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1 Supplementary Material

In the supplementary material we present more details and reconstruction re-
sults. We also provide two videos supp init.mp4 and supp results.mp4 which
show more qualitative results. The files internal radial.m and internal mixed.m

are MATLAB scripts which verifies the internal constraints for the radial trifocal
tensor and the mixed trifocal tensor.

2 The 1D Radial Camera Model

In this section we present additional explanations for the 1D radial camera model
and how it relates to the regular pinhole camera model. We also clarify why the
assumption of square pixels and known principal point is necessary.

Consider first a standard pinhole camera P = K[R t], which maps 3D points
(in homogeneous coordinates) to image points (in homogeneous coordinates).
The matrix K encodes the camera’s intrinsic parameters; focal length f , aspect
ratio α, skew s and principal point (ux, uy),

K =

f s ux
0 αf uy
0 0 1

 (1)

If the principal point (ux, uy) is known, we can center the image coordinate
system around this point. The new camera matrix corresponding to the centered
image points then has principal point in the origin, i.e. ux = uy = 0.

Let x ∈ R2 be the 2D projection of the 3D point X ∈ R3, i.e.

x =
1

Z

(
fX + sY, αfY

)T
where (X,Y, Z)T = RX + t (2)

For square pixels, i.e. unit aspect ratio (α = 1) and zero skew (s = 0), we get

x =
1

Z

(
fX, fY

)T
=
f

Z

(
X, Y

)T
(3)
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Fig. 1. Radial distortion moves points along the radial lines. The red point moves along
the radial line (blue) as the image becomes radially distorted. In the 1D radial camera
model the 3D points projects to radial lines which should then pass through the 2D
image points. Since this only depends on the direction of the projection in the image
plane, and not the radial offset, it is invariant to focal length and radial distortion.

The main idea in the Radial Alignment Constraints (RAC) [8], is that instead of
requiring equality in (3), we only require that the vectors are parallel. Geometri-
cally, this restricts the projection of the 3D point lie somewhere on the radial line
passing through x. This constraint does not depend on the focal length since,5

x ∼ f

Z

(
X,Y

)T ∼
(
X,Y

)T
, (4)

Similarly any radial distortion simply scales the projection radially. See Figure 1
for an illustration. The vector (X,Y ) only depend on the top two rows of [R t],(

X
Y

)
=

[
rT1 t1
rT2 t2

](
X
1

)
(5)

In the 1D radial camera model (see e.g. [7]) we then interpret this as a camera
that projects 3D points onto radial lines (i.e. lines passing through the image
center). Similar to a pinhole we can represent this with a matrix, though in this
case a 2×4-matrix. In general a 2×4 matrix Prad can be factorized (up to scale)
as Prad = K2×2[R2×3 t2×1] where

K2×2 =

[
1 s
0 α

]
(6)

Note that the focal length simply scales the entire matrix Prad and can thus be
ignored here. Now under the assumption of square pixels we have

Prad =

[
rT1 t1
rT2 t2

]
(7)

which is what we call a calibrated radial camera in the paper.

5 Here ∼ denotes equality up to scale.
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3 Finding the Internal Constraints

To find the internal constraints on the trifocal tensors we leverage the fact that
it is very easy to generate random instances of calibrated tensors. This can
be done by simply generating cameras of the correct form and computing the
corresponding tensor. Let Md(T ) denote the vector of all degree d monomials
in the elements of the tensor T . Then any polynomial of degree d in T can be
written as

p =

d∑
k=0

cTkMk(T ). (8)

Note that since the tensors are only defined up to scale, any internal constraint
must be a homogeneous polynomial. Thus we only need to consider single terms
in the sum above. Now, given a specific tensor T , there are of course infinitely
many choices of coefficients c that satisfy (8). To find constraints that are sat-
isfied for all tensors, we generate multiple random calibrated trifocal tensors
T1, . . . , TN . Then if there exists a degree d internal constraint we must have

cT
[
Md(T1) . . . Md(TN )

]
= 0. (9)

If we choose N sufficiently large, the matrix with the stacked tensor monomials
in (9) becomes square and we can simply find the coefficients c by computing
the left nullspace, e.g. using SVD.

