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Abstract. Autonomous agents must learn to collaborate. It is not scal-
able to develop a new centralized agent every time a task’s difficulty out-
paces a single agent’s abilities. While multi-agent collaboration research
has flourished in gridworld-like environments, relatively little work has
considered visually rich domains. Addressing this, we introduce the novel
task FurnMove in which agents work together to move a piece of furni-
ture through a living room to a goal. Unlike existing tasks, FurnMove
requires agents to coordinate at every timestep. We identify two chal-
lenges when training agents to complete FurnMove: existing decen-
tralized action sampling procedures do not permit expressive joint ac-
tion policies and, in tasks requiring close coordination, the number of
failed actions dominates successful actions. To confront these challenges
we introduce SYNC-policies (synchronize your actions coherently) and
CORDIAL (coordination loss). Using SYNC-policies and CORDIAL,
our agents achieve a 58% completion rate on FurnMove, an impres-
sive absolute gain of 25 percentage points over competitive decentral-
ized baselines. Our dataset, code, and pretrained models are available at
https://unnat.github.io/cordial-sync.

Keywords: Embodied agents, multi-agent reinforcement learning, col-
laboration, emergent communication, AI2-THOR

1 Introduction

Progress towards enabling artificial embodied agents to learn collaborative strate-
gies is still in its infancy. Prior work mostly studies collaborative agents in grid-
world like environments. Visual, multi-agent, collaborative tasks have not been
studied until very recently [23,41]. While existing tasks are well designed to study
some aspects of collaboration, they often don’t require agents to closely collab-
orate throughout the task. Instead such tasks either require initial coordination
(distributing tasks) followed by almost independent execution, or collaboration
at a task’s end (e.g ., verifying completion). Few tasks require frequent coordi-
nation, and we are aware of none within a visual setting.
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Fig. 1: Two agents communicate and synchronize their actions to move a heavy
object through an indoor environment towards a goal. (a) Agents begin hold-
ing the object in a randomly chosen location. (b) Given only egocentric views,
successful navigation requires agents to communicate their intent to reposition
themselves, and the object, while contending with collisions, mutual occlusion,
and partial information. (c) Agents successfully moved the object above the goal

To study our algorithmic ability to address tasks which require close and fre-
quent collaboration, we introduce the furniture moving (FurnMove) task (see
Fig. 1), set in the AI2-THOR environment. Agents hold a lifted piece of furni-
ture in a living room scene and, given only egocentric visual observations, must
collaborate to move it to a visually distinct goal location. As a piece of furniture
cannot be moved without both agents agreeing on the direction, agents must ex-
plicitly coordinate at every timestep. Beyond coordinating actions, FurnMove
requires agents to visually anticipate possible collisions, handle occlusion due to
obstacles and other agents, and estimate free space. Akin to the challenges faced
by a group of roommates relocating a widescreen television, this task necessitates
extensive and ongoing coordination amongst all agents at every time step.

In prior work, collaboration between multiple agents has been enabled pri-
marily by (i) sharing observations or (ii) learning low-bandwidth communication.
(i) is often implemented using a centralized agent, i.e., a single agent with access
to all observations from all agents [9,70,89]. While effective it is also unrealis-
tic: the real world poses restrictions on communication bandwidth, latency, and
modality. We are interested in the more realistic decentralized setting enabled via
option (ii). This is often implemented by one or more rounds of message passing
between agents before they choose their actions [27,57,41]. Training decentral-
ized agents when faced with FurnMove’s requirement of coordination at each
timestep leads to two technical challenges. Challenge 1: as each agent indepen-
dently samples an action from its policy at every timestep, the joint probability
tensor of all agents’ actions at any given time is rank-one. This severely limits
which multi-agent policies are representable. Challenge 2: the number of possi-
ble mis-steps or failed actions increases dramatically when requiring that agents
closely coordinate with each other, complicating training.
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Addressing challenge 1, we introduce SYNC (Synchronize Your actioNs
Coherently) policies which permit expressive (i.e., beyond rank-one) joint poli-
cies for decentralized agents while using interpretable communication. To amelio-
rate challenge 2 we introduce the Coordination Loss (CORDIAL) that replaces
the standard entropy loss in actor-critic algorithms and guides agents away from
actions that are mutually incompatible. A 2-agent system using SYNC and
CORDIAL obtains a 58% success rate on test scenes in FurnMove, an im-
pressive absolute gain of 25 percentage points over the baseline from [41] (76%
relative gain). In a 3-agent setting, this difference is even more extreme.

