
Deep Feedback Inverse Problem Solver

Wei-Chiu Ma1,2 Shenlong Wang1,3 Jiayuan Gu1,4

Sivabalan Manivasagam1,3 Antonio Torralba2 Raquel Urtasun1,3

1Uber Advanced Technologies Group
2Massachusetts Institute of Technology

3University of Toronto
4University of California San Diego

Abstract. We present an efficient, effective, and generic approach to-
wards solving inverse problems. The key idea is to leverage the feedback
signal provided by the forward process and learn an iterative update
model. Specifically, at each iteration, the neural network takes the feed-
back as input and outputs an update on current estimation. Our ap-
proach does not have any restrictions on the forward process; it does not
require any prior knowledge either. Through the feedback information,
our model not only can produce accurate estimations that are coherent
to the input observation but also is capable of recovering from early in-
correct predictions. We verify the performance of our model over a wide
range of inverse problems, including 6-DOF pose estimation, illumina-
tion estimation, as well as inverse kinematics. Comparing to traditional
optimization-based methods, we can achieve comparable or better per-
formance while being two to three orders of magnitude faster. Compared
to deep learning-based approaches, our model consistently improves the
performance on all metrics.

1 Introduction

Given a 3D model of an object, the light source(s), and their relevant pose to
the camera, one can generate highly realistic images of the scene with one click.
While such a forward rendering process is complicated and requires explicit
modeling of interreflection, self-occlusion, as well as distortion, it is well-defined
and can be computed effectively. However, if we were to recover the illumination
parameters or predict the 6 DoF pose of the object from the image in an inverse
fashion, the task becomes extremely challenging. This is because a lot of crucial
information is lost during the forward (rendering) process. In fact, many compli-
cated systems in natural science, signal processing, and robotics, all face similar
challenges – the model parameters of interest cannot be measured directly and
need to be estimated from limited observations. This family of problems are
commonly referred to as inverse problems. Unfortunately, while there exists
sophisticated theories on how to design the forward processes, how to address
the inherent ambiguities of the inverse problem still remains an open question.

One popular strategy to disambiguate the problem is to model the inverse
problem as a structured optimization task and incorporate human knowledge



2 Wei-Chiu Ma et al .

(a) Structure optimization

GT Stuck at local minima 

predictionFollow energy manifold

xHidden x

En
er

gy

x(t+1)

x(t)

x(t-1)

(b) Learning based methods

xy

g
<latexit sha1_base64="EiJK/E3trRLz9TAmnUyajZ6CuPw=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqMeiF48t2A9oQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ3dzvPKHSPJYPZpqgH9GR5CFn1FipORqUK27VXYCsEy8nFcjRGJS/+sOYpRFKwwTVuue5ifEzqgxnAmelfqoxoWxCR9izVNIItZ8tDp2RC6sMSRgrW9KQhfp7IqOR1tMosJ0RNWO96s3F/7xeasIbP+MySQ1KtlwUpoKYmMy/JkOukBkxtYQyxe2thI2poszYbEo2BG/15XXSvqp6btVrXlfqt3kcRTiDc7gED2pQh3toQAsYIDzDK7w5j86L8+58LFsLTj5zCn/gfP4AzHWM6w==</latexit><latexit sha1_base64="EiJK/E3trRLz9TAmnUyajZ6CuPw=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqMeiF48t2A9oQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ3dzvPKHSPJYPZpqgH9GR5CFn1FipORqUK27VXYCsEy8nFcjRGJS/+sOYpRFKwwTVuue5ifEzqgxnAmelfqoxoWxCR9izVNIItZ8tDp2RC6sMSRgrW9KQhfp7IqOR1tMosJ0RNWO96s3F/7xeasIbP+MySQ1KtlwUpoKYmMy/JkOukBkxtYQyxe2thI2poszYbEo2BG/15XXSvqp6btVrXlfqt3kcRTiDc7gED2pQh3toQAsYIDzDK7w5j86L8+58LFsLTj5zCn/gfP4AzHWM6w==</latexit><latexit sha1_base64="EiJK/E3trRLz9TAmnUyajZ6CuPw=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqMeiF48t2A9oQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ3dzvPKHSPJYPZpqgH9GR5CFn1FipORqUK27VXYCsEy8nFcjRGJS/+sOYpRFKwwTVuue5ifEzqgxnAmelfqoxoWxCR9izVNIItZ8tDp2RC6sMSRgrW9KQhfp7IqOR1tMosJ0RNWO96s3F/7xeasIbP+MySQ1KtlwUpoKYmMy/JkOukBkxtYQyxe2thI2poszYbEo2BG/15XXSvqp6btVrXlfqt3kcRTiDc7gED2pQh3toQAsYIDzDK7w5j86L8+58LFsLTj5zCn/gfP4AzHWM6w==</latexit><latexit sha1_base64="EiJK/E3trRLz9TAmnUyajZ6CuPw=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqMeiF48t2A9oQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ3dzvPKHSPJYPZpqgH9GR5CFn1FipORqUK27VXYCsEy8nFcjRGJS/+sOYpRFKwwTVuue5ifEzqgxnAmelfqoxoWxCR9izVNIItZ8tDp2RC6sMSRgrW9KQhfp7IqOR1tMosJ0RNWO96s3F/7xeasIbP+MySQ1KtlwUpoKYmMy/JkOukBkxtYQyxe2thI2poszYbEo2BG/15XXSvqp6btVrXlfqt3kcRTiDc7gED2pQh3toQAsYIDzDK7w5j86L8+58LFsLTj5zCn/gfP4AzHWM6w==</latexit>

f
<latexit sha1_base64="b4HLEbhr7TEtaehBb4ygFYyuiV8=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqMeiF48t2A9oQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ3dzvPKHSPJYPZpqgH9GR5CFn1FipGQ7KFbfqLkDWiZeTCuRoDMpf/WHM0gilYYJq3fPcxPgZVYYzgbNSP9WYUDahI+xZKmmE2s8Wh87IhVWGJIyVLWnIQv09kdFI62kU2M6ImrFe9ebif14vNeGNn3GZpAYlWy4KU0FMTOZfkyFXyIyYWkKZ4vZWwsZUUWZsNiUbgrf68jppX1U9t+o1ryv12zyOIpzBOVyCBzWowz00oAUMEJ7hFd6cR+fFeXc+lq0FJ585hT9wPn8AyvGM6g==</latexit><latexit sha1_base64="b4HLEbhr7TEtaehBb4ygFYyuiV8=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqMeiF48t2A9oQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ3dzvPKHSPJYPZpqgH9GR5CFn1FipGQ7KFbfqLkDWiZeTCuRoDMpf/WHM0gilYYJq3fPcxPgZVYYzgbNSP9WYUDahI+xZKmmE2s8Wh87IhVWGJIyVLWnIQv09kdFI62kU2M6ImrFe9ebif14vNeGNn3GZpAYlWy4KU0FMTOZfkyFXyIyYWkKZ4vZWwsZUUWZsNiUbgrf68jppX1U9t+o1ryv12zyOIpzBOVyCBzWowz00oAUMEJ7hFd6cR+fFeXc+lq0FJ585hT9wPn8AyvGM6g==</latexit><latexit sha1_base64="b4HLEbhr7TEtaehBb4ygFYyuiV8=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqMeiF48t2A9oQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ3dzvPKHSPJYPZpqgH9GR5CFn1FipGQ7KFbfqLkDWiZeTCuRoDMpf/WHM0gilYYJq3fPcxPgZVYYzgbNSP9WYUDahI+xZKmmE2s8Wh87IhVWGJIyVLWnIQv09kdFI62kU2M6ImrFe9ebif14vNeGNn3GZpAYlWy4KU0FMTOZfkyFXyIyYWkKZ4vZWwsZUUWZsNiUbgrf68jppX1U9t+o1ryv12zyOIpzBOVyCBzWowz00oAUMEJ7hFd6cR+fFeXc+lq0FJ585hT9wPn8AyvGM6g==</latexit><latexit sha1_base64="b4HLEbhr7TEtaehBb4ygFYyuiV8=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqMeiF48t2A9oQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ3dzvPKHSPJYPZpqgH9GR5CFn1FipGQ7KFbfqLkDWiZeTCuRoDMpf/WHM0gilYYJq3fPcxPgZVYYzgbNSP9WYUDahI+xZKmmE2s8Wh87IhVWGJIyVLWnIQv09kdFI62kU2M6ImrFe9ebif14vNeGNn3GZpAYlWy4KU0FMTOZfkyFXyIyYWkKZ4vZWwsZUUWZsNiUbgrf68jppX1U9t+o1ryv12zyOIpzBOVyCBzWowz00oAUMEJ7hFd6cR+fFeXc+lq0FJ585hT9wPn8AyvGM6g==</latexit>

