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1 Introduction
This document includes additional details and results omitted from the main paper. Additionally, we urge the

reader to view the supplementary video to fully appreciate the quality of 3D human motions produced by our
method. We offer additional details of our methods in Sections 2, 3, 4, and 5, followed by additional evaluation
details and experimental results in 6.

2 Contact Estimation Details
In this section we describe details of our contact estimation network and the new synthetic dataset used for

training. Please refer to Section 3.2 of the main paper for the primary discussion.

2.1 Synthetic Dataset
Our synthetic dataset was rendered using Blender1 and includes 13 characters performing 65 different motion

capture sequences retargeted to each character taken from www.mixamo.com. Each motion is recorded from 2
camera viewpoints resulting in 1690 videos and 101k frames of data. The motions include: samba, swing, and
salsa dancing, boxing, football, and baseball actions, walking, and idle poses. Videos are rendered at 1280x720
with motion blur, and are 2 seconds long at 30 fps. Example frames from the dataset are shown in Figure 1. In
addition to RGB frames, at each timestep the dataset includes 2D OpenPose [1] detections, the 3D pose in the
form of the character’s skeleton (skeletons are different for each character, and pose is provided in a .bvh motion
capture file), foot contact labels for the heel and toe base of each foot as described in the main paper, and camera
parameters.

For each video, many parameters are randomized. The camera is placed at a uniform random distance in
[4.5, 7.5] and Gaussian random height with µ = 0.9, and σ = 0.3 but clamped to be in [0.3, 1.75], all in meters.
The camera is placed at a random angle within 90 degrees offset from the front of the character but always looks
at roughly character hip height. The camera does not move during the video. Floor texture is randomly chosen
from solid colors and 26 other textures with various wood, grass, tile, metal, and carpet. Four lights in the scene
are randomly toggled on and off, given random energies, and randomly offset from default positions, resulting in
many shadow variations across videos.

1https://www.blender.org/
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Figure 1: Example RGB frames from our synthetic dataset for contact estimation learning. The data also contains
2D OpenPose [1] detections, 3D pose in the form of the character’s skeleton, and automatically labeled contacts
for the toe base and heels.

2.2 Model Details
As discussed in the main paper, our model takes 2D pose as input which enables training on synthetic data.

In future work, we would like to use image inputs to make contact and ground estimation more generally robust.
For example, our model could be used to generate noisy pseudo-labels to bootstrap training on real images. One
alternative to using 2D joints as input is to use 3D joints from Monocular Total Capture (MTC) [14], however the
3D MTC joints are derived directly from 2D OpenPose estimates and therefore give no new information to the
network.

We implement our contact estimation MLP (sizes 1024, 512, 128, 32, 20) in PyTorch [8]. All but the last
layer are followed by batch normalization, and we use a single dropout layer before the size-128 layer (dropout
p = 0.3). To train, we optimize the binary cross-entropy loss using Adam [6] with a learning rate of 10−4. We
apply an L2 weight decay with a weight of 10−4 and use early stopping based on the validation set loss. We scale
all 2D joint inputs to be largely between [−1, 1]. During training, we also add Gaussian noise to the normalized
joints with σ = 0.005.

Because our network classifies contacts jointly over 5 frames for every target frame (the frame at the center
of the window), there are many overlapping predictions at test time. When inferring contacts for an entire video
at test time, we first use every frame as a target and then collect votes from overlapping predictions. A joint is
marked in contact at a frame if a majority of the votes for that frame classify it as in contact.

3 Kinematic Optimization Details
In this section we detail the kinematic optimization procedure used to initialize our physics-based optimiza-

tion. Please see Section 3.3 in the main paper for an overview.

3.1 Inputs and Initialization
Our kinematic optimization takes in information about J body joints over T timesteps that make up the

motion. Specifically, for j ∈ J and t ∈ T we have the 2D pose detection from OpenPose xj,t ∈ R2 with
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confidence σj,t, contacts estimated in the previous stage of our pipeline cj,t ∈ {0, 1} where cj,t = 1 if joint j is
in contact with the ground at time t, and finally the full-body 3D pose from MTC.

We use the MTC input to initialize a custom skeleton, called Ssrc in the main paper, which contains J = 28
joints. In particular, we use the MTC COCO regressor to obtain 19 body joint positions (excluding feet) over the
sequence, and vertices on the Adam mesh for the 6 foot joints as in the original MTC paper. We choose these
25 joints in order to use a re-projection error in our optimization objective, as described below. To better map to
the character rigs used during animation retargeting, we additionally use 3 spine joint positions directly from the
MTC body model giving the final total of 28 joints. Note, we do not use any hand or face information from MTC.
Our skeleton has fixed bone lengths which are determined based on these input 3D joint locations throughout
the motion sequence: the median distance between two joints over the entire motion sequence defines the bone
length. Our skeleton (before fitting bone lengths to the input data) is visualized in Figure 2.

