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1 NB2K Dataset Capture

In this section we provide more details of how we select captures of the NBA2K
dataset.

One way to decide which frames to capture is to let the game use its AI
where two teams play against each other, however we found that the variety of
poses captured in this manner is rather limited. It captures mostly walking and
running people, while we target more complex basketball moves. Instead, we
have people play the game and proactively capture frames where dunk, dribble,
shooting, and other complex basketball moves occur.

2 PoseNet

In this section we provide more details for the PoseNet architecture and setup.
The input is a single, person-centered image with dimensions 256 × 256.

We extract ResNet [17] features from layer 4 and supply them to four separate
network branches (2D pose, 3D pose, jump class, jump height). The 2D and 3D
pose branches consist of 3 set of Deconvolution-BatchNorm-ReLu blocks. For
the jump class, we use a fully connected layer followed by two linear residual
blocks [10] to get the final output and we use the same network architecture for
the jump height branch. We estimate both the jump class and the jump height
because the jump class can serve as a threshold to reject the inaccurate jump
height prediction in the global position estimation.

The 2D pose branch outputs a set of 2D 64 × 64 heatmaps, one for every
keypoint, indicating where a particular keypoint is located. Similarly, the 3D
pose branch outputs a set of 2D 64× 64 location maps [11], where each location
map indicates the possible 3D location for every pixel. Each location map has
3 channels that encode the XY Z position of a keypoint with respect to pelvis.
To generate the ground truth heatmaps, we first transform the 2D pose from its
original image resolution (256× 256) to 64× 64 resolution, and then generate a
2D Gaussian map centered at each joint location. For ground truth XYZ location
maps, we put the 3D joint location at the position where the heatmap has non-
zero value. To obtain the final output, we take the location of the maximum
value in every keypoint heatmap to get the 2D pose at 64 × 64 resolution and
use it to sample the 3D pose from the XY Z location maps. After that, the 2d
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pose is transformed to original 256 × 256 resolution. The ground truth jump
height is directly extracted from the game, and the jump class is set to 1 if the
jump height is greater than 0.1m.

Input Prediction Groundtruth

Fig. 1. Court line generation on synthetic data. For every example, from left
to right: input image, predicted court lines overlaid on the input image, ground truth
court lines overlaid on the input image.

3 Global Position

In this section we describe the process of placing a 3D player in its corresponding
position on (or above) the basketball court.

Since a basketball court with players typically has more occlusions (and
curved lines) than a soccer field, we found the traditional line detection method
used in [13] fails. To get robust line features, we train a pix2pix [6] network
to translate basketball images to court line masks. For the training data, we
use synthetic data from NBA2K, where the predefined 3D court lines are pro-
jected to image space using the extracted camera parameters. To demonstrate
the robustness of our line feature extraction method, we provide the results on
synthetic data in Figure 1 and real data in Figure 2.

After estimating the camera parameters, we place the player mesh in 3D by
considering its 2D pose in the image and the jumping height (Sec 4.1):

Vc =

(xp − px) zc
f

(yp − py) zc
f

zc

 (1)

yw = R2 · (Vc − T ) (2)
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Input Prediction PredictionInput

Fig. 2. Court line generation on real data. For every example, left is input image,
right is predicted court lines overlaid on the input image.

Fig. 3. Global position estimation. Please zoom in to see details. From left to
right: input images, two views of the estimated location (middle and right). Note the
location of players with respect to court lines (marked with red boxes).
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where R2 is the second column of the extrinsic rotation matrix; T is the extrinsic
translation; f is focal length; (px, py) is the principle point; Vc is the camera
coordinates of the lowest joint (foot); yw is the world coordinate y-component of
the lowest joint, which equals the predicted jump height; (xp, yp) are the pixel
coordinates of the lowest joints. Substituting Eqn. 1 into Eqn. 2, we can solve
for zc (camera coordinate in z-component for lowest joints), from which we can
further compute the global position of the player. In Figure 3, we show our
results of global position estimation. We can see that our method can accurately
place players (both airborne and on the ground) on the court due to accurate
jump estimation.

4 Mesh Generation

4.1 SkinningNet

In this section we provide more details for the SkinningNet architecture.
As we noted in the main paper, the pose encoder is comprised of linear

residual block [10] followed by a fully connected layer. The linear residual block
consists of four FC-BatchNorm-ReLu-Dropout blocks with skip connection from
the input to the output. For the mesh part, we denote Spiral Convolution [3] as
SC, mesh downsampling and upsampling operator [2] as DS and US. The mesh
encoder consists of four SC-ELU [4]-DS blocks, followed by a FC layer. The mesh
decoder consists of a FC layer, four US-SC-ELU blocks, and a SC layer for final
processing. We follow COMA [2] to perform the mesh sampling operation where
vertices are removed by minimizing quadric errors [5] during down-sampling and
added using barycentric interpolation during up-sampling. In table 1, we provide
detailed settings for the mesh encoders and decoders of different body parts.

Training details. For training IdentityNet and SkinningNet, we use batch size
of 16 for 200 epochs and optimize with the Adam solver [7] with weight decay
set to 5 × 10−5. Learning rate for IdentityNet is 0.0002 while learning rate for
SkinningNet is 0.001 with a decay of 0.99 after every epoch. The weights of
different losses are set to ωZ = 5, ωmesh = 50.

