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1 Introduction

In this supplementary material, we provide additional quantitative and qualita-
tive results for a better understanding of the proposed model for unified image
and video saliency analysis. The contents are structured as follows:

Section 2: Additional Qualitative Video Saliency Results
Section 3: Additional Qualitative Image Saliency Results
Section 4: Cross-Domain Predictions
Section 5: Additional Center Bias Analysis
Section 6: Additional Ablation Studies
Section 7: SALICON Cross-Dataset Generalization
Section 8: Details for Quantitative Evaluation
Section 9: Code

2 Additional Qualitative Video Saliency Results

We present further qualitative video saliency prediction results in addition to
those shown in the main paper. Also, we include comparisons to predictions gen-
erated with state-of-the-art methods [6,4]. Representative clips are sampled from
the three video saliency datasets (DHF1K [6], UCF Sports [5], and Hollywood-
2 [5]). The results are shown in the enclosed video file video 3601.mp4 (also
available at https://www.youtube.com/watch?v=4CqMPDI6BqE). Video frame-
based examples are shown in Figure 1.

3 Additional Qualitative Images Saliency Results

We include further qualitative image saliency prediction results in addition to
those presented in the main paper. Representative images are sampled from the
SALICON [1] and MIT1003 [2] datasets. The results are shown in Figure 2 and
Figure 3 for SALICON and MIT1003, respectively.
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Table 1. Ablation study of the domain-adaptive modules on the DHF1K and SALI-
CON validation sets. The proposed components are added individually to a new base-
line (Baseline+...+Smoothing) to quantify their contribution. Training setting (vi) is
used for this study.

Config.
Dataset DHF1K SALICON

KLD ↓AUC-J ↑SIM ↑CC ↑NSS ↑KLD ↓AUC-J ↑SIM ↑CC ↑NSS ↑
Baseline + ... + Smoothing* 1.770 0.882 0.295 0.416 2.305 0.369 0.848 0.690 0.799 1.654
* + DABN 1.852 0.880 0.317 0.396 2.212 0.355 0.851 0.717 0.807 1.747
* + DA-Gaussians 1.748 0.884 0.315 0.412 2.278 0.386 0.848 0.679 0.794 1.647
* + DA-Fusion 1.706 0.888 0.326 0.434 2.437 0.326 0.854 0.712 0.820 1.750
* + DA-Smoothing 1.754 0.883 0.304 0.418 2.302 0.379 0.847 0.683 0.793 1.677
* + BypassRNN 1.784 0.882 0.322 0.412 2.302 0.356 0.853 0.695 0.819 1.721

4 Cross-Domain Predictions

Here, we analyze the impact of the domain-adaptive modules when predicting vi-
sual saliency on the same input. Results for video saliency prediction are shown in
the second part of the attached video file video 3601.mp4. Figure 4 and Figure 5
show the results for image saliency prediction on SALICON and MIT1003 data,
respectively. It is visible in Figure 4 that the video-specific settings (DHF1K,
Hollywood-2, UCF Sports) cause the model to focus less on text and to focus
on a single central object compared to the SALICON-specific setting. Similar
observations can be made for the results shown in Figure 5.

5 Additional Center Bias Analysis

Here, we aim to evaluate the ability of the domain-adaptive learned Gaussian
prior maps to capture the dataset-specific center biases. The results are shown
in Figure 6. The upper row shows the averaged saliency targets for each training
dataset as an approximation of the true center biases. In order to reveal the
learned center biases, saliency predictions based on an all-zero input are gener-
ated for each set of domain-adaptive modules. For the video saliency datasets,
the learned bias reflects the true biases visibly well. For SALICON, the true bias
is significantly wider than the learned bias. A possible explanation is that the
spread-out true bias for SALICON is not caused by a more spread-out center
bias of the viewers, but rather by a spread-out placement of salient objects.

6 Additional Ablation Studies

In the main paper, we perform an ablation study on the components of the pro-
posed methods. Here, we further ablate the individual domain-adaptive mod-
ules in Table 1. We use the same evaluation metrics as in the main paper and
perform the study on the DHF1K and SALICON datasets. As a baseline for
this study we use the Baseline model of the main ablation study with modules
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Table 2. Cross-dataset generalization analysis on the SALICON benchmark test set.
The training settings (i) to (vi) denote training with: (i) DHF1K, (ii) Hollywood-2,
(iii) UCF Sports, (iv) SALICON, (v) DHF1K+Hollywood-2+UCF Sports, and (vi)
DHF1K+Hollywood-2+UCF Sports+SALICON.