Figure 2: Skeleton used in our
method. Bone lengths and pose
are initialized from MTC input for
each motion sequence before our
kinematic optimization.

We normalize the input positions to get the root-relative positions of each
joint qj,t ∈ R3, j = 1, . . . , J, t = 1, . . . , T which we will target during op-
timization, and let the global translation be our initial root translation proot,t.
All these positions are preprocessed to remove obviously incorrect frames
based on OpenPose detection confidence: for the 25 joints with correspond-
ing 2D OpenPose detections (all non-spine joints in our skeleton), if the con-
fidence is below 0.3, then the frame is replaced with a linear interpolation
between the closest adjacent frames with sufficient confidence.

Because we optimize for the joint angles of our skeleton (see below),
next we must find initial joint angles to match the MTC joint position inputs.
We roughly initialize the joint angles of our skeleton by copying those from
the MTC body model, and finally perform inverse kinematics (IK) targeting
the preprocessed joint positions which results in a reconstruction of the MTC
input on our skeleton. We use a Jacobian-based full body IK solver based
on [3]. This is the skeleton which is optimized throughout our kinematic
initialization.

3.2 Optimization Variables
We optimize over global 3D root translation proot,t ∈ R3 and skeleton

joint Euler angles θj,t ∈ R3 with j = 1, . . . , J, t = 1, . . . , T . We also
find ground plane parameters n̂,pfloor ∈ R3 which are the normal vector and
some point on the plane. As described below, we do not jointly optimize all
of these at once; we do it in stages and fit the floor separately.

3.3 Problem Formulation
We seek to minimize the following objective function:

αprojEproj + αvelEvel + αangEang + αaccEacc + αdataEdata + αcontEcont + αfloorEfloor (1)

where the α are constant weights. We use αproj = 0.5, αvel = αang = 0.1, αacc = 0.5, αdata = 0.3, and
αcont = αfloor = 10. We now detail each of these energy terms.

Suppose qj,t ∈ R3, j = 1, . . . , J, t = 1, . . . , T are the current root-relative joint position estimates during
optimization which can be calculated using forward kinematics on Ssrc with the current joint angles θj,t. Then
our energy terms are defined as follows.

• 2D Re-projection Error: minimizes deviation of joints from corresponding OpenPose detections, weighted
by detection confidence

Eproj =

T∑
t=1

J∑
j=1

σj,t||Π(qj,t + proot,t)− xj,t||2 (2)
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where Π is the perspective projection parameterized by focal length f (assumed to be 2000) and [cx, cy].

• Velocity Smoothing: minimizes change in joint positions and angles over time

Evel =

T−1∑
t=1

J∑
j=1

||qj,t+1 − qj,t||2 (3)

Eang =

T−1∑
t=1

J∑
j=1

||θj,t+1 − θj,t||2. (4)

• Linear Acceleration Smoothing: minimizes change in joint linear velocity over time

Eacc =

T−2∑
t=1

J∑
j=1

||(qj,t+2 − qj,t+1)− (qj,t+1 − qj,t)||2. (5)

• 3D Data Error: minimizes deviation from 3D MTC joint initialization

Edata =

T∑
t=1

J∑
j=1

||qj,t − qj,t||2. (6)

• Contact Velocity Error: encourages feet joints (toes and heels) to be stationary when labeled as in contact

Econt =

T−1∑
t=1

∑
j∈JF

||cj,t ((qj,t+1 + proot,t+1)− (qj,t + proot,t)) ||2. (7)

where JF is the set of foot joints.

• Contact Position Error: encourages toe and heel joints to be on the ground plane when labeled as in contact

Efloor =

T∑
t=1

∑
j∈JF

||cj,t (n̂ · (qj,t + proot,t − pfloor)) ||2. (8)

3.4 Optimization Algorithm
We perform this optimization in three main stages. First, we enforce all objectives except the contact position

error and solve only for skeleton root position and joint angles (no floor parameters). Next, we use a robust Huber
regression to find the floor plane that best matches the foot joint contact positions and reject outliers, i.e., joints
labeled as in contact when they are far from the ground. Outlier contacts are re-labeled as non-contacts for all
subsequent processing. Finally, we repeat the full-body optimization, now enabling the contact position objective
to ensure feet are on the ground plane. We optimize using the Trust Region Reflective algorithm with analytical
derivatives.

