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A Supplementary Material

This supplementary material provides:

A.1 The conditions for a collection of actions to be considered coordinated.
A.2 An example showing that standard independent multi-agent action sampling

makes it impossible to, even in principle, obtain an optimal joint policy.
A.3 Training details including hyperparameter choices, hardware configurations,

and reward structure. We also discuss our upgrades to AI2-THOR.
A.4 Additional discussion, tables, and plots regarding our quantitative results.
A.5 Additional discussion, tables, and plots of our qualitative results including a

description of our supplementary video (https://youtu.be/I_Evs5Bol6k)
as well as an in-depth quantitative evaluation of communication learned by
our agents.

A.1 Action restrictions

We now comprehensively describe the restrictions defining when actions taken
by agents are globally consistent with one another. In the following we will, for
readability, focus on the two agent setting. All conditions defined here easily
generalize to any number of agents. Recall the sets ANAV,AMWO,AMO, and
ARO defined in Sec. 3. We call these sets the modalities of action. Two actions
a1, a2 ∈ A are said to be of the same modality if they both are an element of the
same modality of action. Let a1 and a2 be the actions chosen by the two agents.
Below we describe the conditions when a1 and a2 are considered coordinated. If
the agents’ actions are uncoordinated, both actions fail and no action is taken
for time t. These conditions are summarized in Fig. 2a.
Same action modality. A first necessary, but not sufficient, condition for suc-
cessful coordination is that the agents agree on the modality of action to per-
form. Namely, both a1 and a2 are of the same action modality. Notice the block
diagonal structure in Fig. 2a.
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No independent movement. Our second condition models the intuitive ex-
pectation that if one agent wishes to reposition itself by performing a single-
agent navigational action, the other agent must remain stationary. Thus, if
a1, a2 ∈ ANAV, then (a1, a2) are coordinated if and only if one of a1 or a2 is
a Pass action. The {1, 2, 3, 4}2 entries of the matrix in Fig. 2a show coordinated
pairs of single-agent navigational actions.
Orientation synchronized object movement. Suppose that both agents
wish to move (with) the object in a direction so that a1, a2 ∈ AMWO or a1, a2 ∈
AMO. As actions are taken from an egocentric perspective, it is possible, for
example, that moving ahead from one agent’s perspective is the same as moving
left from the other’s. This condition requires that the direction specified by both
of the agents is consistent globally. Hence a1, a2 are coordinated if and only if
the direction specified by both actions is the same in a global reference frame.
For example, if both agents are facing the same direction this condition requires
that a1 = a2 while if the second agent is rotated 90 degrees clockwise from the
first agent then a1 = MoveObjectAhead will be coordinated if and only if
a2 = MoveObjectLeft. See the multicolored 4×4 blocks in Fig. 2a.
Simultaneous object rotation. For the lifted object to be rotated, both agents
must rotate it in the same direction in a global reference frame. As we only allow
the agents to rotate the object in a single direction (clockwise) this means that
a1 = RotateObjectRight requires a2 = a1. See the (9, 9) entry of the matrix
in Fig. 2a.

While a pair of uncoordinated actions are always unsuccessful, it need not
be true that a pair of coordinated actions is successful. A pair of coordinated
actions will be unsuccessful in two cases: performing the action pair would result
in (a) an agent, or the lifted object, colliding with one another or another object
in the scene; or (b) an agent moving to a position more than 0.76m from the
lifted object. Here (a) enforces the physical constraints of the environment while
(b) makes the intuitive requirement that an agent has a finite reach and cannot
lift an object when being far away.

A.2 Challenge 1 (rank-one joint policies) example

We now illustrate how requiring two agents to independently sample actions
from marginal policies can result in failing to capture an optimal, high-rank,
joint policy.