In summary, our contributions are: (i) FurnMove, a new multi-agent em-
bodied task that demands ongoing coordination, (ii) SYNC, a collaborative
mechanism that permits expressive joint action policies for decentralized agents,
(iii) CORDIAL, a training loss for multi-agent setups which, when combined
with SYNC, leads to large gains, and (iv) open-source improvements to the AI2-
THOR environment including a 16× faster gridworld equivalent for prototyping.

2 Related work

Single-agent embodied systems: Single-agent embodied systems have been
considered extensively in the literature. For instance, literature on visual nav-
igation, i.e., locating an object of interest given only visual input, spans geo-
metric and learning based methods. Geometric approaches have been proposed
separately for mapping and planning phases of navigation. Methods entailing
structure-from-motion and SLAM [87,76,25,13,71,77] were used to build maps.
Planning algorithms on existing maps [14,45,51] and combined mapping & plan-
ning [26,49,48,30,6] are other related research directions.

While these works propose geometric approaches, the task of navigation can
be cast as a reinforcement learning (RL) problem, mapping pixels to policies in
an end-to-end manner. RL approaches [67,1,20,33,43,88,61,82] have been pro-
posed to address navigation in synthetic layouts like mazes, arcade games, and
other visual environments [96,8,46,53,42,80]. Navigation within photo-realistic
environments [11,75,15,47,98,5,35,97,58] led to the development of embodied AI
agents. The early work [103] addressed object navigation (find an object given
an image) in AI2-THOR. Soon after, [35] showed how imitation learning permits
agents to learn to build a map from which they navigate. Methods also investi-
gate the utility of topological and latent memory maps [35,74,37,95], graph-based
learning [95,99], meta-learning [94], unimodal baselines [86], 3D point clouds [93],
and effective exploration [91,74,16,72] to improve embodied navigational agents.
Extensions of embodied navigation include instruction following [38,4,78,91,3],
city navigation [18,63,62,90], question answering [21,22,34,93,24], and active vi-
sual recognition [101,100]. Recently, with visual and acoustic rendering, agents
have been trained for audio-visual embodied navigation [19,31].

In contrast to the above single-agent embodied tasks and approaches, we
focus on collaboration between multiple embodied agents. Extending the above
single-agent architectural novelties (or a combination of them) to multi-agent
systems such as ours is an interesting direction for future work.
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Non-visual MARL: Multi-agent reinforcement learning (MARL) is challeng-
ing due to non-stationarity when learning. Several methods have been pro-
posed to address such issues [84,85,83,29]. For instance, permutation invariant
critics have been developed recently [56]. In addition, for MARL, cooperation
and competition between agents has been studied [50,69,59,12,68,36,57,28,56].
Similarly, communication and language in the multi-agent setting has been in-
vestigated [32,44,10,60,52,27,79,66,7] in maze-based setups, tabular tasks, and
Markov games. These algorithms mostly operate on low-dimensional observa-
tions (e.g ., position, velocity, etc.) and top-down occupancy grids. For a survey
of centralized and decentralized MARL methods, kindly refer to [102]. Our work
differs from the aforementioned MARL works in that we consider complex vi-
sual environments. Our contribution of SYNC-Policies is largely orthogonal to
RL loss function or method. For a fair comparison to [41], we used the same RL
algorithm (A3C) but it is straightforward to integrate SYNC into other MARL
methods [73,28,57] (for details, see Sec. A.3 of the supplement).
Visual MARL: Jain et al . [41] introduced a collaborative task for two embod-
ied visual agents, which we refer to as FurnLift. In this task, two agents are
randomly initialized in an AI2-THOR living room scene, must visually navigate
to a TV, and, in a singe coordinated PickUp action, work to lift that TV up.
FurnLift doesn’t demand that agents coordinate their actions at each timestep.
Instead, such coordination only occurs at the last timestep of an episode. More-
over, as success of an action executed by an agent is independent (with the
exception of the PickUp action), a high performance joint policy need not be
complex, i.e., it may be near low-rank. More details on this analysis and the
complexity of our proposed FurnMove task are provided in Sec. 3. Similarly,
Chen et al . [17] proposes a visual hide-and-seek task, where agents can move
independently. Das et al . [23] enable agents to learn who to communicate with,
on predominantly 2D tasks. In visual environments they study the task where
multiple agents jointly navigate to the same object. Jaderberg et al . [40] recently
studied the game of Quake III and Weihs et al . [92] develop agents to play an
adversarial hiding game in AI2-THOR. Collaborative perception for semantic
segmentation and recognition classification have also been investigated [54,55].