3.5 Extracting Inputs for Physics-Based Optimization
From the full-body output of this kinematic optimization, we need to extract inputs for the physics-based

optimization (Section 3.1 in the main paper). To get the COM targets r(t) ∈ R3, we treat each body part as a
point with a pre-defined mass [4]. This also allows the calculation of the body-frame inertia tensor at each time
step Ib(t) ∈ R3×3 which is used to enforce dynamics constraints. Unless otherwise noted, we assume a body
mass of 73 kg for the character. We use the orientation about the root joint as the COM orientation θ(t) ∈ R3 and
the feet joint positions p1:4(t) ∈ R3 are directly taken from the full-body motion.
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4 Physics-Based Trajectory Optimization
In this section we detail various aspects of our reduced-dimensional physics-based trajectory optimization

which is introduced in Section 3.1 of the main paper.

4.1 Polynomial Parameterization
COM position and orientation, foot positions during flight, and contact forces during stance are parameterized

by a sequence of cubic polynomials as done in Winkler et al. [13]. These polynomials use a Hermite parame-
terization: we do not optimize over the polynomial coefficients directly, rather the duration, starting and ending
positions, and boundary velocities.

The COM position and orientation use one polynomial every 0.1 s. Feet positions and forces always use
at least 6 polynomials per phase, which we found necessary to accurately produce extremely dynamic motions.
We adaptively add polynomials depending on the length of the phase. If the phase is longer than 2 s, additional
polynomials are added commensurately. Foot positions during stance are a single constant value and contact
forces during flight are constant 0 value. This ensures that the no slip and no force during flight constraints are
met.

Please see Winkler et al. [13] for a more in-depth discussion of the polynomial parameterization along with
the contact phase duration parameterization.

4.2 Constraint Parameters
Though the optimization variables are continuous polynomials, objective energies and constraints are en-

forced at discrete intervals. Leg and foot kinematic constraints are enforced at 0.08 s intervals, the above floor
constraint at 0.1 s intervals, and dynamics constraints are enforced every 0.1 s. In practice, the velocity boundary
constraints try to match the mean initial velocity over the first(last) 5 frames to make it more robust to noisy
motion.

Objective terms, including smoothing, are enforced at every step for which we have input data. For example,
the synthetic dataset at 30 fps will provide an objective term at (1/30) s intervals.

4.3 Contact Timing Optimization
As explained in Section 3.1 of the main paper, our physics optimization is done in stages such that contact

phase durations are not optimized until the very last stage. We found that allowing these durations to be opti-
mized along with dynamics does not always result in a better solution as it is an inherently harder and less stable
optimization. Therefore, in the presented results we use the better of the two solutions: either the solution using
fixed input contact timings (from our neural network) or the solution after subsequently allowing phase durations
to change, if the motion is improved.

4.4 Full-Body Output
Following the physics-based optimization, we must compute a full-body motion from the physically-valid

COM and foot joint positions using IK. For the upper body (including the root), we calculate the offset of each
joint from the COM in the input motion to the physics optimization, and use this offset added to the new optimal
COM as the joint targets during IK. This means the upper-body motion will be essentially identical to the result of
the kinematic optimization (though the posture may improve due to the new COM position). For the lower body,
we target the toe and heel joints directly to the physically optimized output and let the remainder of the joints
(i.e., ankles, knees, and hips) result from IK, which can be drastically different from the input. We use the same
IK algorithm as in Section 3.1.
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Figure 3: Contact estimation classification accuracy for all frames in the 5-frame output window on the syn-
thetic test set (given 9 frames as input). The center frame index 2 is the target frame, however off-target contact
predictions are still extremely accurate.

5 Retargeting to a New Character
In many cases, we wish to retarget the estimated motion to a new animated character mesh. We do this in the

main paper in Section 4.2 for qualitative evaluation. One could apply physics-based motion retargeting methods
to the output motion after an IK retargeting procedure, e.g., [12]. However, we avoid this extra step by directly
performing our physics-based optimization on the target character skeleton.

Given a target skeleton Stgt , we insert an additional retargeting step following the kinematic optimization
(see Figure 2 in the main paper). Namely, we uniformly scale Ssrc to the approximate size of our target skeleton,
and then perform an IK optimization based on a predefined joint mapping to recover joint angles for Stgt. Then,
the subsequent physics-based optimization and full-body upgrade are performed with this skeleton replacing Ssrc.
We use the same IK algorithm as in Section 3.1.