For the two tensors considered in the main paper, the radial trifocal tensor
and the mixed trifocal tensor, we used this technique to find a degree 4 constraint
(radial) and a degree 8 (mixed) constraint. For the radial trifocal tensor (which
has 8 elements) the matrix for degree 4 was 330 × 330. For the mixed trifocal
tensor (which has 12 elements) the matrix for degree 8 is 75782 × 75782. Note
that this is a dense matrix (≈ 42 GB).

For the mixed trifocal tensor there is a degree 6 constraint which is satisfied
regardless of calibration. For d > 6 there are additional vectors in the nullspace
corresponding to multiples of the degree 6 constraint. To avoid this problem
we add constraints that c should be orthogonal these multiples. This just adds
additional homogeneous linear constraints to (9).

3.1 Internal Constraint on the Radial Trifocal Tensor

The internal constraint for the calibrated radial trifocal tensor (for cameras with
intersecting principal axes) is shown below

T3
111T222 − T2

111T211T122 − T2
111T121T212 − T2

111T221T112 + T111T2
211T222 + 2T111T211T121T112 −

2T111T211T221T212+T111T2
121T222−2T111T121T221T122−T111T2

221T222+T111T2
112T222−2T111T112T212T122−

T111T2
212T222 − T111T2

122T222 − T111T3
222 − T3

211T122 + T2
211T121T212 + T2

211T221T112 + T211T2
121T122 +

2T211T121T221T222 − T211T2
221T122 + T211T2

112T122 + 2T211T112T212T222 − T211T2
212T122 + T211T3

122 +

T211T122T2
222−T3

121T212+T2
121T221T112−T121T2

221T212+T121T2
112T212+2T121T112T122T222+T121T3

212−

T121T212T2
122 + T121T212T2

222 + T3
221T112 − T221T3

112 − T221T112T2
212 − T221T112T2

122 + T221T112T2
222 −

2T221T212T122T222 = 0.
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4 Factorizing the Tensors

The factorization of the radial tensor into three projective cameras is detailed in
[5]. Similarly, using the ideas from [2], we can factorize the mixed radial tensor.
See Figure 2 for one possible factorization of the mixed 3 × 2 × 2 tensor. Note
that these factorizations degenerate for certain tensors. To avoid this problem
we perform a random projective change of coordinates in each of the images
before performing the factorization.

P1 =

 1 0 0 0
0 1 0 0
a1 a2 a1 a2


P2 =

[
0 0 1 0
b1 b2 b3 b4

]
P3 =

[
0 0 0 1
c1 c2 c3 c4

]

a1 = −T122

a2 = −T222

b1 = (T112 − T122T312)/T122

b2 = (T212 − T222T312)/T122

b3 = −T312

b4 = x2

c1 = (T121 − T122T321)/T222

c2 = (T221 − T222T321)/T222

c3 = x1

c4 = −T321(
x1

x2

)
= A−1b, where A =

[
T122T

2
222T312 − T112T

2
222 T 3

122T321 − T121T
2
122

T 3
222T312 − T212T

2
222 T 2

122T222T321 − T 2
122T221

]
b =(

T2
122T222(T311 − T312T321) − T111T122T222 − T2

122T222T312T321 + T112T122T222T321 + T121T122T222T312
T122T2

222(T311 − T312T321) − T122T211T222 − T122T2
222T312T321 + T122T212T222T321 + T122T221T222T312

)

Fig. 2. Factorizing the Mixed Trifocal Tensor. Assumes that the tensor is normalized
such that T322 = 1.

4.1 Metric Upgrade

The cameras obtained from the factorization in the previous section are not
calibrated. The internal constraints for calibration on the tensor ensure that we
can get a calibrated set of cameras by applying a projective transform. Since we
assume zero skew and unit aspect ratio the projective transform can be linearly
estimated as described in [7].
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5 Planar Scene under Radial Projections

In this section we discuss the third case considered for the radial trifocal tensor
in [7], when the scene points are planar. As mentioned in the main paper (and in
[7]), for the case of intersecting principal axes we can only recover the direction
to the 3D point. Since directions correspond to points on the plane at infinity
π∞, we can think of the cameras as only imaging this plane. Of course, then
by a projective change of coordinates the cameras could be imaging any other
plane instead. Now assume the cameras are observing a real plane, which we
w.l.o.g. assume is the xy-plane, i.e. X = (x, y, 0, 1). The radial trifocal tensor
describing this camera configuration then only gives us information about the
1,2 and 4 column of the camera matrices (since all imaged points have z = 0),
i.e. factorizing the tensor we only get