To the best of our knowledge, all prior work in decentralized MARL uses a sin-
gle marginal probability distribution per agent, i.e., a rank-1 joint distribution.
Moreover, FurnMove is the first multi-agent collaborative task in a visually
rich domain requiring close coordination between agents at every timestep.

3 The furniture moving task (FurnMove)

We describe our new multi-agent task FurnMove, grounded in the real-
world experience of moving furniture. We begin by introducing notation.
RL background and notation. Consider N ≥ 1 collaborative agents A1, . . . ,
AN . At every timestep t ∈ N = {0, 1, . . .} the agents, and environment, are in
some state st ∈ S and each agent Ai obtains an observation oit recording some
partial information about st. For instance, oit might be the egocentric visual view
of an agent Ai embedded in some simulated environment. From observation oit



A Cordial Sync 5

and history hit−1, which records prior observations and decisions made by the
agent, each agent Ai forms a policy πit : A → [0, 1] where πit(a) is the probability
that agent Ai chooses to take action a ∈ A from a finite set of options A at
time t. After the agents execute their respective actions (a1t , . . . , a

N
t ), which we

call a multi-action, they enter a new state st+1 and receive individual rewards
r1t , . . . , r

N
t ∈ R. For more on RL see [81,64,65].

Task definition. FurnMove is set in the near-photorealistic and physics-
enabled simulated environment AI2-THOR [47]. In FurnMove, N agents col-
laborate to move a lifted object through an indoor environment with the goal of
placing this object above a visually distinct target as illustrated in Fig. 1. Akin
to humans moving large items, agents must navigate around other furniture and
frequently walk in-between obstacles on the floor.

In FurnMove, each agent at every timestep receives an egocentric observa-
tion (a 3×84×84 RGB image) from AI2-THOR. In addition, agents are allowed
to communicate with other agents at each timestep via a low-bandwidth com-
munication channel. Based on their local observation and communication, each
agent executes an action from the set A. The space of actions A = ANAV ∪
AMWO ∪AMO ∪ARO available to an agent is comprised of the four single-agent
navigational actions ANAV = {MoveAhead, RotateLeft, RotateRight,
Pass} used to move the agent independently, four actionsAMWO = {MoveWith
ObjectX | X ∈ {Ahead, Right, Left, Back}} used to move the lifted ob-
ject and the agents simultaneously in the same direction, four actions AMO =
{MoveObjectX| X ∈ {Ahead, Right, Left, Back}} used to move the
lifted object while the agents stay in place, and a single action used to rotate
the lifted object clockwise ARO = {RotateObjectRight}. We assume that
all movement actions for agents and the lifted object result in a displacement of
0.25 meters (similar to [41,58]) and all rotation actions result in a rotation of 90
degrees (counter-)clockwise when viewing the agents from above.