KLD↓ AUC-J ↑ SIM ↑ s-AUC ↑ CC ↑ NSS ↑ IG ↑

Training setting (i) 0.45 0.83 0.65 0.67 0.75 1.61 0.43
Training setting (ii) 0.50 0.83 0.63 0.67 0.73 1.52 0.35
Training setting (iii) 0.82 0.81 0.61 0.67 0.65 1.42 0.00
Training setting (iv) 0.42 0.86 0.78 0.74 0.88 1.95 0.72
Training setting (v) 0.48 0.83 0.66 0.66 0.74 1.61 0.44
Training setting (vi) 0.35 0.86 0.78 0.74 0.88 1.95 0.78

added up to and including the Smoothing module. Then we add the individual
domain-adaptive modules to this new baseline to analyze their respective effec-
tiveness. Specifically, we add the domain-adaptive batch normalization (DABN ),
Gaussians (DA-Gaussians), Fusion (DA-Fusion), Smoothing (DA-Smoothing),
and the Bypass RNN (BypassRNN ). The results in Table 1 show that each
domain-adaptive module contributes differently to the performance, in which
the DA-Fusion contributes the most for both dynamic and static scenes. This is
consistent with our analyses in the main paper which indicate that this module
has an important contribution towards mitigating the domain shift.

7 SALICON Cross-Dataset Generalization

Here we analyze the cross-dataset generalization of the proposed UNISAL model
for image saliency prediction on the SALICON benchmark test set. Specifically,
we analyze the performance of our UNISAL model on the SALICON dataset
when training with different datasets, i.e., the six training settings described in
the main paper, where setting (vi) is our final model. In this study, we follow the
standard SALICON benchmark evaluation pipeline and include two additional
metrics of KL-divergence (KLD) and Information Gain (IG). The results are
shown in Table 2. We observe that the model performs slightly worse when
training on video datasets only compared to training on SALICON, even when
jointly training with the three video datasets (setting (v)). This observation
confirms the existence of a domain shift between image and video saliency data.
On the other hand, when jointly training with video and image datasets, the
performance is boosted on some metrics while remaining stable on the others.
This further validates the effectiveness of the proposed UNISAL approach to
unify video and image saliency modeling.
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8 Details for Quantitative Evaluation

8.1 Scoring SalEMA with Training Setting (vi)

For fairness of comparison, we score the SalEMA model[3] after fine-tuning it
with training setting (vi), i.e., DHF1K+Hollywood-2+UCF Sports+SALICON.
For this, we use the official implementation provided by the authors under
https://github.com/Linardos/SalEMA/. We fine-tune the SalEMA30.pt weights
with the default training settings. SALICON images are treated as single-frame
videos. The scores are computed on the test sets of UCF Sports and Hollywood-2
and the validation sets of DHF1K and SALICON, whose test sets are held-out
for benchmarking.

8.2 Scoring ACLNet on SALICON

To obtain an additional baseline for image saliency prediction performance of
an existing video saliency model besides SalEMA, we score the ACLNet model
on the SALICON validation set (the test set is held-out for benchmarking). We
compute the scores when using either the auxiliary image saliency prediction
output or the LSTM output of the model. We find that the scores of the auxiliary
output are better for all metrics and consequently report these in the paper.

8.3 Sources of Other Benchmark Scores

The scores of previous video saliency models on the DHF1K, UCF-Sports and
Hollywood-2 datasets are obtained from [6]. The scores of the previous image
saliency models on the SALICON and MIT300 benchmarks were obtained from
the respective papers.

9 Code

The full code for evaluating and training the UNISAL model is available at
https://github.com/rdroste/unisal.
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Fig. 1. Additional qualitative video saliency prediction results. Predictions of the
proposed UNISAL model are compared to those of ACLNet [6] and SalGAN [4].
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Fig. 2. Additional qualitative image saliency prediction results of the proposed
UNISAL model for the SALICON dataset.
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Fig. 3. Additional qualitative image saliency prediction results of the proposed
UNISAL model for the MIT1003 dataset.
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Fig. 4. Cross-domain predictions for SALICON. The images shown are drawn from
the SALICON validation set. The predictions are generated with the same trained
UNISAL model, but different domain-adaptive settings. The leftmost column shows
the dataset whose modules were selected for the corresponding row.
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Fig. 5. Cross-domain predictions for MIT1003. The images shown are drawn from the
MIT1003 dataset. The predictions are generated with the same trained UNISAL model,
but different domain-adaptive settings. The leftmost column shows the dataset whose
modules were selected for the corresponding row. MIT1003 denotes the SALICON-
specific setting which was fine-tuned on MIT1003 samples.
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Fig. 6. Saliency targets center biases vs. learned biases. The upper row shows the
average across all target training saliency maps for each dataset. The lower row shows
the prediction of the model for an all-zero input, for different domain-adaptive settings.
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