Ignore forward process y = f(x)

Forward process Learnable direct mapping

Fig. 1: Prior work on inverse problems: (a) Structured optimization ap-
proaches require hand-crafted energy/objective functions and are sensitive to
initializations which makes them easy to get stuck in local optima. (b) Direct
learning based methods do not utilize the available forward process as feedback
to guarantee the quality of the solution. Without this feedback, the models can-
not rectify the estimates effectively as shown above.

into the model [19,49,21,56]. For instance, the estimated solution should agree
with the observation [48] and be smooth [47,3], or should follow a certain statisti-
cal distribution [33,64,2]. Through imposing carefully designed objectives, classic
structure optimization methods are able to find a solution that not only agrees
with the observation but also satisfies our prior knowledge about the solution.
In practice, however, almost no hand-crafted priors can succeed in including all
phenomena. To ensure that the optimization problem can be solved efficiently,
there are multiple restrictions on the form of the priors as well as the the forward
process [4], both of which increases the difficulty of design. Furthermore, most
optimization approaches require many iterations to converge and are sensitive
to initialization.

On the other hand, learning based methods propose to directly learn a map-
ping from observations to the model parameters [60,24,72,68,55]. They capitalize
on powerful machine learning tools to extract task-specific priors in a data-driven
fashion. With the help of large-scale datasets and the flourishing of deep learn-
ing, they are able to achieve state-of-the-art performance on a variety of inverse
problems [69,61,57,13,23]. Unfortunately, these methods often ignore the fact
that the forward model for inverse problems is available. Their systems remain
open loop and do not have the capability to update their prediction based on the
feedback signal. Consequently, the estimated parameters, while performing well
in majority cases, may generate a result that is either incompatible with the real
observation or not realistic.

With these challenges in mind, we develop a novel approach to solving in-
verse problems that takes the best of both worlds. The key idea is to learn to
iteratively update the current estimation through the feedback signal from the
forward process. Specifically, we design a neural network that takes the obser-
vation and the forward simulation result of the previous estimation as input,
and outputs a steepest update towards the ideal model parameters. The advan-
tages are four-fold: First, as each update is trained to aggressively move towards



Deep Optimizer 3

x(t-1)

x(t) x(t+1)

Bypass energy manifold

(b) Parameter update
Hidden x

En
er

gy

x(t)
f

<latexit sha1_base64="b4HLEbhr7TEtaehBb4ygFYyuiV8=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqMeiF48t2A9oQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ3dzvPKHSPJYPZpqgH9GR5CFn1FipGQ7KFbfqLkDWiZeTCuRoDMpf/WHM0gilYYJq3fPcxPgZVYYzgbNSP9WYUDahI+xZKmmE2s8Wh87IhVWGJIyVLWnIQv09kdFI62kU2M6ImrFe9ebif14vNeGNn3GZpAYlWy4KU0FMTOZfkyFXyIyYWkKZ4vZWwsZUUWZsNiUbgrf68jppX1U9t+o1ryv12zyOIpzBOVyCBzWowz00oAUMEJ7hFd6cR+fFeXc+lq0FJ585hT9wPn8AyvGM6g==</latexit><latexit sha1_base64="b4HLEbhr7TEtaehBb4ygFYyuiV8=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqMeiF48t2A9oQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ3dzvPKHSPJYPZpqgH9GR5CFn1FipGQ7KFbfqLkDWiZeTCuRoDMpf/WHM0gilYYJq3fPcxPgZVYYzgbNSP9WYUDahI+xZKmmE2s8Wh87IhVWGJIyVLWnIQv09kdFI62kU2M6ImrFe9ebif14vNeGNn3GZpAYlWy4KU0FMTOZfkyFXyIyYWkKZ4vZWwsZUUWZsNiUbgrf68jppX1U9t+o1ryv12zyOIpzBOVyCBzWowz00oAUMEJ7hFd6cR+fFeXc+lq0FJ585hT9wPn8AyvGM6g==</latexit><latexit sha1_base64="b4HLEbhr7TEtaehBb4ygFYyuiV8=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqMeiF48t2A9oQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ3dzvPKHSPJYPZpqgH9GR5CFn1FipGQ7KFbfqLkDWiZeTCuRoDMpf/WHM0gilYYJq3fPcxPgZVYYzgbNSP9WYUDahI+xZKmmE2s8Wh87IhVWGJIyVLWnIQv09kdFI62kU2M6ImrFe9ebif14vNeGNn3GZpAYlWy4KU0FMTOZfkyFXyIyYWkKZ4vZWwsZUUWZsNiUbgrf68jppX1U9t+o1ryv12zyOIpzBOVyCBzWowz00oAUMEJ7hFd6cR+fFeXc+lq0FJ585hT9wPn8AyvGM6g==</latexit><latexit sha1_base64="b4HLEbhr7TEtaehBb4ygFYyuiV8=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqMeiF48t2A9oQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ3dzvPKHSPJYPZpqgH9GR5CFn1FipGQ7KFbfqLkDWiZeTCuRoDMpf/WHM0gilYYJq3fPcxPgZVYYzgbNSP9WYUDahI+xZKmmE2s8Wh87IhVWGJIyVLWnIQv09kdFI62kU2M6ImrFe9ebif14vNeGNn3GZpAYlWy4KU0FMTOZfkyFXyIyYWkKZ4vZWwsZUUWZsNiUbgrf68jppX1U9t+o1ryv12zyOIpzBOVyCBzWowz00oAUMEJ7hFd6cR+fFeXc+lq0FJ585hT9wPn8AyvGM6g==</latexit>

g
<latexit sha1_base64="EiJK/E3trRLz9TAmnUyajZ6CuPw=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqMeiF48t2A9oQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ3dzvPKHSPJYPZpqgH9GR5CFn1FipORqUK27VXYCsEy8nFcjRGJS/+sOYpRFKwwTVuue5ifEzqgxnAmelfqoxoWxCR9izVNIItZ8tDp2RC6sMSRgrW9KQhfp7IqOR1tMosJ0RNWO96s3F/7xeasIbP+MySQ1KtlwUpoKYmMy/JkOukBkxtYQyxe2thI2poszYbEo2BG/15XXSvqp6btVrXlfqt3kcRTiDc7gED2pQh3toQAsYIDzDK7w5j86L8+58LFsLTj5zCn/gfP4AzHWM6w==</latexit><latexit sha1_base64="EiJK/E3trRLz9TAmnUyajZ6CuPw=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqMeiF48t2A9oQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ3dzvPKHSPJYPZpqgH9GR5CFn1FipORqUK27VXYCsEy8nFcjRGJS/+sOYpRFKwwTVuue5ifEzqgxnAmelfqoxoWxCR9izVNIItZ8tDp2RC6sMSRgrW9KQhfp7IqOR1tMosJ0RNWO96s3F/7xeasIbP+MySQ1KtlwUpoKYmMy/JkOukBkxtYQyxe2thI2poszYbEo2BG/15XXSvqp6btVrXlfqt3kcRTiDc7gED2pQh3toQAsYIDzDK7w5j86L8+58LFsLTj5zCn/gfP4AzHWM6w==</latexit><latexit sha1_base64="EiJK/E3trRLz9TAmnUyajZ6CuPw=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqMeiF48t2A9oQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ3dzvPKHSPJYPZpqgH9GR5CFn1FipORqUK27VXYCsEy8nFcjRGJS/+sOYpRFKwwTVuue5ifEzqgxnAmelfqoxoWxCR9izVNIItZ8tDp2RC6sMSRgrW9KQhfp7IqOR1tMosJ0RNWO96s3F/7xeasIbP+MySQ1KtlwUpoKYmMy/JkOukBkxtYQyxe2thI2poszYbEo2BG/15XXSvqp6btVrXlfqt3kcRTiDc7gED2pQh3toQAsYIDzDK7w5j86L8+58LFsLTj5zCn/gfP4AzHWM6w==</latexit><latexit sha1_base64="EiJK/E3trRLz9TAmnUyajZ6CuPw=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqMeiF48t2A9oQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ3dzvPKHSPJYPZpqgH9GR5CFn1FipORqUK27VXYCsEy8nFcjRGJS/+sOYpRFKwwTVuue5ifEzqgxnAmelfqoxoWxCR9izVNIItZ8tDp2RC6sMSRgrW9KQhfp7IqOR1tMosJ0RNWO96s3F/7xeasIbP+MySQ1KtlwUpoKYmMy/JkOukBkxtYQyxe2thI2poszYbEo2BG/15XXSvqp6btVrXlfqt3kcRTiDc7gED2pQh3toQAsYIDzDK7w5j86L8+58LFsLTj5zCn/gfP4AzHWM6w==</latexit>