Consider two agents A1 and A2 who must work together to play rock-paper-
scissors (RPS) against some adversary E. In particular, our game takes place in
a single timestep where each agent Ai, after perhaps communicating with the
other agent, must choose some action ai ∈ A = {R,P, S}. During this time the
adversary also chooses some action aE ∈ A. Now, in our game, the pair of agents
A1, A2 lose if they choose different actions (i.e., a1 6= a2), tie with the adversary
if all players choose the same action (i.e., a1 = a2 = aE), and finally win or
lose if they jointly choose an action that beats or losses against the adversary’s
choice following the normal rules of RPS (i.e., win if (a1, a2, aE) ∈ {(R,R, S),
(P, P,R), (S, S, P )}, lose if (a1, a2, aE) ∈ {(S, S,R), (R,R, P ), (P, P, S)}).
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Fig. 6: Central model architecture. The central backbone observes the ag-
gregate of all agents’ observations. Moreover, the actor in the central model
explicitly captures the joint policy distribution.

Moreover, we consider the challenging setting where A1, A2 communicate in
the open so that the adversary can view their joint policy Π before choosing
the action it wishes to take. Notice that we’ve dropped the t subscript on Π as
there is only a single timestep. Finally, we treat this game as zero-sum so that
our agents obtain a reward of 1 for victory, 0 for a tie, and −1 for a loss. We
refer to the optimal joint policy as Π∗. If the agents operate in a decentralized
manner using their own (single) marginal policies, their effective rank-one joint
policy equals Π = π1 ⊗ π2.
Optimal joint policy: It is well-known, and easy to show, that the optimal
joint policy equals Π∗ = I3/3, where I3 is the identity matrix of size 3. Hence, the
agents take multi-action (R,R), (P, P ), or (S, S) with equal probability obtaining
an expected reward of zero.
Optimal rank-one joint policy: Π∗ (the optimal joint policy) is of rank three
and thus cannot be captured by Π (an outer product of marginals). Instead,
brute-force symbolic minimization, using Mathematica [3], shows that an optimal
strategy for A1 and A2 is to let π1 = π2 with

π1(R) = 2−
√

2 ≈ 0.586, (1)

π1(P ) = 0, and (2)

π1(S) = 1− π1(R) ≈ 0.414. (3)

The expected reward from this strategy is 5 − 4
√

2 ≈ −.657, far less than the
optimal expected reward of 0.

A.3 Training details

Centralized agent. Fig. 6 provides an overview of the architecture of the
centralized agent. The final joint policy is constructed using a single linear layer
applied to a hidden state. As this architecture varies slightly when changing the
number of agents and the environment (i.e., AI2-THOR or our gridworld variant
of AI2-THOR) we direct anyone interested in exact replication to our codebase.

AI2-THOR upgrades. As we described in Sec. 6 we have made several up-
grades to AI2-THOR in order to make it possible to run our FurnMove task.
These upgrades are described below.
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Fig. 7: Directly comparing visual AI2-THOR with our gridworld. The
same scene with identical agent, TV, and TV-stand, positions in AI2-THOR
and our gridworld mirroring AI2-THOR. Gridworld agents receive clean, task-
relevant, information directly from the environment while, in AI2-THOR, agents
must infer this information from complex images.

Implementing FurnMove methods in AI2-THOR’s Unity codebase.
The AI2-THOR simulator has been built using C# in Unity. While multi-agent
support exists in AI2-THOR, our FurnMove task required implementing a col-
lection of new methods to support randomly initializing our task and moving
agents in tandem with the lifted object. Initialization is accomplished by a ran-
domized search procedure that first finds locations in which the lifted television
can be placed and then determines if the agents can be situated around the lifted
object so that they are sufficiently close to the lifted object and looking at it.
Implementing the joint movement actions (recall AMWO) required checking that
all agents and objects can be moved along straight-line paths without encoun-
tering collisions.
Top-down Gridworld Mirroring AI2-THOR. To enable fast prototyping
and comparisons between differing input modalities, we built an efficient grid-
world mirroring AI2-THOR. See Fig. 7 for a side-by-side comparison of AI2-
THOR and our gridworld. This gridworld was implemented primarily in Python
with careful caching of data returned from AI2-THOR.

Reward structure. Rewards are provided to each agent individually at every
step. These rewards include: (a) +1 whenever the lifted object is moved closer,
in Euclidean distance, to the goal object than it had been previously in the
episode, (b) a constant −0.01 step penalty to encourage short trajectories, and
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(c) a penalty of −0.02 whenever the agents action fails. The minimum total
reward achievable for a single agent is −7.5 corresponding to making only failed
actions, while the maximum total reward equals 0.99 · d where d is the total
number of steps it would take to move the lifted furniture directly to the goal
avoiding all obstructions. Our models are trained to maximize the expected
discounted cumulative gain with discounting factor γ = 0.99.