Input Prediction Synthetic Real
Window Window Accuracy Accuracy

3 3 0.931 0.919

5 3 0.933 0.913
5 5 0.943 0.906

7 3 0.936 0.922
7 5 0.941 0.923
7 7 0.943 0.926

9 3 0.936 0.905
9 5 0.941 0.935
9 7 0.942 0.921
9 9 0.946 0.927

Table 1: Ablation study of in-
put and output window sizes for
learned contact estimation. Clas-
sification accuracy for many dif-
ferent combinations are shown.

Note for qualitative comparison to MTC, we perform a very similar pro-
cedure: we first fit our skeleton to the raw MTC input, similar to as described
in Section 3.1 but without the preprocessing, and then perform the IK re-
targeting described in this section. This provides a stronger baseline than a
naive approach like directly copying joint angles from MTC to Stgt .

6 Evaluation Details and Additional Results
Here we include additional results and details which could not fit in the

main paper.

6.1 Contact Estimation
Main results for contact estimation are presented in Section 4.1 of the

main paper. One particularly interesting result is that using upper-body joints
down to the knees as input to the network yields surprisingly high accuracy
even on real data (0.865). This is a promising result for future work that may
lead to accurate motion prediction even with occluded feet. Table 2 supplements the main results in the paper
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Baseline Synthetic Real MLP Synthetic Real
Method Prec / Rec / F1 Prec / Rec / F1 Input Joints Prec / Rec / F1 Prec / Rec / F1

Random 0.679 / 0.516 / 0.586 0.627 / 0.487 / 0.548 Upper to hips 0.940 / 0.941 / 0.940 0.728 / 0.837 / 0.779
Always Contact 0.677 / 1.000 / 0.808 0.647 / 1.000 / 0.786 Upper to knees 0.958 / 0.946 / 0.952 0.926 / 0.859 / 0.892

2D Velocity 0.861 / 0.933 / 0.896 0.922 / 0.868 / 0.894 Lower to ankles 0.933 / 0.971 / 0.952 0.963 / 0.916 / 0.939
3D Velocity 0.858 / 0.876 / 0.867 0.920 / 0.884 / 0.902 Lower to hips 0.941 / 0.973 / 0.957 0.956 / 0.943 / 0.949

Table 2: Precision, recall, and F1 Score (Prec/Rec/F1) of estimating foot contacts from video. Left: comparison
to various baselines, Right: ablations using subsets of joints as features. Supplements Table 1 in the main paper.

Dynamics (Contact forces) Kinematics (Foot positions)

Method Mean GRF Max GRF Ballistic GRF Floating Penetration Skate

MTC [14] 142.7% 9036.7% 120.8% 19.1% 10.0% 16.5%
Kinematics (ours) 119.7% 1252.4% 103.6% 1.5% 1.8% 1.3%

Physics (ours) 98.8% 293.2% 0.0% 5.9% 0.1% 3.8%

Table 3: Physical plausibility evaluation using the estimated floor on the synthetic test set. Supplements Table 2
of the main paper.

with the precision, recall, and F1 score of each method. These give additional insight compared to accuracy since
data labels are slightly imbalanced (more in-contact frames than no-contact).

Table 1 shows an ablation study between different input and output window size combinations for our net-
work. Input Window is the number of frames of 2D lower-body joints given to the network, and Prediction Window
is the number of frames for which the network outputs foot contact classifications. We use an input windoww = 9
and prediction window of 5 in our experiments since it achieves the best accuracy on real videos as shown in the
table. In general, there is not a clear trend in Prediction Window size, but as the Input Window size increases, so
does accuracy on the real dataset.

Method Feet Body Body-Align 1

MTC [14] 585.303 565.068 277.296
Kinematics (ours) 582.400 565.097 281.416

Physics (ours) 582.311 587.627 319.517

Table 4: Pose evaluation on synthetic test set using the
estimated floor. Supplements Table 3 in the main paper.

Figure 3 shows the accuracy of contact estima-
tions over the entire prediction window of 5 frames
on the synthetic test set. Though the target frame in
this case is frame index 2, predictions on the off-target
frames degrade only slightly and are still very accu-
rate since the input windows is 9 frames. This moti-
vates the use of the majority voting scheme at infer-
ence time.

6.2 Qualitative Motion Evaluation
For extensive qualitative evaluation, see the supplementary video. For evaluating on real data, we use videos

from a number of sources: publicly available datasets [2, 11], YouTube videos that are licensed under Creative
Commons or with permission from the content creators to be used in this publication, and licensed stock footage.
We thank the following YouTube channels that contributed video data: Dance FreaX, Dancercise Studio, Fencer’s
Edge, MihranTV, DANCE TUTORIALS, Deepak Tulsyan, Gibson Moraes, and pigmie.