Input

Fixed forward process

Learnable deep feedback net

�x
<latexit sha1_base64="6tYPMQls3RTBXqzUK3kGPYFLkVg=">AAAB+XicbVDLSsNAFL2pr1pfUZdugkVwVRIRdFnUhcsK9gFNKZPppB06mYSZm2IJ/RM3LhRx65+482+ctFlo64GBwzn3cs+cIBFco+t+W6W19Y3NrfJ2ZWd3b//APjxq6ThVlDVpLGLVCYhmgkvWRI6CdRLFSBQI1g7Gt7nfnjCleSwfcZqwXkSGkoecEjRS37b9OyaQ+BHBURBmT7O+XXVr7hzOKvEKUoUCjb795Q9imkZMIhVE667nJtjLiEJOBZtV/FSzhNAxGbKuoZJETPeyefKZc2aUgRPGyjyJzlz9vZGRSOtpFJjJPKFe9nLxP6+bYnjdy7hMUmSSLg6FqXAwdvIanAFXjKKYGkKo4iarQ0dEEYqmrIopwVv+8ippXdQ8t+Y9XFbrN0UdZTiBUzgHD66gDvfQgCZQmMAzvMKblVkv1rv1sRgtWcXOMfyB9fkD4WWTzw==</latexit><latexit sha1_base64="6tYPMQls3RTBXqzUK3kGPYFLkVg=">AAAB+XicbVDLSsNAFL2pr1pfUZdugkVwVRIRdFnUhcsK9gFNKZPppB06mYSZm2IJ/RM3LhRx65+482+ctFlo64GBwzn3cs+cIBFco+t+W6W19Y3NrfJ2ZWd3b//APjxq6ThVlDVpLGLVCYhmgkvWRI6CdRLFSBQI1g7Gt7nfnjCleSwfcZqwXkSGkoecEjRS37b9OyaQ+BHBURBmT7O+XXVr7hzOKvEKUoUCjb795Q9imkZMIhVE667nJtjLiEJOBZtV/FSzhNAxGbKuoZJETPeyefKZc2aUgRPGyjyJzlz9vZGRSOtpFJjJPKFe9nLxP6+bYnjdy7hMUmSSLg6FqXAwdvIanAFXjKKYGkKo4iarQ0dEEYqmrIopwVv+8ippXdQ8t+Y9XFbrN0UdZTiBUzgHD66gDvfQgCZQmMAzvMKblVkv1rv1sRgtWcXOMfyB9fkD4WWTzw==</latexit><latexit sha1_base64="6tYPMQls3RTBXqzUK3kGPYFLkVg=">AAAB+XicbVDLSsNAFL2pr1pfUZdugkVwVRIRdFnUhcsK9gFNKZPppB06mYSZm2IJ/RM3LhRx65+482+ctFlo64GBwzn3cs+cIBFco+t+W6W19Y3NrfJ2ZWd3b//APjxq6ThVlDVpLGLVCYhmgkvWRI6CdRLFSBQI1g7Gt7nfnjCleSwfcZqwXkSGkoecEjRS37b9OyaQ+BHBURBmT7O+XXVr7hzOKvEKUoUCjb795Q9imkZMIhVE667nJtjLiEJOBZtV/FSzhNAxGbKuoZJETPeyefKZc2aUgRPGyjyJzlz9vZGRSOtpFJjJPKFe9nLxP6+bYnjdy7hMUmSSLg6FqXAwdvIanAFXjKKYGkKo4iarQ0dEEYqmrIopwVv+8ippXdQ8t+Y9XFbrN0UdZTiBUzgHD66gDvfQgCZQmMAzvMKblVkv1rv1sRgtWcXOMfyB9fkD4WWTzw==</latexit><latexit sha1_base64="6tYPMQls3RTBXqzUK3kGPYFLkVg=">AAAB+XicbVDLSsNAFL2pr1pfUZdugkVwVRIRdFnUhcsK9gFNKZPppB06mYSZm2IJ/RM3LhRx65+482+ctFlo64GBwzn3cs+cIBFco+t+W6W19Y3NrfJ2ZWd3b//APjxq6ThVlDVpLGLVCYhmgkvWRI6CdRLFSBQI1g7Gt7nfnjCleSwfcZqwXkSGkoecEjRS37b9OyaQ+BHBURBmT7O+XXVr7hzOKvEKUoUCjb795Q9imkZMIhVE667nJtjLiEJOBZtV/FSzhNAxGbKuoZJETPeyefKZc2aUgRPGyjyJzlz9vZGRSOtpFJjJPKFe9nLxP6+bYnjdy7hMUmSSLg6FqXAwdvIanAFXjKKYGkKo4iarQ0dEEYqmrIopwVv+8ippXdQ8t+Y9XFbrN0UdZTiBUzgHD66gDvfQgCZQmMAzvMKblVkv1rv1sRgtWcXOMfyB9fkD4WWTzw==</latexit>

3D Model 

Observation

y

y(t)

x(t+1) = x(t) + �x
<latexit sha1_base64="M/EwGNYrMOx/hpgMQk9vxfVBp4Q=">AAACIXicbZDLSgMxFIYz9VbrbdSlm2ARKoUyI4LdCEVduKxgL9CpJZNm2tDMheSMWIa+ihtfxY0LRboTX8a0HdC2Hgj8fP855JzfjQRXYFlfRmZldW19I7uZ29re2d0z9w/qKowlZTUailA2XaKY4AGrAQfBmpFkxHcFa7iD64nfeGRS8TC4h2HE2j7pBdzjlIBGHbPs+AT6rpc8jR6SAhTt0xG+xPNQoyJ2bpgA8mt0zLxVsqaFl4WdijxKq9oxx043pLHPAqCCKNWyrQjaCZHAqWCjnBMrFhE6ID3W0jIgPlPtZHrhCJ9o0sVeKPULAE/p34mE+EoNfVd3TjZUi94E/ue1YvDK7YQHUQwsoLOPvFhgCPEkLtzlklEQQy0IlVzvimmfSEJBh5rTIdiLJy+L+lnJtkr23Xm+cpXGkUVH6BgVkI0uUAXdoiqqIYqe0St6Rx/Gi/FmfBrjWWvGSGcO0VwZ3z/dhaNV</latexit><latexit sha1_base64="M/EwGNYrMOx/hpgMQk9vxfVBp4Q=">AAACIXicbZDLSgMxFIYz9VbrbdSlm2ARKoUyI4LdCEVduKxgL9CpJZNm2tDMheSMWIa+ihtfxY0LRboTX8a0HdC2Hgj8fP855JzfjQRXYFlfRmZldW19I7uZ29re2d0z9w/qKowlZTUailA2XaKY4AGrAQfBmpFkxHcFa7iD64nfeGRS8TC4h2HE2j7pBdzjlIBGHbPs+AT6rpc8jR6SAhTt0xG+xPNQoyJ2bpgA8mt0zLxVsqaFl4WdijxKq9oxx043pLHPAqCCKNWyrQjaCZHAqWCjnBMrFhE6ID3W0jIgPlPtZHrhCJ9o0sVeKPULAE/p34mE+EoNfVd3TjZUi94E/ue1YvDK7YQHUQwsoLOPvFhgCPEkLtzlklEQQy0IlVzvimmfSEJBh5rTIdiLJy+L+lnJtkr23Xm+cpXGkUVH6BgVkI0uUAXdoiqqIYqe0St6Rx/Gi/FmfBrjWWvGSGcO0VwZ3z/dhaNV</latexit><latexit sha1_base64="M/EwGNYrMOx/hpgMQk9vxfVBp4Q=">AAACIXicbZDLSgMxFIYz9VbrbdSlm2ARKoUyI4LdCEVduKxgL9CpJZNm2tDMheSMWIa+ihtfxY0LRboTX8a0HdC2Hgj8fP855JzfjQRXYFlfRmZldW19I7uZ29re2d0z9w/qKowlZTUailA2XaKY4AGrAQfBmpFkxHcFa7iD64nfeGRS8TC4h2HE2j7pBdzjlIBGHbPs+AT6rpc8jR6SAhTt0xG+xPNQoyJ2bpgA8mt0zLxVsqaFl4WdijxKq9oxx043pLHPAqCCKNWyrQjaCZHAqWCjnBMrFhE6ID3W0jIgPlPtZHrhCJ9o0sVeKPULAE/p34mE+EoNfVd3TjZUi94E/ue1YvDK7YQHUQwsoLOPvFhgCPEkLtzlklEQQy0IlVzvimmfSEJBh5rTIdiLJy+L+lnJtkr23Xm+cpXGkUVH6BgVkI0uUAXdoiqqIYqe0St6Rx/Gi/FmfBrjWWvGSGcO0VwZ3z/dhaNV</latexit><latexit sha1_base64="M/EwGNYrMOx/hpgMQk9vxfVBp4Q=">AAACIXicbZDLSgMxFIYz9VbrbdSlm2ARKoUyI4LdCEVduKxgL9CpJZNm2tDMheSMWIa+ihtfxY0LRboTX8a0HdC2Hgj8fP855JzfjQRXYFlfRmZldW19I7uZ29re2d0z9w/qKowlZTUailA2XaKY4AGrAQfBmpFkxHcFa7iD64nfeGRS8TC4h2HE2j7pBdzjlIBGHbPs+AT6rpc8jR6SAhTt0xG+xPNQoyJ2bpgA8mt0zLxVsqaFl4WdijxKq9oxx043pLHPAqCCKNWyrQjaCZHAqWCjnBMrFhE6ID3W0jIgPlPtZHrhCJ9o0sVeKPULAE/p34mE+EoNfVd3TjZUi94E/ue1YvDK7YQHUQwsoLOPvFhgCPEkLtzlklEQQy0IlVzvimmfSEJBh5rTIdiLJy+L+lnJtkr23Xm+cpXGkUVH6BgVkI0uUAXdoiqqIYqe0St6Rx/Gi/FmfBrjWWvGSGcO0VwZ3z/dhaNV</latexit>