Close and on-going collaboration is required in FurnMove due to restric-
tions on the set of actions which can be successfully completed jointly by all
the agents. These restrictions reflect physical constraints: for instance, if two
people attempt to move in opposite directions while carrying a heavy object
they will either fail to move or drop the object. For two agents, we summarize
these restrictions using the coordination matrix shown in Fig. 2a. For compari-
son, we include a similar matrix in Fig. 2b corresponding to the FurnLift task
from [41]. We defer a more detailed discussion of these restrictions to Sec. A.1
of the supplement. Generalizing the coordination matrix shown in Fig. 2a, at
every timestep t we let St be the {0, 1}-valued |A|N -dimensional tensor where
(St)i1,...,iN = 1 if and only if the agents are configured such that multi-action
(ai1 , . . . , aiN ) satisfies the restrictions detailed in Sec. A.1. If (St)i1,...,iN = 1 we
say the actions (ai1 , . . . , aiN ) are coordinated.

3.1 Technical challenges

As we show in our experiments in Sec. 6, standard communication-based mod-
els similar to the ones proposed in [41] perform rather poorly when trained to
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Fig. 2: Coordination matrix for tasks. The matrix St records the validity of
multi-action (a1, a2) for different relative orientations of agents A1 & A2. (a) St
for all 4 relative orientations of two agents, for FurnMove. Only 16/169 = 9.5%
of multi-actions are coordinated at any given relative orientation, (b) FurnLift
where single agent actions are always valid and coordination is needed only for
PickUp action, i.e. at least 16/25 = 64% actions are always valid.

complete the FurnMove task. In the following we identify two key challenges
that contribute to this poor performance.

Challenge 1: rank-one joint policies. In classical multi-agent work [12,69,57],
each agent Ai samples its action ait ∼ πit independently of all other agents. Due to
this independent sampling, at time t, the probability of the agents taking multi-
action (a1, . . . , aN ) equals

∏N
i=1 π

i
t(a

i). This means that the joint probability
tensor of all actions at time t can be written as the rank-one tensor Πt =
π1
t⊗· · ·⊗πNt . This rank-one constraint limits the joint policy that can be executed

by the agents, which has real impact. Sec. A.2 considers two agents playing rock-
paper-scissors with an adversary: the rank-one constraint reduces the expected
reward achieved by an optimal policy from 0 to -0.657 (minimal reward being
-1). Intuitively, a high-rank joint policy is not well approximated by a rank-one
probability tensor obtained via independent sampling.

Challenge 2: exponential failed actions. The number of possible multi-
actions |A|N increases exponentially as the number of agents N grows. While
this is not problematic if agents act relatively independently, it’s a significant
obstacle when the agents are tightly coupled, i.e., when the success of agent Ai’s
action ai is highly dependent on the actions of the other agents. Just consider a
randomly initialized policy (the starting point of almost all RL problems): agents
stumble upon positive rewards with an extremely low probability which leads to
slow learning. We focus on small N , nonetheless, the proportion of coordinated
action tuples is small (9.5% when N = 2 and 2.1% when N = 3).
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Fig. 3: Model overview for 2 agents in the decentralized setting. Left : all decen-
tralized methods in this paper have the same TBONE [41] backbone. Right :
marginal vs SYNC-policies. With marginal policies, the standard in prior work,
each agent constructs its own policy and independently samples from it. With
SYNC-policies, agents communicate to construct a distribution α over multiple
“strategies” which they then sample from using a shared random seed

4 A cordial sync

To address the above challenges we develop: (a) a novel action sampling proce-
dure named Synchronize Your actioNs Coherently (SYNC) and (b) an intuitive
& effective multi-agent training loss named the Coordination Loss (CORDIAL).
Addressing challenge 1: SYNC. For concreteness we let N = 2, so the joint
probability tensor Πt is matrix of size |A|×|A|, and provide an overview in Fig. 3.
Recall our goal: using little communication, multiple agents should sample their
actions from a high-rank joint policy. This is difficult as (i) little communication
means that, except in degenerate cases, no agent can form the full joint policy
and (ii) even if all agents had access to the joint policy it is not obvious how to
ensure that the decentralized agents will sample a valid coordinated action.