Pi =

[
a11 a12 ? a14
a21 a22 ? a24

]
, i = 1, 2, 3. (10)

Requiring the cameras to be calibrated we can recover the unknown elements
a13 and a23 using the equations

a211 + a212 + a213 = a221 + a222 + a223, (11)

a11a21 + a12a22 + a13a23 = 0. (12)

Note that we have two unknowns and two equations, so we can always extend
the 2 × 2 block to a calibrated reconstruction. Since we can always do this
(assuming the 2× 2-block is non-zero) this shows that there does not exist any
internal constraint for calibration in the case of planar scene points. In fact it
is easy to see that there exist infinitely many calibrated planar reconstructions
consistent with a radial trifocal tensor, since we can do this for any projective
coordinate change which keeps the xy-plane fixed.

5.1 Reconstruction Ambiguities

For the 1D radial camera model it is not possible to determine if a 3D point is
behind or in front the camera since the depth is not observable. This means that
there is an unresolvable ambiguity in the reconstruction where we can mirror
it in the coordinate axes (i.e. H = diag(1, 1, 1,−1)). Additionally, only fixing
the first camera to [I2 0] leaves a possible reflection in the z-axis (i.e. H =
diag(1, 1,−1, 1)).

6 More Experimental Results

Now we present more qualitative results for our reconstruction pipeline. Fig-
ures 3, 4, 5, 6, and 7 shows reconstructions from the quantitative evaluation in
the main paper.
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In Figure 8 we show a comparison with running vanilla COLMAP [6] with
default parameters on the fisheye images from [1]. In [1] they also present cata-
dioptric images of the same building. Unfortunately, due to the limited motion
in this dataset and the difficulty in matching the catadioptric images, we were
unable to get a nice reconstruction using only catadioptric images. In Figure 9
we present a reconstruction using both the fisheye and the catadioptric images.
While the reconstruction is noisier, you can also see how more features are being
triangulated, e.g. the two smaller structures on the sides as well as the build-
ing/trees across the street. Note that these structures are not visible in the
fisheye images. To get more accurate matches for the catadioptric images we
used the same partial undistortion described in [1] before computing the feature
descriptors.

Figure 11 and Figure 12 show two new datasets, Big Church and Building
II, captured using a standard DSLR camera with a fisheye lens. Figure 13 shows
a reconstruction from a new dataset captured with a Ricoh Theta Z1 camera.
The camera has two 180 degree fisheye lenses pointing in opposite directions to
get a omnidirectional field-of-view.

In Figure 14 we show two failure cases for the Spilled Blood and the Big
Church dataset. In both of these cases the incremental SfM method incorrectly
registered images to the reconstruction. The reconstructions in Figure 6 and
Figure 11 were found by using a different set of images to initialize.
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Fig. 3. Lund Cathedral [4] 1226 images, 422939 points, 0.29 px average reprojection
error.
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Fig. 4. Orebro Castle [4] 763 images, 197300 points, 0.28 px average reprojection error.
Note that the actual building is not exactly rectangular.
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Fig. 5. San Marco [4], 1498 images, 293014 points, 0.44 px average reprojection error.
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Fig. 6. Spilled Blood [4] 781 images, 284979 points, 0.41 px average reprojection error.
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Fig. 7. Doge Palace [4] 241 images, 74302 points, 0.29 px average reprojection error.
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Fig. 8. Building dataset using Fisheye images from Camposeco et al. [1]. Top: Our
reconstruction. Bottom: COLMAP [6] without camera intrinsic/distortion parameters.

Fig. 9. Building dataset using fisheye and catadioptric images from Camposeco et
al. [1]. Note that we are able to triangulate additional features not present in the fisheye
images, e.g. the trees and facade of the building across the street. For visualization
purposes we show the 3D points in blue instead of using the image RGB colors (the
other building has a white facade.)
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Fig. 10. Rotunda [3], 62 images, 16292 points, 0.41 px average reprojection error.
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Fig. 11. Big Church, 373 images, 89288 points, 0.50 px average reprojection error.
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Fig. 12. Building II, 126 images, 27740 points, 0.44 px average reprojection error.
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Fig. 13. Fisheye Dataset, 148 images, 14893 points, 0.51 px average reprojection error.
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Fig. 14. Failure cases for Spilled Blood dataset and Big Church dataset.
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