Difference: y(t) - y

(a) Our approach

Fig. 2: Overview: Our model iteratively updates the estimation based on the
feedback signal from the forward process. We adopt a closed-loop scheme to
ensure the consistency between the estimation and the observation. We neither
require an objective at test time, nor have any restrictions on the forward process.
Click here to watch an animated version of the update procedure.

the ground truth, we can accelerate the update procedure and reach the target
with much fewer iterations than classic optimization approaches. Second, our
approach does not need to explicitly define the energy. Third, we do not have
any restrictions on the forward process, such as differentiability, which greatly
expands the applicable domains. Finally, in contrast to the conventional learning
methods, our method incorporates feedback signals from the forward process so
that the network is aware of how close the current estimation is to the ground
truth and can react accordingly. The estimated parameters generally lead to
results closer to the observation.

We demonstrate the effectiveness of our approach on three different inverse
problems in graphics and robotics: illumination estimation, 6 DoF pose estima-
tion, and inverse kinematics. Compared to traditional optimization based meth-
ods, we are able to achieve comparable or better performance while being two to
three orders of magnitude faster. Compared to deep learning based approaches,
our model consistently improves the performance on all metrics.

2 Background

Let x ∈ X be the hidden parameters of interest and let y ∈ Y be the measurable
observations. Denote f : x→ y as the deterministic forward process. The aim of
inverse problem is to recover x given the observation y and the forward mapping
f . In the tasks that we consider, X is a group such as X = SE(3) for 6 DoF pose
estimation and X = R3 when estimating the position of the light source

2.1 Structured optimization

Structured optimization methods generally formulate the inverse problem as an
energy minimization task [8,11,12,52,29,48,21]:

x∗ = arg min
x
E(x) = arg min

x
Edata(f(x),y) + λEprior(x),

http://people.csail.mit.edu/weichium/img/deep-optimizer-teaser.gif


4 Wei-Chiu Ma et al .

Algorithm 1 Deep Feedback Inverse Problem Solver

1: input observation y, forward model f(·) and init x0

2: for iter = 0, 1, . . . , T − 1 do
3: Run forward model: yt = f(xt)
4: Compute update: xt+1 = xt + gw(xt,yt,y)
5: end for
6: output xT

where the data term Edata measures the similarity between the observation y
and the forward simulated results f(x) of the hidden parameters x; and the
prior term Eprior encodes humans’ knowledge about the solution x. As the
energy function is often non-convex, iterative algorithms are used to refine the
estimation. Without loss of generality, the update rule can be written as:

xt+1 = xt + gE(xt,yt,y) (1)

where gE(xt,yt,y) is an analytical update function derived from the energy
function E, and yt = f(xt). For instance, in continuous-valued inverse problems,
gE = −AE(xt)∇E(xt), where ∇E(x) is the first-order Jacobian and AE is a
warping matrix that depends on the optimization algorithm and the form of the
energy. For instance, AE is simply a (approximated) Hessian matrix in Newton
method and is equivalent to the step size in first order gradient descent.

One major advantage of these approaches is that they explicitly take into ac-
count how close f(x) and y are via the data term Edata, and exploit such feedback
as a guidance for the update. This ensures that the result f(x∗) generated from
the final estimation x∗ is close to the observation y. While impressive results
have been achieved, there are several challenges remaining: first, they require
both the forward process f as well as the prior Eprior to be optimization-friendly
(e.g . differentiable) so that inference algorithms can be applied. Unfortunately
this is not the case for many inverse problems and tailored approximations are
required [26,42,54,39,67]. The performance may thus be affected. Second, they
often require many updates to reach a decent solution (e.g . first-order methods).
If higher order methods are exploited to speed up the process, the update may
become expensive (e.g ., second-order methods). Third, carefully designed priors
are necessary for identifying the true solution from multiple feasible answers.
This is particularly true for ill-posed inverse problems, such as super-resolution
and inverse kinematics, in which there exists infinite number of feasible solutions
that could generate the observation. Additionally, the energy must be designed
in a way that is easy to optimize, which is sometimes non-trivial. Finally, these
optimization methods are typically sensitive to the initialization.

2.2 Learning based methods

Another line of work [10,71,32,37,30] has been devoted to directly learning a
mapping from the observations y to the solution x:

x∗ = g(y;w). (2)



Deep Optimizer 5

0 5 10 15 20 25

Runtime (sec)

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

O
ut

lie
r r

at
e 

(%
)

NMR
SoftRas
Ours

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

Translation Error (meters)
50

60

70

80

90

100

C
um

ul
at

iv
e 

pe
rc

en
ta

ge

NMR (3.67 sec)
SoftRas (25 sec)
Ours (0.02 sec)

0.0 0.2 0.4 0.6 0.8 1.0

Rotation Error (deg)
0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

C
um

ul
at

iv
e 

pe
rc

en
ta

ge

NMR (3.67 sec)
SoftRas (25 sec)
Ours (0.02 sec)

Fig. 3: Quantitative analysis on 6 DoF pose estimation. Our deep opti-
mizer is robust, accurate, and significantly faster.

Here, g(·;w) is a learnable function parameterized by w. These approaches try to
capitalize on the feature learning capabilities of deep neural networks to extract
statistical priors from data, and approximate the inverse process without the help
of any hand-crafted energies. While these methods have achieved state-of-the-art
performance in many challenging inverse tasks such as inverse kinematics [51,74],
super-resolution [32,63], compressive sensing [28], image inpainting [50,41], illu-
mination estimation [35,43], reflection separation [73], and image deblurring [46],
they ignore the fact that the forward process f is known.

As a consequence, there is no feedback mechanism within the model that
scores if f(x∗) is close to y after the inference, and the model cannot update the
estimation accordingly. The whole system remains open loop.