6.3 Quantitative Motion Evaluation
Primary quantitative results for motion reconstruction are presented in Section 4.3 of the main paper. As

discussed, these quantitative evaluations make use of the ground truth floor plane as input. Note that our method
does not need the ground truth floor: our floor fitting procedure works well as demonstrated in all qualitative
results on live action monocular videos. However, we performed quantitative evaluations on data that contains
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Figure 4: Results from global motion estimation methods on an input dance video. A fixed side view is shown
from SMPLify-X [9] and Monocular Total Capture (MTC) [14]. SMPLify-X gives noisy and inconsistent global
motion whereas the tracking refinement of MTC gives smoother results. This motivates our decision to use MTC
as input to our method and as a baseline in evaluations.

many cases of movement directly towards or away from the camera: a challenging case for MTC, which results
in noisy feet joints as input to our method causing a poor floor fit. This makes optimization difficult and interferes
with evaluating our primary contributions.

However, for completeness, here we include quantitative results using the floor fitting procedure (rather than
taking the ground truth floor as input) on the synthetic test set. Table 3 shows kinematic and dynamics evaluations
using the fitted floor while Table 4 shows the pose evaluation. Trends are similar to those seen in the main paper
with the ground truth floor.

6.4 Discussion on Global Pose Estimation
For quantitative evaluations in Section 4.3 of the main paper, we do not compare to other methods in global

human motion estimation but instead evaluate ablations of our own method: the kinematics-only version and
initialization from MTC. The problem of predicting a temporally-consistent global motion (like MTC and this
work does) is vastly underexplored so there are few comparable prior works. Many methods do traditional local
3D pose estimation or even predict the global root translation from the camera, but these rarely result in a coherent
global human motion.

For example, a recent work from Pavlakos et al. [9] called SMPLify-X estimates global camera extrinsics
along with local pose (and body shape) which gives global motion when applied to video. However, we found
that MTC, which uses a temporal tracking procedure, gave better results which motivated its use in initializing our
pipeline. Figure 4 shows a fixed side view of results from SMPLify-X and MTC on the same video clip. SMPLify-
X is noisy and inconsistent especially in terms of global translation; MTC is much smoother and coherent.

6.5 Pose Estimation Evaluation Details
We quantitatively evaluate pose estimation in Section 4.3 of the main paper. We evaluate on our synthetic

test set and HumanEva-I [7] walking sequences. Like many pose estimation benchmarks (i.e., Human3.6M [5]),
few motions in HumanEva are dynamic with interesting foot contact patterns. Therefore, we evaluate on a subset
containing the walking sequences which meet this criteria.
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Figure 5: Our method can be applied to multiple characters with varying body masses and mass distributions.
From left to right the animated characters are Ybot (body mass 73 kg), Ty (36.5 kg), and Skeleton Zombie (146
kg).

For the MTC baseline, we measure accuracy based directly on the regressed joints given as input to our
method. For our method, we use the estimated joints after the full physics-based motion pipeline on our custom
skeleton that is initially fit from the MTC input as described in Section 3.1.

For the synthetic test set, we measure joint errors with respect to a subset of the known character rig that
includes 16 joints: neck, shoulders, elbows, wrists, hips, knees, ankles, and toes (no spine joints). The “Feet”
column of Table 3 in the main paper includes ankle and toe joints only.

On the right side of Table 3 in the main paper, we evaluate methods on the walking sequences from the
training split of HumanEva-I [7] (which includes subjects 1, 2, and 3). Following prior work [10], we first split
the walking sequences into contiguous chunks by removing corrupted motion capture frames. We then further
split these chunks into sequences of roughly 120 frames (about 2 seconds) to use as input to our method. We
extract the ground truth floor plane using the camera extrinsics from the dataset and use this as input to our
method. Joint errors are measured with respect to an adapted 15-joint skeleton [10] from the HumanEva ground
truth motion capture which includes: root, head, neck, shoulders, elbows, wrists, hips, knees, and ankles. The
“Feet” column of Table 3 in the main paper includes ankle joints only.

6.6 Multi-Character Generalization
Following the procedure laid out in Section 5, our physics-based optimization can be applied to many charac-

ter skeletons with varying body and mass distributions. Figure 5 shows an example of estimating motion from the
same video for three different characters: Ybot, Ty, and Skeleton Zombie. Ybot has a body mass of 73 kg with a
typical human mass distribution [4]. Ty is much lighter at 36.5 kg and his distribution is modified such that 40%
of his mass is in the head. Skeleton Zombie is much more massive at 146 kg and has 36% of its mass in its arms
alone (due to the giant claws). Our physics-based optimization can handle these variations and still accurately
recover the motion from the video. Please see the supplementary video for additional examples.
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