Optimization and learning hyperparameters. For all tasks, we train our
agents using reinforcement learning, particularly the popular A3C algorithm [6].
For FurnLift, we follow [4] and additionally use a warm start via imitation
learning (DAgger [10]). When we deploy the coordination loss (CORDIAL), we
modify the A3C algorithm by replacing the entropy loss with the coordination
loss CORDIAL defined in Eq. (1). In our experiments we anneal the β parame-
ter from a starting value of β = 1 to a final value of β = 0.01 over the first 5000
episodes of training. We use an ADAM optimizer with a learning rate of 10−4,
momentum parameters of 0.9 and 0.999, with optimizer statistics shared across
processes. Gradient updates are performed in an unsynchronized fashion using
a HogWild! style approach [9]. Each episode has a maximum length of 250 total
steps per agent. Task-wise details follow:

– FurnMove: Visual agents for FurnMove are trained for 500, 000 episodes,
across 8 TITAN V or TITAN X GPUs with 45 workers and take approxi-
mately 60 hours to train.

– Gridworld-FurnMove: Agents for Gridworld-FurnMove are trained for
1,000,000 episodes using 45 workers. Apart from parsing and caching the
scene once, gridworld agents do not need to render images. Hence, we train
the agents with only 1 G4 GPU, particularly the g4dn.16xlarge virtual
machine on AWS. Agents (i.e., two) for Gridworld-FurnMove take ap-
proximately 1 day to train.

– Gridworld-FurnMove-3Agents: Same implementation as above, except that
agents (i.e., three) for Gridworld-FurnMove-3Agents take approximately
3 days to train. This is due to an increase in the number of forward and
backward passes and a CPU bottleneck. Due to the action space blowing
up to |A| × |A| × |A| = 2197 (vs. 169 for two agents), positive rewards
become increasingly sparse. This leads to grave inefficiency in training, with
no learning for ∼500k episodes. To overcome this, we double the positive
rewards for the RL formulation for all methods within the three agent setup.

– FurnLift: We adhere to the exact training procedure laid out by Jain et
al . [4]. Visual agents for FurnLift are trained for 100,000 episodes with
the first 10,000 being warm started with a DAgger-styled imitation learning.
Reinforcement learning (A3C) takes over after the warm-start period.

Integration with other MARL methods. As mentioned in Sec. 2, our con-
tributions are orthogonal to the RL method deployed. Here we give some pointers
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for integration with a deep Q-Learning and a policy gradient method.
QMIX. While we focus on policy-gradients and QMIX [8] uses Q-learning, we
can formulate a SYNC for Q-Learning (and QMIX). Analogous to an actor with
multiple policies, consider a value head where each agent’s Q-function Qi is re-
placed by a collection of Q-functions Qa

i for a ∈ A. Action sampling is done stage-
wise, i.e. agents jointly pick a strategy as arg maxaQSY NC(communications, a),
and then individually choose action arg maxui Qa

i (τ i, ui). These Qa
i in turn can

incorporated into the QMIX mixing network.
COMA/MADDPG. Both these policy gradient algorithms utilize a central-
ized critic. Since our contributions focus on the actor head, we can directly
replace their per-agent policy with our SYNC policies and thus benefit directly
from the counterfactual baseline in COMA [2] or the centralized critic in MAD-
DPG [5].

A.4 Quantitative evaluation details

Confidence intervals for metrics reported. In the main paper, we men-
tioned that we mark the best performing decentralized method in bold and
highlight it in green if it has non-overlapping 95% confidence intervals. In this
supplement, particularly in Tab. 5, Tab. 6, Tab. 7, and Tab. 8 we include the
95% confidence intervals for the metrics reported in Tab. 1, Tab. 2, Tab. 3, and
Tab. 4.