3 Deep Feedback Inverse Problem Solver

In this paper we aim to develop an extremely efficient yet effective approach
to solving structured inverse problems. We build our model based on the ob-
servation that traditional optimization approaches and current learning based
methods are complementary – one is good at exploiting feedback signals as guid-
ance and inducing human priors , while the other excels at learning data-driven
inverse mapping. Towards this goal, we present a simple solution that takes the
best of both worlds. We first describe our deep feedback network that iteratively
updates the solution based on the feedback signal generated by the forward pro-
cess. Then we demonstrate how to perform efficient inference as well as learning.
Finally, we discuss our design choices and the relationships to related work.

3.1 Deep Feedback Network

As we have alluded to above, structured optimization and deep learning have
very different yet complementary strengths. Our goal is to bring together the
two paradigms, and develop a generic approach to inverse problems.

The key innovation of our approach is to replace the analytical function gE
defined in structured optimization approach at Eq. 1 with a neural network.
Specifically, we design a neural network gw that takes the same set of inputs
as gE and outputs the update. The hope is that the model can perceive the



6 Wei-Chiu Ma et al .

Optimization Trans. Error Rot. Error Outlier
Methods Step Time Mean Median Mean Median (%)

NMR [26] 105 3.67 s 0.1 0.05 5.78 1.68 20.3
SoftRas [42] 157 25 s 0.05 0.003 4.14 0.5 8.03
Deep Regression 1 0.004 s 0.07 0.06 10.07 7.68 5
Ours 5 0.02 s 0.02 0.009 2.64 1.02 2.6

Table 1: Quantitative comparison on 6 DoF pose estimation.

difference between the observation y and the simulated forward results yt and
then predict a new solution based on the feedback signal. In practice, we employ
a simple addition rule and fold the step size, parameter priors all into gw:

xt+1 = xt + gw(xt,yt,y), where yt = f(xt). (3)

The network architectures design depends on the form of observational data
y and solution x. For instance, for inverse graphics tasks, we utilize convolu-
tional neural networks, since the observations are images. This not only allows
us to sidestep all requirements imposed on f (e.g . differentiability), but also
removes the need for explicitly defining energies. Unlike conventional learning
based methods, we take both yt and y as input to the update so that we incor-
porate the feedback signal through comparing the two.

We derive our final deep structured inverse problem solver by applying the
aforementioned update functions in an iterative manner. The algorithm is sum-
marized in Alg. 1. At each step, the solver takes as input the current solution
xt, the observation y, and the forward simulated results yt, and predicts the
next best solution as defined in Eq. 3. In practice, the stopping criteria could
either be based on a predefined iteration number or on checking convergence by
measuring the difference between solutions from two consecutive iterations.

3.2 Learning

The full deep structured inverse problem solver can be learned in an end-to-end
fashion via back-propagation through time (BPTT). Yet in practice we find that
applying loss function over each stage’s intermediate solution xt yields better
results. Deep supervision greatly accelerates the speed of convergence.

However, it is non-trivial to design a learning procedure for each iterative up-
date function gw, as there exist infinite paths towards the ideal solution. Ideally,
we would like our solution to descend towards the ideal solution as quickly as
possible. Thus, inspired by [70], at each iteration, we learn to aggressively pre-
dict the update required to reach the ideal solution. At each stage, the learning
procedure finds the best w through minimizing the following loss function:

arg min
w

∑
(y,xgt)

∑
t

`(xgt,x
t + gw(xt,yt,y)).

` is a task-specific loss function; for instance, ` is l2-norm for inverse kinematics.



Deep Optimizer 7

GT NMR SoftRas Regress. Ours GT NMR SoftRas Regress. Ours

Fig. 4: Qualitative comparison on 6 DoF pose estimation: We infer the
poses from only silhouette images. The rendered colored images in the figure are
for visualization purpose.

3.3 Discussions

Stage-wise network: In our standard approach described before, gw is shared
across all steps. However, the proximity to the ideal solution varies at different
step. As a consequence, early iteration often takes inputs that are farther to
the ideal solution than what a late iteration update step takes. This brings
difficulties to the network as it needs to handle a variety of output scales across
different iteration steps. This motivates us to train a separate update function
per step gtw(xt,yt,y) that better captures the input data distribution at each
iteration. To learn this non-shared weight network, we conduct a stage-wise
training procedure. We start to train the g0w first. Then acquire y0 for all the
training data, which allow us to train g1w. We repeat this procedure until gTw is
trained. In total T models {gtw} are trained. Please refer to the supp. material
for the comparison between sharing weights and not sharing weights.

Adaptive update: Our current update rule is simply an addition, yet it can
be easily extended to more sophisticated settings to handle more complex sce-
narios. For instance, one can apply the classic momentum technique on top of
the predicted gradient to stabilize the optimization trajectory. One can also
learn another meta-network to dynamically adjust the output of our update
network. While all of these options are feasible, we find that in practice a sim-
ple strategy suffices. Inspired by the Levenberg-Marquardt method [4], we ex-
ploit a damping factor λ to control the effectiveness of the update network, i.e.,
xt+1 = xt + λ · gw(xt,yt,y). Specifically, λ is initialized to 1 at the beginning
of each update. If the new estimation results in a lower data energy than that
of the original one, we update the estimation. Otherwise we reduce λ by half



8 Wei-Chiu Ma et al .

Forward Inverse
Module Rendering Update Total

NMR [26] 28 ms 7 ms 35 ms
SoftRas [42] 76 ms 84 ms 160 ms
Ours 2.6 ms 0.9 ms 3.5 ms

Table 2: Runtime breakdown
of a single optimization step
for 6 DoF pose estimation.

0 10000 20000 30000 40000 50000

number of faces

0

20

40

60

80

100

ra
st

er
iz

at
io

n 
tim

e 
(m

s)

Rasterization speed wrt number of faces

SoftRas
NMR
Ours

0 10000 20000 30000 40000 50000

number of faces

0

20

40

60

80

G
ra

di
en

t c
om

pu
ta

tio
n 

tim
e 

(m
s)

Gradient computation time wrt number of faces

SoftRas
NMR
Ours

Fig. 5: Runtime vs number of faces. (Left)
Forward rasterization time. (Right) Backward
gradient computation (inverse update) time.

and re-compute. We only need to compute the update gradient once. The for-
ward process is executed on the GPU and hence the computational overhead
is negligible. Through this simple rule, we can guarantee that Edata(xt,y) de-
creases after every iteration. Empirically xt becomes closer to the ground truth
x as well, since the ambiguity arising from the data term disappears when the
estimation is already sufficiently close.

Relationship to existing work: Our model is closely related to the family
of iterative networks [17,59,36,5,16,53,58,66,65,7,38,40], in particular the stacked
inference machines [53,58,66,65,7]. Unlike previous methods that require the
model to implicitly learn the relationship between the input and the preceding
estimation, we leverage the forward process to explicitly establish the connec-
tion among them and close the loop. This is of crucial importance for inverse
problems since the two spaces are very distinct (e.g . illumination parameters vs
RGB image). The idea of learning to update is inspired by supervised descent
methods [70]. However, unlike their approach we learn the mapping and the
feature simultaneously. Furthermore, we focus on inverse problems and design a
closed-loop scheme to incorporate feedback signals, while they simply perform
iterative update in an open loop setting. Developed independently, Flynn et al .
[14] propose a similar approach for view synthesis. Their model, however, re-
lies on the analytical gradient components. They thus requires the system to be
differentiable. In contrast, our approach directly predicts the update from the
observation and the feedback signal. We do not require explicit gradient compu-
tation and thus do not have such a limitation. Please refer to the supp. material
for more discussion on reinforcement learning and other prior art [7,34].

Applicability: Unlike previous work, our approach neither has restrictions
on the forward process f , nor need to construct domain-specific objectives at
test time. During inference, at each iteration, we simply adopt a feed-forward
operation g on top of current estimate and predict the update. Our method is
applicable to a wide range of tasks so long as the forward process function f is
available. In the following sections, we showcase our approach on two different
inverse graphics tasks (object pose estimation and illumination estimation from
a single image) as well as one robotics task (inverse kinematics).



Deep Optimizer 9

Training on 0◦ − 40◦ Trans. Error Rot. Error (◦)
Evaluation Rot. Range Mean Median Mean Median

40◦ − 45◦ 0.05 0.03 11.33 4.97
45◦ − 50◦ 0.05 0.04 15.62 5.60
50◦ − 55◦ 0.06 0.04 18.58 6.86
55◦ − 60◦ 0.07 0.05 24.14 9.58

Table 3: Test on unseen rotations.