To achieve our goal recall that, for any rank m ≤ |A| matrix L ∈ R|A|×|A|,
there are vectors v1, w1, . . . , vm, wm ∈ R|A| such that L =

∑m
j=1 vj ⊗ wj . Here,

⊗ denotes the outer product. Also, the non-negative rank of a matrix L ∈
R|A|×|A|≥0 equals the smallest integer s such that L can be written as the sum of

s non-negative rank-one matrices. A non-negative matrix L ∈ R|A|×|A|≥0 has non-
negative rank bounded above by |A|. Since Πt is a |A|×|A| joint probability ma-
trix, i.e., Πt is non-negative and its entries sum to one, it has non-negative rank
m ≤ |A|, i.e., there exist non-negative vectors α ∈ Rm≥0 and p1, q1, . . . , pm, qm ∈
R|A|≥0 whose entries sum to one such that Πt =

∑m
j=1 αj · pj ⊗ qj . We call a sum

of the form
∑m
j=1 αj · pj ⊗ qj a mixture-of-marginals. With this decomposition

at hand, randomly sampling action pairs (a1, a2) from
∑m
j=1 αj · pj ⊗ qj can be

interpreted as a two-step process: first sample an index j ∼ Multinomial(α) and
then sample a1 ∼ Multinomial(pj) and a2 ∼ Multinomial(qj).

This stage-wise procedure suggests a strategy for sampling actions in a multi-
agent setting, which we refer to as SYNC-policies. Generalizing to an N agent
setup, suppose that agents (Ai)Ni=1 have access to a shared random stream of
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numbers. This can be accomplished if all agents share a random seed or if all
agents initially communicate their individual random seeds and sum them to
obtain a shared seed. Furthermore, suppose that all agents locally store a shared
function fθ : RK → ∆m−1 where θ are learnable parameters, K is the dimen-
sionality of all communication between the agents in a timestep, and ∆m−1 is
the standard (m − 1)-probability simplex. Finally, at time t suppose that each
agent Ai produces not a single policy πit but instead a collection of policies
πit,1, . . . , π

i
t,m. Let Ct ∈ RK be all communication sent between agents at time

t. Each agent Ai then samples its action as follows: (i) compute the shared
probabilities αt = fθ(Ct), (ii) sample an index j ∼ Multinomial(αt) using the
shared random number stream, (iii) sample, independently, an action ai from
the policy πit,j . Since both fθ and the random number stream are shared, the
quantities in (i) and (ii) are equal across all agents despite being computed in-
dividually. This sampling procedure is equivalent to sampling from the tensor∑m
j=1 αj · π1

t,j ⊗ . . . ⊗ πNt,j which, as discussed above, may have rank up to m.
Intuitively, SYNC enables decentralized agents to have a more expressive joint
policy by allowing them to agree upon a strategy by sampling from αt.
Addressing challenge 2: CORDIAL. We encourage agents to rapidly learn
to choose coordinated actions via a new loss. In particular, letting Πt be the
joint policy of our agents, we propose the coordination loss (CORDIAL)

CLβ(St, Πt) = −β · 〈St, log(Πt)〉 / 〈St, St〉, (1)

where log is applied element-wise, 〈∗, ∗〉 is the usual Frobenius inner product,
and St is defined in Sec. 3. CORDIAL encourages agents to have a near uniform
policy over the actions which are coordinated. We use this loss to replace the
standard entropy encouraging loss in policy gradient algorithms (e.g ., the A3C
algorithm [65]). Similarly to the parameter for the entropy loss in A3C, β is
chosen to be a small positive constant so as to not overly discourage learning.

The coordination loss is less meaningful when Πt = π1 ⊗ · · · ⊗ πN , i.e.,
when Πt is rank-one. For instance, suppose that St has ones along the diago-
nal, and zeros elsewhere, so that we wish to encourage the agents to all take
the same action. In this case it is straightforward to show that CLβ(St, Πt) =

−β
∑N
i=1

∑M
j=1(1/M) log πit(a

j) so that CLβ(St, Πt) simply encourages each agent
to have a uniform distribution over its actions and thus actually encourages the
agents to place a large amount of probability mass on uncoordinated actions. In-
deed, Tab. 4 shows that using CORDIAL without SYNC leads to poor results.

