3a] shows that for the poses with the top-3
smallest variances, the nearest 2D pose neighbors are visually distinct, which
means that these 2D poses are less ambiguous. On the other hand, the nearest
2D pose neighbors of the poses with the largest variances in Fig. are visually
similar, which means that these 2D poses are more ambiguous.
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Fig. 3: Top retrievals by 2D NP-MPJPE from H3.6M hold-out subset for queries with
top-3 largest and smallest variances. 2D poses are shown in the boxes.

Embedding Space Visualization We run Principal Component Analysis
(PCA) on the 16-dimensional embeddings using the Pr-VIPE model. Fig. 4| vi-
sualizes the first two principal dimensions. To visualize more unique poses, we
randomly subsample the H3.6M hold-out set and select 3D poses at least 0.1
NP-MPJPE apart. Fig. 4l demonstrates that 2D poses from similar 3D poses are
close together, while non-matching poses are further apart. Standing and sitting
poses seem well separated from the two principle dimensions. Additionally, there
are leaning poses between sitting and standing. Poses near the top of the figure
have arms raised, and there is generally a gradual transition to the bottom of the
figure, where arms are lowered. These results show that from 2D joint keypoints
only, we are able to learn view-invariant properties with compact embeddings.

4 Additional Quantitative Pose Retrieval Results

We show an additional view-invariant pose retrieval evaluation comparing Pr-
VIPE (with camera augmentation) to EpipolarPose [5], a recent multi-view im-
age based model, on cross-view pose retrieval. For Human3.6M, EpipolarPose is
trained with the same training split as Pr-VIPE. The evaluation split we use is
a frame subset provided by [5] for which the authors provided cropping boxes
based on groundtruth 3D keypoints. The input images are cropped using these
bounding boxes, and the trained models provided by the authors are then ran on
the cropped images. In this way, we evaluate EpipolarPose using all the informa-
tion provided by the authors. In comparison, Pr-VIPE uses detected keypoints
and no groundtruth information for inference.

We show retrieval results on Human3.6M since [5] is based on images and
requires a different model to be trained for 3DHP. We emphasize that this is a
different evaluation split from our main paper, since we use the evaluation subset
of Human3.6M for which [5] provides bounding boxes. On this subset, Pr-VIPE
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Fig. 4: Visualization of Pr-VIPE space with 2D poses in the H3.6M hold-out subset
using the first two PCA dimensions.

with augmentation achieves 75.2% Hit@1, fully supervised EpipolarPose achieves
72.7% Hit@Q1 and self-supervised EpipolarPose achieves 67.8% Hit@1.

These results show the effectiveness of Pr-VIPE for pose retrieval. Our model,
using detected 2D keypoints and no groundtruth information, can retrieve poses
more accurately compared with [5]. We further note that 3D pose estimation
models require rigid alignment between every query-index pairs to achieve their
best performance for retrieval, while Pr-VIPE does not require post-processing.

5 Additional Qualitative Pose Retrieval Results

We present more view-invariant pose retrieval qualitative results for Pr-VIPE
on all the relevant datasets in Fig. |5} The first two rows show results on H3.6M,
the next three rows are on 3DHP and the last two rows shows results using the
hold-out set in H3.6M to retrieve from 2DHP. We are able to retrieve across
camera views and subjects on all datasets.

On H3.6M, retrieval confidence is generally high and retrievals are visually
accurate. NP-MPJPE is in general smaller on H3.6M compared to 3DHP, since
3DHP has more diverse poses and camera views. The model works reasonably
well on 3DHP despite additional variations on pose, viewpoints and subjects.
For the pairs R4C3 and R5C3, the subjects are occluded by the chair and the
pose inferred by the 2D keypoint detector may not be accurate. Our model is
dependent on the result of the 2D keypoint detector. Interestingly, R3C2 and
R4C3 show retrievals with large rolls, which is unseen during training. The re-
sults on 3DHP demonstrate the generalization capability of our model to unseen
poses and views. To test on in-the-wild images, we use the hold-out set of H3.6M
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Fig. 5: Visualization of pose retrieval results. On each row, we show the query pose
on the left for each image pair and the top-1 retrieval using the Pr-VIPE model with
camera augmentation on the right. We display the retrieval confidences (“C”) and top-1
NP-MPJPEs (“E”, if 3D pose groundtruth is available).
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to retrieve from 2DHP. The retrieval results demonstrate that Pr-VIPE embed-
dings can retrieve visually accurate poses from detected 2D keypoints. R7C2 is
particularly interesting, as the retrieval has a large change in viewpoint. For the
low confidence pairs R6C2 and R7C3, we can see that the arms of the subjects
seems to be bent slightly differently. In contrast, the higher confidence retrieval
pairs looks visually similar. The results suggest that performance of existing 2D
keypoint detectors, such as [§], is sufficient to train pose embedding models to
achieve the view-invariant property in diverse images.

6 Qualitative Video Alignment Results

We show that Pr-VIPE can be applied to synchronize action videos from different
views from the Penn Action dataset (test set). The videos are synchronized to
the pace of a target video (placed in the center of each video array). This allows
us to play different videos of the same action at the same pace. The results for
different aligned actions are located at https://drive.google.com/open?id=
1kTc_UTOEqOH2ZBgfEoh8qEJMFBouC-Wv. The alignment procedure for Pr-VIPE
is described in Section 4.3.2 in the main paper.


https://drive.google.com/open?id=1kTc_UT0Eq0H2ZBgfEoh8qEJMFBouC-Wv
https://drive.google.com/open?id=1kTc_UT0Eq0H2ZBgfEoh8qEJMFBouC-Wv

10

J.J. Sun et al.

References

10.

. Chen, C.H., Tyagi, A., Agrawal, A., Drover, D., Stojanov, S., Rehg, J.M.: Unsu-

pervised 3D pose estimation with geometric self-supervision. In: CVPR (2019)
Duchi, J., Hazan, E., Singer, Y.: Adaptive subgradient methods for online learning
and stochastic optimization. JMLR (2011)

Dwibedi, D., Aytar, Y., Tompson, J., Sermanet, P., Zisserman, A.: Temporal cycle-
consistency learning. In: CVPR (2019)

Tonescu, C., Papava, D., Olaru, V., Sminchisescu, C.: Human3.6M: Large scale
datasets and predictive methods for 3D human sensing in natural environments.
IEEE TPAMI (2013)

. Kocabas, M., Karagoz, S., Akbas, E.: Self-supervised learning of 3D human pose

using multi-view geometry (2019)

Lin, T.Y., Maire, M., Belongie, S., Hays, J., Perona, P., Ramanan, D., Dollar, P.,
Zitnick, C.L.: Microsoft COCO: Common objects in context. In: ECCV (2014)
Martinez, J., Hossain, R., Romero, J., Little, J.J.: A simple yet effective baseline
for 3D human pose estimation. In: ICCV (2017)

Papandreou, G., Zhu, T., Chen, L.C., Gidaris, S., Tompson, J., Murphy, K.: Per-
sonLab: Person pose estimation and instance segmentation with a bottom-up, part-
based, geometric embedding model. In: ECCV (2018)

. Papandreou, G., Zhu, T., Kanazawa, N., Toshev, A., Tompson, J., Bregler, C.,

Murphy, K.: Towards accurate multi-person pose estimation in the wild. In: CVPR
(2017)

Xia, L., Chen, C.C., Aggarwal, J.K.: View invariant human action recognition
using histograms of 3D joints. In: CVPRW (2012)



	View-Invariant Probabilistic Embedding for Human PoseSupplementary Materials