Hypotheses on 3-agent central method performance. In Fig. 1 and
Sec. 6.3 of the main paper, we mention that the central method performs worse
than SYNC for the Gridworld-FurnMove-3Agent task. We hypothesize that
this is because the central method for the -3Agent setup is significantly slower as
its actor head has dramatically more parameters requiring more time to train.
In numbers – the central ’s actor head alone has D×|A|3 parameters, where D is
the dimensionality of the final representation fed into the actor (please see Fig. 6
for central ’s architecture). Note, D = 512 for our architecture means the cen-
tral ’s actor head has 512 · 133 =1,124,864 parameters. Contrast this to SYNC ’s
D × |A| × K parameters for a K mixture component. Even for the highest K
in the mixture component study (Tab. 3), i.e., K = 13, this value is 86, 528
parameters. Such a large number of parameters makes learning with the central
agent slow even after 1M episodes (this is already 10× more training episodes
than used in [4]).

Why MD-SPL instead of SPL? SPL was introduced in [1] for evaluating
single-agent navigational agents, and is defined as follows:

SPL =
1

Nep

Nep∑
i=1

Si
li

max(xi, li)
, (4)
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where i denotes an index over episodes, Nep equals the number of test episodes,
and Si is a binary indicator for success of episode i. Also xi is the length of the
agent’s path and li is the shortest-path distance from agent’s start location to
the goal. Directly adopting SPL isn’t pragmatic for two reasons:

(a) Coordinating actions at every timestep is critical to this multi-agent task.
Therefore, the number of actions taken by agents instead of distance (say in
meters) should be incorporated in the metric.

(b) Shortest-path distance has been calculated for two agent systems for FurnLift
[4] by finding the shortest path for each agent in a state graph. This can be
done effectively for fairly independent agents. While each position of the
agent corresponds to 4 states (if 4 rotations are possible), each position of
the furniture object corresponds to

# States = (#pos. for A1 near obj)× (#pos. for A2 near obj) (5)

× (#rot. for obj)× (#rot. for A1)× (#rot. for A2),

This leads to 404,480 states for an agent-object-agent assembly. We found the
shortest path algorithm to be intractable in a state graph of this magnitude.
Hence we resort to the closest approximation of Manhattan distance from
the object’s start position to the goal’s position. This is the shortest path,
if there were no obstacles for navigation.

Minimal edits to resolve the above two problems lead us to using actions instead
of distance, and leveraging Manhattan distance instead of shortest-path distance.
This leads us to defining, as described in Section Sec. 6.2 of the main paper, the
Manhattan distance based SPL (MDSPL) as the quantity

MDSPL =
1

Nep

Nep∑
i=1

Si
mi/dgrid

max(pi,mi/dgrid)
. (6)

Defining additional metrics used for FurnLift. Jain et al . [4] use two
metrics which they refer to as failed pickups (picked up, but not ‘pickupable’)
and missed pickups (‘pickupable’ but not picked up). ‘Pickupable’ means when
the object and agent configurations were valid for a PickUp action.

Plots for additional metrics. See Fig. 8, 9, and 10 for plots of additional
metric recorded during training for the FurnMove, Gridworld-FurnMove,
and FurnLift tasks. Fig. 10 in particular shows how the failed pickups and
missed pickups metrics described above are substantially improved when using
our SYNC models.

Additional 3-agent experiments. In the main paper we present results when
training SYNC , marginal, and central models to complete the 3-agent Gridworld-
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Fig. 8: Metrics recorded during training for the FurnMove task for
various models. These plots add to the graph shown in Fig. 4a. Here solid
lines indicate performance on the training set and dashed lines the performance
on the validation set. For the Invalid prob and TVD metrics, only training set
values are shown. For the TVD metric the black line (corresponding to the
Marginal (w/o comm) model completely covers the green line corresponding to
the Marginal model.

FurnMove task. We have also trained the same methods to complete the (vi-
sual) 3-agent FurnMove task. Rendering and simulating 3-agent interactions
in AI2-THOR is computationally taxing. For this reason we trained our SYNC
and central models for 300k episodes instead of the 500k episodes we used when
training 2-agent models. As it showed no training progress, we also stopped the
marginal model’s training after 100k episodes. Training until 300k episodes took
approximately four days using eight 12GB GPUs (∼ 768 GPU hours per model).