5 Models

We study four distinct policy types: central, marginal, marginal w/o comm, and
SYNC . Central samples actions from a joint policy generated by a central agent
with access to observations from all agents. While often unrealistic in practice
due to communication bottlenecks, central serves as an informative baseline.
Marginal follows prior work, e.g ., [41]: each agent independently samples its
actions from its individual policy after communication. Marginal w/o comm
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is identical to marginal but does not permit agents to communicate explicitly
(agents may still see each other). Finally, SYNC is our newly proposed policy
described in Sec. 4. For a fair comparison, all decentralized agents (i.e., SYNC ,
marginal, and marginal w/o comm), use the same TBONE backbone architecture
from [41], see Fig. 3. We have ensured that parameters are fairly balanced so that
our proposed SYNC has close to (and never more) parameters than the marginal
and marginal w/o comm nets. We train central and SYNC with CORDIAL, and
the marginal and marginal w/o comm without it. This choice is mathematically
explained in Sec. 4 and empirically validated in Sec. 6.3.
Architecture: For clarity, we describe the policy and value net for the 2 agent
setup, extending to any number of agents is straightforward. Decentralized agents
use the TBONE backbone from [41]. Our primary architectural novelty extends
TBONE to SYNC-policies. An overview of the TBONE backbone and differ-
ences between sampling with marginal and SYNC policies is shown in Fig. 3.

As a brief summary of TBONE, agent i observes at time t inputs oit, i.e.,
a 3×84×84 RGB image returned from AI2-THOR which represents the i-th
agent’s egocentric view. Each oit is encoded by a 4-layer CNN and combined
with an agent-specific learned embedding (encoding the agent’s ID) along with
the history embedding hit−1. The resulting vector is fed into an LSTM [39] unit

to produce a 512-dimensional embedding h̃it corresponding to the ith agent. The
agents then undergo two rounds of communication resulting in two final hidden
states h1t , h

2
t and messages cit,j ∈ R16, 1 ≤ i, j ≤ 2 with message cit,j being

produced by agent i in round j and then sent to the other agent in that round.
In [41], the value of the agents’ state as well as logits corresponding to the policy
of the agents are formed by applying linear functions to h1t , h

2
t .

We now show how SYNC can be integrated into TBONE to allow our agents
to represent high-rank joint distributions over multi-actions (see Fig. 3). First
each agent computes the logits corresponding to αt. This is done using a 2-layer
MLP applied to the messages sent between the agents, at the second stage. In
particular, αt = W3 ReLU(W2 ReLU(W1 [c1t,2; c2t,2] + b1) + b2) + b3 where
W1 ∈ R64×32,W2 ∈ R64×64, W3 ∈ Rm×64, b1 ∈ R32,b2 ∈ R64, and b3 ∈ Rm
are a learnable collection of weight matrices and biases. After computing αt we
compute a collection of policies πit,1, . . . , π

i
t,m for i ∈ {1, 2}. Each of these policies

is computed following the TBONE architecture but using m−1 additional, and
learnable, linear layers per agent.

6 Experiments

6.1 Experimental setup

Simulator. We evaluate our models in the AI2-THOR environment [47] with
several novel upgrades including support for initializing lifted furniture and a
top-down gridworld version of AI2-THOR for faster prototyping (16× faster
than [41]). For details about framework upgrades, see Sec. A.3 of the supplement.
Tasks. We compare against baselines on FurnMove, Gridworld-FurnMove,
and FurnLift [41]. FurnMove is the novel task introduced in this work



10 U. Jain & L. Weihs et al.

(Sec. 3): agents observe egocentric visual views (90◦ field-of-view). In Gridworld-
FurnMove the agents are provided a top-down egocentric 3D tensor as obser-
vations. The third dimension of the tensor contains semantic information such
as, if the location is navigable by an agent or navigable by the lifted object, or
whether the location is occupied by another agent, the lifted object, or the goal
object. Hence, Gridworld-FurnMove agents do not need visual understanding,
but face other challenges of the FurnMove task – coordinating actions and
planning trajectories. We consider only the harder variant of FurnLift, where
communication was shown to be most important (‘constrained’ with no implicit
communication in [41]). In FurnLift, agents observe egocentric visual views.