4.2 Combining body part meshes

In this section, we provide details of the interpenetration optimization.
As we noted in the main paper, we first detect all the body part vertices in

collision with clothing as in [12], and then follow [15, 16] to deform the mesh by
moving collision vertices inside the garment while preserving local rigidity of the
mesh. This detection-deformation process is repeated until there is no collision
or the number of iterations is above a threshold (10 in our experiments). Before
each mesh deformation step, collision vertices are first moved in the direction
opposite their vertex normals by 10mm. Then we optimize the remaining vertex
positions of body parts by minimizing the following loss:

Lpen = ωdataLdata + ωlapLlap + ωelLel (3)
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head arm shoes shirt pant leg

NV 348 842 937 2098 1439 372

DS Factor (2,2,1,1) (2,2,2,1) (2,2,2,1) (4,2,2,2) (2,2,2,2) (2,2,1,1)

NZ 32 for all body parts

Filter Size (16,32,64,64) for encoders, (64,32,16,16,3) for decoders

Dilation (2,2,1,1) for encoders, (1,1,2,2,2) for decoders

Step Size (2,2,1,1) for encoders, (1,1,2,2,2) for decoders

Table 1. Network architecture for mesh encoders and decoders of different
body parts. NV represents vertices numbers, DS factor represents downsampling
factors. NZ represents the hidden size of latent vector. Filter Size represents the output
channel of SC. Dilation represents dilation ratio for SC. Step size represents hops for
SC.

Ldata = ‖V − V ∗‖2 forces optimized vertices V to stay close to the SkinningNet
inferred vertices V ∗ = V (Zpred), Llap = ‖∆V −∆V ∗‖F is the Frobenius norm
of Laplacian difference between the optimized and inferred meshes, and Lel =
‖ E
E∗ − 1‖ encourages the optimized edge length E to be same as the inferred edge

length E∗. Each of these losses is taken as a sum over all vertices or edges. We
set ωdata = 1, ωlap = 0.1, ωel = 0.1 respectively. We use an L-BFGS solver [9],
running for 20 iterations. Note that detected collision vertices, after being moved
inward, are fixed during the optimization process. This hard constraint ensures
the optimization will not move these vertices outside garments in future itera-
tions. Figure 4 shows results before and after interpenetration optimization for
two examples.

Before After Before After

Fig. 4. Before and after interpenetration optimization. Note the garment in the
red square. Ground truth textures are used to better visualize the intersection.
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5 Further Qualitative Evaluation

In this section, we provide additional qualitative comparisons that further demon-
strate the effectiveness of our system.

Fig 5 shows qualitative comparison with tex2shape [1]. Note that tex2shape
is only trained with their A-pose data and directly tested on NBA images. We
can see our method can generate better shirt wrinkles and body details under
different poses.

In the main paper, we only provide qualitative comparisons for synthetic
data with state-of-the-art methods. In Figure 6, we compare our method against
the best-performing SMPL-based methods [12, 8] on real images. In Figure 7,
we additionally compare with PIFu [14], the state-of-the-art method for clothed
subjects, on real images. Our system generates more stable poses and more
realistic, fine details for real images.

In Figure 8, we provide additional qualitative results of our method for real
images. Our method can reconstruct 3D shape of different people under various
poses on real images.

In Figure 9, we provide examples where our approach fails to reconstruct a
correct 3D shape from single view images.

Fig. 5. Comparison with Tex2shape[1]. Note that tex2shape only predicts rough
body shape compared to our reconstructions. We follow their advice to select images
where person is large and fully visible.
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SMPLify-XInput SPIN Ours SMPLify-XSPIN Ours

Fig. 6. Comparison with SMPL-based methods on real images. Column 1 is
input, columns 2-4 are reconstructions in the image view, columns 5-7 are visualizations
from a novel viewpoint. Note the significant difference in body pose between ours and
SMPL-based methods; our results are qualitatively much more similar to what is seen
in the input images. In addition, SMPL-based methods do not handle clothing.
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Input PIFu OursPIFu+NBA PIFu OursPIFu+NBA

Fig. 7. Comparison with PIFu [14] on real images. Column 1 is input (red box
shows the target player), columns 2-4 are reconstructions in the image view, columns
5-7 are reconstructions in a novel view. PIFu fails to reconstruct high quality human
shapes from real images, even when the players are in nearly standing poses.
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Fig. 8. Qualitative Results on real images. Please zoom in to see details. For
every example, left is input (red box shows the target player), middle is reconstruction
in the image view, right is reconstruction in a novel view. Our method generalizes well
on real images under a variety of poses.
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Input Ours GT Ours GT Ours GT

Fig. 9. Typical failure cases of our approach. Column 1 is input (red box shows
the target player), columns 2-3 are reconstructions in the image view, columns 4-5
are reconstructions in a novel view, columns 6-7 are zoomed-in versions of main errors.
Failures include erroneous pose due to heavy occlusion in multi-person scenes (first and
second example), incorrect orientation of head and hands (third and fourth example).
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