After training, the SYNC , marginal, and central obtained a test-set success
rate of 23.2 ± 2.6%, 0.0 ± 0.0%, and 12.4 ± 2.0% respectively. These results
mirror those of the 3-agent Gridworld-FurnMove task from the main paper.
Particularly, both the SYNC and central models train to reasonable success
rates but the central model actually performs worse than the SYNC model.
A discussion of our hypothesis for why this is the case can be found earlier in
this section. In terms of our other illustrative metrics, our SYNC , marginal,
and central respectively obtain MDSPL values of 0.029, 0.0, and 0.012, and
Invalid prob values of 0.336, 0.854, and 0.132.

Effect of field of view (FoV). We investigate the effect of varying FoV of
our agents. Unless specified otherwise, all experiments reported in this work
for agents with a FoV of 90◦. We additionally deploy SYNC with FoV of 60◦

and 120◦ to find that performance of visual agents improves with an increase
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Fig. 9: Metrics recorded during training for the Gridworld-FurnMove
task for various models. These plots add to the graph shown in Fig. 4b. Here
solid lines indicate performance on the training set and dashed lines the perfor-
mance on the validation set. For the Invalid prob and TVD metrics, only training
set values are shown. For the TVD metric the black line (corresponding to the
Marginal (w/o comm) model completely covers the green line corresponding to
the Marginal model.

in FoV. Particularly, we observe a success rate of 0.538, 0.587, and 0.661 for
SYNC with 60◦, 90◦, and 120◦, respectively. As we do for other visual multi-
agent experiments, we trained agents to 500k episodes (60 hrs on 8 TITAN X
GPUs) for this study.

A.5 Qualitative evaluation details and a statistical analysis of
learned communication

Discussion of our qualitative video (https://youtu.be/I_Evs5Bol6k).
This video includes four clips, each corresponding to the rollout on a test scene
of one of our models trained to complete the FurnMove task.
Clip A. Marginal agents attempt to move the TV to the goal but get stuck in
a narrow corridor as they struggle to successfully coordinate their actions. The
episode is considered a failure as the agents do not reach the goal in the allotted
250 timesteps. A top-down summary of this trajectory is included in Fig. 11.
Clip B. Unlike the marginal agents from Clip A., in this clip two SYNC agents
successfully coordinate actions and move the TV to the goal location in 186
steps. A top-down summary of this trajectory is included in Fig. 12.
Clip C. Here we show SYNC agents completing the Gridworld-FurnMove in
a test scene (the same scene and initial starting positions as in Clip A and Clip
B). The agents complete the task in 148 timesteps even after an initial search in
the incorrect direction.

https://youtu.be/I_Evs5Bol6k
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Fig. 10: Metrics recorded during training for the FurnLift task for var-
ious models. These plots add to the graph shown in Fig. 4c. Notice that we
have included plots corresponding to the failed pickups (picked up, but not ‘pick-
upable’) and missed pickups (‘pickupable’ but not picked up) metrics described
in Sec. A.4. Solid lines indicate performance on the training set and dashed lines
the performance on the validation set. For the Invalid prob and TVD metrics,
only training set values are shown. For the TVD metric the black line (corre-
sponding to the Marginal (w/o comm) model completely covers the green line
corresponding to the Marginal model.

Clip D (contains audio). This clip is an attempt to experience what agents
‘hear.’ The video for this clip is the same as Clip B showing the SYNC method.
The audio is a rendering of the communication between agents in the reply
stage. Particularly, we discretize the [0, 1] value associated with the first reply
weight of each agent into 128 evenly spaced bins corresponding to the 128 notes
on a MIDI keyboard (0 corresponding to a frequency of ∼8.18 Hz and 127 to
∼12500 Hz). Next, we post-process the audio so that the communication from
the agents is played on different channels (stereo) and has the Tech Bass tonal
quality. As a result, the reader can experience what agent 1 hears (i.e., agent
2’s reply weight) via the left earphone/speaker and what agent 2 hears (i.e.,
agent 1’s reply weight) via the right speaker. In addition to the study in Sec. 6.4
and Sec. A.5, we notice a higher pitch/frequency for the agent which is passing.
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Table 5: 95% confidence intervals included in addition to Tab. 1, evaluating
methods on FurnMove, Gridworld-FurnMove, and Gridworld-FurnMove-
3Agents. For legend details, see Tab. 1.