4 Application I: 6-DoF Object Pose Estimation

Problem formulation: Assume that the 3D model of the object is given
[20,6] and the camera intrinsic parameters are known. For a given object pose
wrt the camera, denoted as x ∈ SE(3), we can generate the corresponding im-
age observation y through a forward rendering function f : x→ y, powered by
a graphics engine. The goal of 6 DoF pose estimation is to invert the process
and recover the latent pose x from the observation image y. This problem is
particularly important for problems such as robot grasping [34] and self-driving
[44]. Unlike previous approaches that leverage RGB information or depth geom-
etry to guide the pose estimation, we focus on a more challenging setting where
the observation is a single silhouette image y ∈ {0, 1}H×W . The object pose
x = (xquat;xtrans) is represented by a unit quaternion for rotation xquat and a
3D translation vector xtrans.

Data: We use the 3D CAD models from ShapeNet [9] within 10 categories:
cars, planes, chairs, bench, table, sofa, cabinet, bed, monitor, and couch. The
dataset is split into training (70%), validation (10%) and testing (20%). For
each object, we randomly sample an axis from the unit sphere and rotate the
object around the axis by θ ∼ [−40, 40] degrees. We further translate the object
along each axis by a random offset within [−0.2, 0.2] meters. Given the randomly
generated ground truth object poses, we render 128×128 silhouette images with
non-differentiable PyRender [1] as input observations. We refer the readers to
the supp. material for the performance of our model on other image sizes.

Metrics: We measure the translation error with euclidean distance and the
rotation error with angular difference. Inspired by [15], we also compute the
outlier ratio as an indicator of the general quality of the output. Specifically, we
define the prediction to be an outlier if the translation error is higher than 0.2
or the rotation error is larger than 30◦.

Network architecture: Our deep feedback network gw is akin to the classic
LeNet [31]. It takes as input the rendered image yt = f(xt), the observed image
y, as well as the difference image ŷ − yt, and directly outputs the update ∆x.
We apply an additional normalization operator over the rotation component to
correct it to a valid unit quaternion. We unroll our deep feedback network for



10 Wei-Chiu Ma et al .

Optimization Directional light Point light
Methods Step Time Mean Median Outliers Mean Median Outliers

NMR1[26] 166.7 58.3 s 0.099 0.037 19.2% - - -
Deep regression [22] 1 0.043 s 0.067 0.022 24% 0.111 0.084 11%
Ours 7 0.183 s 0.052 0.008 8% 0.084 0.064 9%

Table 4: Illumination estimation on ShapeNet.

five steps. MSE is employed as the loss function for both rotation and translation
since it produces the most stable results.

Baselines: For optimization methods, the energy function consists of a data
term Edata(f(x),y) that favors agreement and a prior term Eprior(x) that en-
courages the quaternion to remain on the manifold. To make the forward ren-
dering procedure f differentiable, we utilize the state-of-the-art differentiable
renderers for comparison, i.e. neural mesh renderer (NMR[26]) and soft rasteri-
zation (SoftRas [42]). We utilize the following stopping criteria for the optimizer:
(i) 500 iterations, or (ii) the silhouette difference between the observation and
the one generated by the renderer stops improving for 20 iterations. For the deep
regression method, we use the same architecture as our deep feedback network
except that no feedback is provided.

Results: As shown in Tab. 1, our method achieves a significantly lower outlier
ratio compared to other approaches. This indicates that our model is more robust
and less susceptible to becoming stuck in local optimum. It also has comparable
performance to differentiable renderers in terms of mean translation and angular
error, while being two to three orders of magnitude faster. On the other hand,
our method has much better performance than the non-feedback deep regression
method. For the category-wise performance, please refer to the supp. material.
Fig. 4 showcases some qualitative results. Our method is robust to extreme poses,
whereas optimization based method is easy to get stuck in a local optimum.

Deep feedback network as initialization: Due to the highly non-convex
structure of the energy model, a good initialization is required for optimization
methods to achieve good performance. One natural solution is to exploit our
model as an initialization and employ classic solvers for the final optimization.
By combining our approach with SoftRas, we can further reduce the error by
more than 50%. We refer the readers to supp. material for detailed analysis.

Runtime analysis: We show the runtime break down for a single update step
in Tab. 2 and the runtime w.r.t the number of faces in Fig. 5. As we neither
need to construct the computation graph nor storing any activation value for

1 NMR does not support point light. Furthermore, its directional light is highly sim-
plified and did not consider self-occlusion.



Deep Optimizer 11

GT NMR Regress. Ours GT NMR Regress. Ours

Fig. 6: Qualitative comparison on illumination estimation.

gradient computation during the forward rasterization process, our rendering is
significantly faster. For gradient computation, SoftRas is far slower as it needs
to propagate the gradient to multiple faces. In contrast, our update model is
simply an efficient feed-forward neural net that takes as input the (difference)
silhouette images. Its speed is invariant to the number of faces.

5 Application II: Illumination Estimation

Problem Formulation: We next evaluate our method on the task of illumi-
nation estimation. The goal is to recover the lighting parameter x ∈ R3 from
the observation RGB image y ∈ RH×W×3. It has critical applications in image
relighting and photo-realistic rendering [25]. As in the 6-DoF pose estimation
task, we assume the 3D model is given.

Data: We use the same dataset as the 6-DoF pose estimation experiment for
the illumination estimation experiment. Specifically, we consider two types of
light source: directional light and point light. The two light sources are comple-
mentary and can result in very different rendering effect. During training, we
randomly sample the light position from the half unit sphere on the camera side
[22,43]. If the light is directional, we point the light towards the origin. All the
objects are set to have Lambertian surfaces. We ignore the scenario where the
light source lies on the other side of the object, as it has no effect on the ren-
dered image. For evaluation, we follow the same criteria. We perform rendering
in pyrender and the image size is set to 256×256. Empirically we found this size
provides the best balance between performance and the computational speed.

Metrics: Following [22], we use the standard mean-squared error (MSE) be-
tween the ground truth light and estimated light pose to measure the difference.
We also compute the outlier rate as described in Sec. 4.



12 Wei-Chiu Ma et al .

Optimization Position Error (cm) Rotation Error (◦)
Methods Step Time Mean Median Mean Median

L-BFGS [18] 73 27.9 s 0.38 0.01 7.19 4.68
Adam [27] 196 38.8 s 0.04 0.04 7.96 7.92
Deep6D [74] 1 0.012 s 1.9 1.6 - -
Ours 4 0.12 s 0.64 0.36 0.88 0.03

Table 5: Quantitative results on CMU MoCap.

Network architecture: We employ an encoder-decoder architecture with
skip connections as our deep feedback network. Since the 3D geometry of the
object plays an important role during rendering, we adopt depth prediction as
an auxiliary task. This allows the model to implicitly capture such notion and
reason about its relationship with illumination. During training, our deep feed-
back network estimates both the depth of the object as well as the illumination
parameters. We use MSE as the objective for both tasks. During inference, we
simply discard the depth decoder and output only the illumination part. We
unroll our network for 7 steps according to the validation performance.

Baselines: We exploit NMR [26] to minimize the energy Edata + Eprior.The
data term is the `2 distance between the observation image and the rendered
image, while the prior term constrains the light source to lie on the sphere. We
adopt the same stopping criteria as in Sec. 4. The size of the rendered image
is set to 256 × 256 based on the performance on the validation set. For deep
regression method, we exploit the state-of-the-art model from Janner et al . [22].

Results: As shown in Tab. 4, our deep feedback network outperforms the base-
lines on both setup. The improvement is significant especially in the directional
light case. We conjecture this is because the intensity of directional light does
not decay w.r.t. the travel distance, and the signals from the image are weaker.
Learning based approaches thus have to rely on feedback signals to refine the
light direction. The performance of the optimization method is limited by the
hand-crafted energy as well as the capability of renderer. NMR is sub-optimal
as it approximates the gradient with a manually designed function and does not
handle self-occlusion. In contrast, our method allows us to exploit complex ren-
dering machines as the forward model as we do not require it to be differentiable.
We note that we only report the optimization results on directional light since
NMR does not support point light source. Fig. 6 depicts the qualitative compar-
ison against the baselines. It is clear that our deep feedback mechanism is able
to recover accurate lighting information based on subtle difference between the
forward results and the observations.