Methods MD-SPL ↑ Success ↑ Ep len ↓ Final
dist

↓ Invalid
prob.

↓ TVD l

FurnMove (ours)

Marginal w/o comm [4]
0.032 0.164 224.1 2.143 0.815 0

(±0.007) (±0.023) (±2.031) (±0.104) (±0.005) (±0)

Marginal [4]
0.064 0.328 194.6 1.828 0.647 0

(±0.008) (±0.029) (±2.693) (±0.105) (±0.010) (±0)

SYNC
0.114 0.587 153.5 1.153 0.31 0.474

(±0.009) (±0.031) (±2.870) (±0.089) (±0.004) (±0.005)

Central†
0.161 0.648 139.8 0.903 0.075 0.543

(±0.012) (±0.030) (±2.958) (±0.076) (±0.006) (±0.006)
Gridworld-FurnMove (ours)

Marginal w/o comm [4]
0.111 0.484 172.6 1.525 0.73 0

(±0.012) (±0.031) (±2.825) (±0.121) (±0.008) (±0)

Marginal [4]
0.218 0.694 120.1 0.960 0.399 0

(±0.015) (±0.029) (±2.974) (±0.100) (±0.011) (±0)

SYNC
0.228 0.762 110.4 0.711 0.275 0.429

(±0.014) (±0.026) (±2.832) (±0.076) (±0.005) (±0.005)

Central†
0.323 0.818 87.7 0.611 0.039 0.347

(±0.016) (±0.024) (±2.729) (±0.067) (±0.004) (±0.006)
Gridworld-FurnMove-3Agents (ours)

Marginal [4]
0 0 250.0 3.564 0.823 0

(±0) (±0) (±0) (±0.111) (±0) (±0)

SYNC
0.152 0.578 149.1 1.05 0.181 0.514

(±0.012) (±0.031) (±6.020) (±0.091) (±0.006) (±0.009)

Central†
0.066 0.352 195.4 1.522 0.138 0.521

(±0.008) (±0.03) (±5.200) (±0.099) (±0.005) (±0.006)

We also notice lower pitches for MoveWithObject and MoveObject actions.

Joint policy summaries. These provide a way to visualize the effective joint
distribution that each method captures. For each episode in the test set, we
log each multi-action attempted by a method. We average over steps in the
episode to obtain a matrix (which sums to one). Afterwards, we average these
matrices (one for each episode) to create a joint policy summary of the method
for the entire test set. This two-staged averaging prevents the snapshot from
being skewed towards actions enacted in longer (failed or challenging) episodes.
In the main paper, we included snapshots for FurnMove in Fig. 5. In Fig. 13 we
include additional visualizations for all methods including (Marginal w/o comm
model) for FurnMove and Gridworld-FurnMove.

Communication analysis. As shown in Fig. 5d and discussed in Sec. 6.4,
there is very strong qualitative evidence suggesting that our agents use their
talk and reply communication channels to explicitly relay their intentions and
coordinate their actions. We now produce a statistical, quantitative, evaluation of
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Table 6: 95% confidence intervals included in addition to Tab. 2, evaluating
methods on FurnLift. Marginal and SYNC perform equally well, and mostly
lie within confidence intervals of each other. Invalid prob. and failed pickups
metrics for SYNC have non-overlapping confidence bounds (lighted in green).
For more details on the legend, see Tab. 1.

Methods MD-SPL ↑ Success ↑ Ep len ↓ Final
dist

↓ Invalid
prob.