Deep Optimizer 13

GT Step 1 Step 3 GT Step 1 Step 3

Fig. 7: Qualitative results on CMU MoCap: Our approach is able to accu-
rately predict the joint rotations within a few steps. It can also correct wrong
estimations through the feedback from the forward model (see the feet/toes in
the right column). Bottom right shows an example where our model fails.

6 Application III: Inverse Kinematics

Problem formulation Finally we exploit how our proposed method to tackle
the inverse kinematics problem. Given the 3D location of the joints of a ref-
erence pose yref

1:N and the desired joint rotations x1:N ∈ SO(3), the forward
kinematics function f rotates the joints and computes their 3D positions by
recursively applying the follow update rule from parents to children: yn =
yparent(n) + xn(yref

n − yref
parent(n)). The goal of inverse kinematics is to recover

the SO(3) rotations x1:N that ensure the specific joints are placed at the de-
sired 3D locations y1:N . Inverse kinematics has a wide range of applications,
such as robot arm manipulation, legged robot motion planning and computer
re-animation. The problem is inherently ill-posed as different rotations can re-
sult in the same observation through the forward kinematics function f , i.e.,
y = f(x1:N ) = f(x′1:N ). However, not all angles are feasible or natural due to
the dynamic constraints. Therefore, in order to accurately recover the rotations,
one has to either come up with a powerful prior or learn it from data. In this
paper, we focus on inverse kinematics over human body skeletons.

Data: We validate our model on the CMU Motion Capture Dataset (CMU
MoCap) as it contains complex human motions and a diverse range of joint
rotations. Following Yi et al . [74], we select 865 motion clips from 37 motion
categories and hold out 37 clips for testing. Each skeleton in the dataset has 57
joints. We fix the position of the hip to remove the effect of global motion.



14 Wei-Chiu Ma et al .

Metrics: We evaluate the performance of our model with joint position error
[74] and joint angular error [45,51]. The two metrics are complementary since a
small rotation error may result in a large position error due to the recursive na-
ture of the forward kinematics model, and small position error cannot guarantee
correct joint rotation due to ambiguities.

Network architecture: Our deep feedback network is a multilayer perception
akin to [74]. Following [62,51], the network takes as input the estimated joint
position, reference joint position, as well as the difference between the two, and
outputs a rotation for each joint. We unroll our model three steps. We train the
network with L2 loss on both position error and rotation error.

Baselines: We compare our model against two optimization-based approaches
and one deep regression method. For optimization methods, we employ joint
position error as our data term, i.e. Edata(f(x),y) = ‖f(x) − y‖22, and derive
a prior energy term from data to alleviate the ambiguities of joint rotations.
In particular, we fit a gaussian distribution over the Euler angles of each joint
from training data and employ it as a regularization term during inference. We
set the weight of the prior term to 0.001 and optimize both energies jointly. We
exploit two different types of optimizers: a first-order method (i.e., Adam [27])
and a quasi-Newton method (i.e., L-BFGS [18]). For deep regression method,
we compare with the current state of the art (Deep6D [74]).

Results: As shown in Tab. 5, our deep feedback network outperforms the
baselines on the rotation metric and achieve comparable performance on the
position error. By unrolling more steps and gathering feedback signals from
the forward model, we are able to reduce incorrect estimation and improve the
performance (see the Fig. 7). We refer the readers to the supp. material for
detailed analysis. On average, a single step of L-BFGS, Adam, and our approach
takes 383 ms, 198 ms, 30 ms respectively. L-BFGS takes longer to compute as it
needs to conduct gradient evaluation multiple times to approximate the Hessian.
Adam is faster in terms of computation, yet it takes far more steps to converge.
Our approach, in comparison, is significantly faster and better.

7 Conclusions

In this paper, we propose a deep feedback inverse problem solver. Our method
combines the strength of both learning-based approaches and optimization-based
methods. Specifically, it learns to conduct an iterative update over the current
solution based on the feedback signals provided from the forward process of the
problem. Unlike prior work, it does not have any restrictions on the forward
process. Further, it learns to conduct an update without explicitly define an
objective function. Our results showcase that the proposed method is extremely
effective, efficient, and widely applicable.



Deep Optimizer 15

References

1. Pyrender. https://github.com/mmatl/pyrender (2020) 9
2. Barron, J.T., Malik, J.: Shape, illumination, and reflectance from shading. TPAMI

(2014) 2
3. Bell, S., Bala, K., Snavely, N.: Intrinsic images in the wild. TOG (2014) 2
4. Boyd, S., Vandenberghe, L.: Convex optimization. Cambridge university press

(2004) 2, 7
5. Byeon, W., Breuel, T.M., Raue, F., Liwicki, M.: Scene labeling with lstm recurrent

neural networks. In: CVPR (2015) 8
6. Cao, Z., Sheikh, Y., Banerjee, N.K.: Real-time scalable 6dof pose estimation for

textureless objects. In: ICRA (2016) 9
7. Carreira, J., Agrawal, P., Fragkiadaki, K., Malik, J.: Human pose estimation with

iterative error feedback. In: CVPR (2016) 8
8. Chan, T.F., Shen, J., Zhou, H.M.: Total variation wavelet inpainting. Journal of

Mathematical imaging and Vision (2006) 3
9. Chang, A.X., Funkhouser, T., Guibas, L., Hanrahan, P., Huang, Q., Li, Z.,

Savarese, S., Savva, M., Song, S., Su, H., et al.: Shapenet: An information-rich
3d model repository. arXiv (2015) 9

10. Dong, C., Loy, C.C., He, K., Tang, X.: Learning a deep convolutional network for
image super-resolution. In: ECCV (2014) 4

11. Dong, W., Zhang, L., Shi, G., Wu, X.: Image deblurring and super-resolution by
adaptive sparse domain selection and adaptive regularization. TIP (2011) 3

12. Donoho, D.L.: De-noising by soft-thresholding. Transactions on Information The-
ory (1995) 3

13. Epstein, D., Chen, B., Vondrick, C.: Oops! predicting unintentional action in video.
arXiv (2019) 2

14. Flynn, J., Broxton, M., Debevec, P., DuVall, M., Fyffe, G., Overbeck, R., Snavely,
N., Tucker, R.: Deepview: View synthesis with learned gradient descent. arXiv
(2019) 8

15. Geiger, A., Lenz, P., Urtasun, R.: Are we ready for autonomous driving? the kitti
vision benchmark suite. In: Conference on Computer Vision and Pattern Recogni-
tion (CVPR) (2012) 9

16. Gkioxari, G., Toshev, A., Jaitly, N.: Chained predictions using convolutional neural
networks. In: ECCV (2016) 8

17. Greff, K., Srivastava, R.K., Schmidhuber, J.: Highway and residual networks learn
unrolled iterative estimation. arXiv (2016) 8

18. Grochow, K., Martin, S.L., Hertzmann, A., Popović, Z.: Style-based inverse kine-
matics. In: TOG (2004) 12, 14

19. He, K., Sun, J., Tang, X.: Single image haze removal using dark channel prior.
TPAMI (2010) 2

20. Hinterstoisser, S., Lepetit, V., Ilic, S., Holzer, S., Bradski, G., Konolige, K., Navab,
N.: Model based training, detection and pose estimation of texture-less 3d objects
in heavily cluttered scenes. In: ACCV (2012) 9

21. Huang, J.B., Singh, A., Ahuja, N.: Single image super-resolution from transformed
self-exemplars. In: CVPR (2015) 2, 3

22. Janner, M., Wu, J., Kulkarni, T.D., Yildirim, I., Tenenbaum, J.: Self-supervised
intrinsic image decomposition. In: NeurIPS (2017) 10, 11, 12

23. Kanazawa, A., Black, M.J., Jacobs, D.W., Malik, J.: End-to-end recovery of human
shape and pose. In: CVPR (2018) 2

https://github.com/mmatl/pyrender


16 Wei-Chiu Ma et al .

24. Kanazawa, A., Tulsiani, S., Efros, A.A., Malik, J.: Learning category-specific mesh
reconstruction from image collections. In: ECCV (2018) 2

25. Karsch, K., Hedau, V., Forsyth, D., Hoiem, D.: Rendering synthetic objects into
legacy photographs. TOG (2011) 11

26. Kato, H., Ushiku, Y., Harada, T.: Neural 3d mesh renderer. In: CVPR (2018) 4,
6, 8, 10, 12

27. Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv (2014)
12, 14

28. Kulkarni, K., Lohit, S., Turaga, P., Kerviche, R., Ashok, A.: Reconnet: Non-
iterative reconstruction of images from compressively sensed measurements. In:
CVPR (2016) 5