↓ TVD l Failed
pickups

↓ Missed
pickups

↓

FurnLift [4] (‘constrained’ setting with no implicit communication)

Marginal w/o comm [4]
0.029 0.15 229.5 2.455 0.11 0 25.219 6.501

(±0.007) (±0.022) (±3.482) (±0.105) (±0.004) (±0) (±1.001) (±0.784)

Marginal [4]
0.145 0.449 174.1 2.259 0.042 0 8.933 1.426

(±0.016) (±0.031) (±5.934) (±0.094) (±0.003) (±0) (±0.867) (±0.284)

SYNC
0.139 0.423 176.9 2.228 0 0.027 4.873 1.048

(±0.016) (±0.031) (±5.939) (±0.083) (±0) (±0.002) (±0.453) (±0.192)

Central†
0.145 0.453 172.3 2.331 0 0.059 5.145 0.639

(±0.016) (±0.031) (±5.954) (±0.088) (±0) (±0.002) (±0.5) (±0.164)

Table 7: 95% confidence intervals included in addition to Tab. 3 by varying
number of components in SYNC-policies for FurnMove.

K in SYNC MD-SPL ↑ Success ↑ Ep len ↓ Final
dist

↓ Invalid
prob.

↓ TVD l

FurnMove

1 component
0.064 0.328 194.6 1.828 0.647 0

(±0.004) (±0.019) (±2.833) (±0.105) (±0.002) (±0)

2 components
0.084 0.502 175.5 1.227 0.308 0.206

(±0.008) (±0.031) (±5.321) (±0.091) (±0.004) (±0.004)

4 components
0.114 0.569 154.1 1.078 0.339 0.421

(±0.009) (±0.031) (±5.783) (±0.083) (±0.004) (±0.005)

13 components
0.114 0.587 153.5 1.153 0.31 0.474

(±0.009) (±0.031) (±5.739) (±0.089) (±0.004) (±0.005)

this phenomenon by fitting multiple logistic regression models where we attempt
to predict, from the agents communications, certain aspects of their environment
as well as their future actions. In particular, we run 1000 episodes on our test
set using our mixture model in the visual testbed. This produces a dataset of
159,380 observations where each observation records, for a single step by both
agents at time t:

(a) The two weights p1talk,t, p
2
talk,t where pitalk,t is the weight agent Ai assigns to

the first symbol in the “talk” vocabulary.

(b) The two weights p1reply,t, p
2
reply,t where pireply,t is the weight agent Ai assigns

to the first symbol in the “reply” vocabulary.

(c) The two values tvit ∈ {0, 1} where tvit equals 1 if and only if agent Ai sees
the TV at timestep t (before taking its action).

(d) The two values WillPassit ∈ {0, 1} where WillPassit equals 1 if and only
if agent i ends up choosing to take the Pass action at time t (i.e., after
finishing communication).

(e) The two values WillMWOit ∈ {0, 1} where WillMWOit equals 1 if and only if
agent i ends up choosing to take some MoveWithObject action at time t.
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Table 8: 95% confidence intervals included in addition to Tab. 4, ablating co-
ordination loss on marginal [4], SYNC , and central methods. †denotes that a
centralized agent serve only as an upper bound to decentralized methods.

Method CORDIAL MD-SPL ↑ Success ↑ Ep len ↓ Final
dist

↓ Invalid
prob.

↓ TVD l

FurnMove

Marginal 7
0.064 0.328 194.6 1.828 0.647 0

(±0.008) (±0.029) (±5.385) (±0.105) (±0.01) (±0.0)

Marginal 3
0.015 0.099 236.9 2.134 0.492 0

(±0.004) (±0.019) (±2.833) (±0.105) (±0.002) (±0.0)

SYNC 7
0.091 0.488 170.3 1.458 0.47 0.36

(±0.008) (±0.031) (±5.665) (±0.104) (±0.008) (±0.008)

SYNC 3
0.114 0.587 153.5 1.153 0.31 0.474

(±0.009) (±0.031) (±5.739) (±0.089) (±0.004) (±0.005)

Central† 7
0.14 0.609 146.9 1.018 0.155 0.6245

(±0.011) (±0.03) (±5.895) (±0.084) (±0.006) (±0.005)

Central† 3
0.161 0.648 139.8 0.903 0.075 0.543

(±0.012) (±0.03) (±5.915) (±0.076) (±0.006) (±0.006)

Episode start Progress after 83 steps Progress after 166 steps Progress after 250 steps (failure)

Fig. 11: Clip A trajectory summary. The marginal agents quickly get stuck in a
narrow area between a sofa and the wall and fail to make progress.

In the following we will drop the subscript t and consider the above quantities
as random samples drawn from the distribution of possible steps taken by our
agents in randomly initialized trajectories. As A1 and A2 share almost all of their
parameters they are, essentially, interchangeable. Because of this our following
analysis will be solely taking the perspective of agent A1, similar results hold for
A2. We consider fitting the three models:

σ−1P (tv1t = 1) = βtv + β1
talk, tv · p1talk (7)

+ β1
reply, tv · p1talk,

+ β1
talk*reply, tv · p

1
talk · p1reply,
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Episode start Progress after 62 steps Progress after 124 steps Progress after 186 steps (success)

Fig. 12: Clip B trajectory summary. The SYNC agents successfully navigate the
TV to the goal location without getting stuck in the narrow corridor.

Table 9: Estimates, and corresponding robust bootstrap standard errors, for the
parameters of communication analysis (Sec. A.5).

βtv β1
talk, tv β1

reply, tv β1
talk*reply, tv -

Est. -2.62 6.93 3.35 -8.44 -
SE 0.33 0.52 0.38 0.62 -

βpass β1
talk, pass β2

talk, pass β1
reply, pass β2

reply, pass

Est. -7.55 2.69 -2.2 -1.72 9.98
SE 0.09 0.09 0.08 0.07 0.11

βMWO β1
talk, MWO β2

talk, MWO β1
reply, MWO β2

reply, MWO

Est. 2.71 0.39 0.28 -3.34 -3.37
SE 0.05 0.06 0.06 0.06 0.06

σ−1P (WillPass1 = 1) = βpass (8)

+

2∑
i=1

βi
talk, pass · pitalk

+

2∑
i=1

βi
reply, pass · pireply, and

σ−1P (WillMWO1 = 1) = βMWO (9)

+

2∑
i=1

βi
talk, MWO · pitalk

+

2∑
i=1

βi
reply, MWO · pireply,

where σ is the usual logistic function. Here Eq. (7) attempts to determine the
relationship between what A1 communicates and whether or not A1 is currently
seeing the TV, Eq. (8) probes whether or not any communication symbol is
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FurnMove

MWO actions

Nav. actions

MO actions

RO actions

Avg.
Prob.

Low

High

(a) Central (b) SYNC (c) Marginal (d) Marginal 
w/o comm

(a) Central (b) SYNC (c) Marginal

FurnMove-Gridworld

(d) Marginal 
w/o comm

Avg.
Prob.

Low

High

Fig. 13: Additional results for Fig. 5. Joint policy summaries for all methods
for both FurnMove and Gridworld-FurnMove.

associated with A1 choosing to take a Pass action, and finally Eq. (9) considers
whether or not A1 will choose to take a MoveWithObject action. We fit each
of the above models using the glm function in the R programming language
[7]. Moreover, we compute confidence intervals for our coefficient values using a
robust bootstrap procedure. Fitted parameter values can be found in Tab. 9.

From Tab. 9 we draw several conclusions. First, in our dataset, there is a
somewhat complex association between agent A1 seeing the TV and the com-
munication symbols it sends. In particular, for a fixed reply weight p1reply < 0.821,

a larger value of p1talk is associated with higher odds of the TV being visible to
A1 but if p1reply > 0.821 then larger values of p1talk are associated with smaller

odds of the TV being visible. When considering whether or not A1 will pass,
the table shows that this decision is strongly associated with the value of p2reply
where, given fixed values for the other talk and reply weights, p2reply being larger

by a unit of 0.1 is associated with 2.7× larger odds of A1 taking the pass action.
This suggests the interpretation of a large value of p2reply as A2 communicat-

ing that it wishes A1 to pass so that A1 may perform a single-agent navigation
action to reposition itself. Finally, when considering the fitted values correspond-
ing to Eq. (9) we see that while the talk symbols communicated by the agents
are weakly related with whether or not A1 takes a MoveWithObject action,
the reply symbols are associated with coefficients with an order of magnitude
larger values. In particular, assuming all other communication values are fixed,
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a smaller value of either p1reply or p2reply is associated with substantially larger

odds of A1 choosing a MoveWithObject action. This suggests interpreting an
especially small value of pireply as agent Ai indicating its readiness to move the
object.
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