29. Laffont, P.Y., Bazin, J.C.: Intrinsic decomposition of image sequences from local
temporal variations. In: ICCV (2015) 3

30. Lai, W.S., Huang, J.B., Ahuja, N., Yang, M.H.: Deep laplacian pyramid networks
for fast and accurate super-resolution. In: CVPR (2017) 4

31. LeCun, Y., Bottou, L., Bengio, Y., Haffner, P., et al.: Gradient-based learning
applied to document recognition. Proceedings of the IEEE (1998) 9

32. Ledig, C., Theis, L., Huszár, F., Caballero, J., Cunningham, A., Acosta, A., Aitken,
A., Tejani, A., Totz, J., Wang, Z., et al.: Photo-realistic single image super-
resolution using a generative adversarial network. In: CVPR (2017) 4, 5

33. Levin, A.: Blind motion deblurring using image statistics. In: NeurIPS (2007) 2
34. Li, Y., Wang, G., Ji, X., Xiang, Y., Fox, D.: Deepim: Deep iterative matching for

6d pose estimation. In: ECCV (2018) 8, 9
35. Li, Z., Snavely, N.: Learning intrinsic image decomposition from watching the

world. In: CVPR (2018) 5
36. Liang, M., Hu, X.: Recurrent convolutional neural network for object recognition.

In: CVPR (2015) 8
37. Lin, C.H., Kong, C., Lucey, S.: Learning efficient point cloud generation for dense

3d object reconstruction. In: AAAI (2018) 4
38. Lin, C.H., Lucey, S.: Inverse compositional spatial transformer networks. In: CVPR

(2017) 8
39. Lin, C.H., Wang, O., Russell, B.C., Shechtman, E., Kim, V.G., Fisher, M., Lucey,

S.: Photometric mesh optimization for video-aligned 3d object reconstruction. In:
CVPR (2019) 4

40. Lin, C.H., Yumer, E., Wang, O., Shechtman, E., Lucey, S.: St-gan: Spatial trans-
former generative adversarial networks for image compositing. In: CVPR (2018)
8

41. Liu, G., Reda, F.A., Shih, K.J., Wang, T.C., Tao, A., Catanzaro, B.: Image in-
painting for irregular holes using partial convolutions. In: ECCV (2018) 5

42. Liu, S., Chen, W., Li, T., Li, H.: Soft rasterizer: Differentiable rendering for unsu-
pervised single-view mesh reconstruction. arXiv (2019) 4, 6, 8, 10

43. Ma, W.C., Chu, H., Zhou, B., Urtasun, R., Torralba, A.: Single image intrinsic
decomposition without a single intrinsic image. In: ECCV (2018) 5, 11

44. Ma, W.C., Wang, S., Hu, R., Xiong, Y., Urtasun, R.: Deep rigid instance scene
flow. In: CVPR (2019) 9

45. Martinez, J., Black, M.J., Romero, J.: On human motion prediction using recurrent
neural networks. In: CVPR (2017) 14

46. Nah, S., Hyun Kim, T., Mu Lee, K.: Deep multi-scale convolutional neural network
for dynamic scene deblurring. In: CVPR (2017) 5

47. Oh, B.M., Chen, M., Dorsey, J., Durand, F.: Image-based modeling and photo
editing. In: SIGGRAPH (2001) 2



Deep Optimizer 17

48. Pan, J., Hu, Z., Su, Z., Yang, M.H.: l 0-regularized intensity and gradient prior for
deblurring text images and beyond. TPAMI (2016) 2, 3

49. Pan, J., Sun, D., Pfister, H., Yang, M.H.: Blind image deblurring using dark channel
prior. In: CVPR (2016) 2

50. Pathak, D., Krahenbuhl, P., Donahue, J., Darrell, T., Efros, A.A.: Context en-
coders: Feature learning by inpainting. In: CVPR (2016) 5

51. Pavllo, D., Grangier, D., Auli, M.: Quaternet: A quaternion-based recurrent model
for human motion. In: BMVS (2018) 5, 14

52. Portilla, J., Strela, V., Wainwright, M.J., Simoncelli, E.P.: Image denoising using
scale mixtures of gaussians in the wavelet domain. TIP (2003) 3

53. Ramakrishna, V., Munoz, D., Hebert, M., Bagnell, J.A., Sheikh, Y.: Pose machines:
Articulated pose estimation via inference machines. In: ECCV (2014) 8

54. Ravi, N., Reizenstein, J., Novotny, D., Gordon, T., Lo, W.Y., Johnson, J., Gkioxari,
G.: Pytorch3d. https://github.com/facebookresearch/pytorch3d (2020) 4

55. Rick Chang, J., Li, C.L., Poczos, B., Vijaya Kumar, B., Sankaranarayanan, A.C.:
One network to solve them all–solving linear inverse problems using deep projection
models. In: ICCV (2017) 2

56. Rother, C., Kiefel, M., Zhang, L., Schölkopf, B., Gehler, P.V.: Recovering intrinsic
images with a global sparsity prior on reflectance. In: NeurIPS (2011) 2

57. Shocher, A., Cohen, N., Irani, M.: “zero-shot” super-resolution using deep internal
learning. In: CVPR (2018) 2

58. Toshev, A., Szegedy, C.: Deeppose: Human pose estimation via deep neural net-
works. In: CVPR (2014) 8

59. Tu, Z.: Auto-context and its application to high-level vision tasks. In: CVPR (2008)
8

60. Tung, H.Y., Tung, H.W., Yumer, E., Fragkiadaki, K.: Self-supervised learning of
motion capture. In: NeurIPS (2017) 2

61. Tung, H.Y.F., Harley, A.W., Seto, W., Fragkiadaki, K.: Adversarial inverse graph-
ics networks: Learning 2d-to-3d lifting and image-to-image translation from un-
paired supervision. In: ICCV (2017) 2

62. Villegas, R., Yang, J., Ceylan, D., Lee, H.: Neural kinematic networks for unsu-
pervised motion retargetting. In: CVPR (2018) 14

63. Wang, X., Yu, K., Wu, S., Gu, J., Liu, Y., Dong, C., Qiao, Y., Change Loy, C.: Esr-
gan: Enhanced super-resolution generative adversarial networks. In: ECCV (2018)
5

64. Wang, Z., Yang, Y., Wang, Z., Chang, S., Yang, J., Huang, T.S.: Learning super-
resolution jointly from external and internal examples. TIP (2015) 2

65. Wei, S.E., Ramakrishna, V., Kanade, T., Sheikh, Y.: Convolutional pose machines.
In: CVPR (2016) 8

66. Weiss, D., Taskar, B.: Structured prediction cascades. In: AISTATS (2010) 8
67. Wiles, O., Gkioxari, G., Szeliski, R., Johnson, J.: Synsin: End-to-end view synthesis

from a single image. arXiv (2019) 4
68. Wu, J., Lim, J.J., Zhang, H., Tenenbaum, J.B.: Physics 101: Learning physical

object properties from unlabeled videos. 2
69. Wu, J., Yildirim, I., Lim, J.J., Freeman, B., Tenenbaum, J.: Galileo: Perceiving

physical object properties by integrating a physics engine with deep learning. In:
NeurIPS (2015) 2

70. Xiong, X., De la Torre, F.: Supervised descent method and its applications to face
alignment. In: CVPR (2013) 6, 8

71. Xu, L., Ren, J.S., Liu, C., Jia, J.: Deep convolutional neural network for image
deconvolution. In: NeurIPS (2014) 4

https://github.com/facebookresearch/pytorch3d


18 Wei-Chiu Ma et al .

72. Yao, S., Hsu, T.M., Zhu, J.Y., Wu, J., Torralba, A., Freeman, B., Tenenbaum, J.:
3d-aware scene manipulation via inverse graphics. In: NeurIPS (2018) 2

73. Zhang, X., Ng, R., Chen, Q.: Single image reflection separation with perceptual
losses. In: CVPR (2018) 5

74. Zhou, Y., Barnes, C., Lu, J., Yang, J., Li, H.: On the continuity of rotation repre-
sentations in neural networks. In: CVPR (2019) 5, 12, 13, 14