Data. As in [41], we train and evaluate on a split of the 30 living room scenes. As
FurnMove is already quite challenging, we only consider a single piece of lifted
furniture (a television) and a single goal object (a TV-stand). Twenty rooms are
used for training, 5 for validation, and 5 for testing. The test scenes have very
different lighting conditions, furniture, and layouts. For evaluation our test set
includes 1000 episodes equally distributed over the five scenes.

Training. For training we augment the A3C algorithm [65] with CORDIAL.
For our studies in the visual domain, we use 45 workers and 8 GPUs. Models
take around two days to train. For more details, see Sec. A.3 of the supplement.

6.2 Metrics

For completeness, we consider a variety of metrics. We adapt SPL, i.e., Suc-
cess weighted by (normalized inverse) Path Length [2], so that it doesn’t require
shortest paths but still provides similar semantic information4: We define a Man-

hattan Distance based SPL as MD-SPL = N−1ep

∑Nep

i=1 Si
mi/dgrid

max(pi,mi/dgrid)
, where i

denotes an index over episodes, Nep equals the number of test episodes, and Si
is a binary indicator for success of episode i. Also pi is the number of actions
taken per agent, mi is the Manhattan distance from the lifted object’s start
location to the goal, and dgrid is the distance between adjacent grid points, for
us 0.25m. We also report other metrics capturing complementary information.
These include mean number of actions in an episode per agent (Ep len), success
rate (Success), and distance to target at the end of the episode (Final dist).

We also introduce two metrics unique to coordinating actions: TVD , the
mean total variation distance between Πt and its best rank-one approximation,
and Invalid prob, the average probability mass allotted to uncoordinated actions,
i.e., the dot product between 1 − St and Πt. By definition, TVD is zero for
the marginal model, and higher values indicate divergence from independent
marginal sampling. Without measuring TVD we would have no way of knowing
if our SYNC model was actually using the extra expressivity we’ve afforded it.
Lower Invalid prob values imply an improved ability to avoid uncoordination
actions as detailed in Sec. 3 and Fig. 2.

4 For FurnMove, each location of the lifted furniture corresponds to 404, 480 states,
making shortest path computation intractable (more details in Sec. A.4).
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Table 1: Quantitative results on three tasks. ↑ (or ↓) indicates that higher (or
lower) value of the metric is desirable while l denotes that no value is, a priori,
better than another. †denotes that a centralized agent serves only as an upper
bound to decentralized methods and cannot be fairly compared with. Among
decentralized agents, our SYNC model has the best metric values across all
reported metrics (bolded values). Values are highlighted in green if their 95%
confidence interval has no overlap with the confidence intervals of other values

Methods MD-SPL ↑ Success ↑ Ep len ↓ Final
dist

↓ Invalid
prob.

↓ TVD l

FurnMove (ours)

Marginal w/o comm [41] 0.032 0.164 224.1 2.143 0.815 0
Marginal [41] 0.064 0.328 194.6 1.828 0.647 0

SYNC 0.114 0.587 153.5 1.153 0.31 0.474

Central† 0.161 0.648 139.8 0.903 0.075 0.543

Gridworld-FurnMove (ours)

Marginal w/o comm [41] 0.111 0.484 172.6 1.525 0.73 0
Marginal [41] 0.218 0.694 120.1 0.960 0.399 0

SYNC 0.228 0.762 110.4 0.711 0.275 0.429

Central† 0.323 0.818 87.7 0.611 0.039 0.347

Gridworld-FurnMove-3Agents (ours)

Marginal [41] 0 0 250.0 3.564 0.823 0
SYNC 0.152 0.578 149.1 1.05 0.181 0.514

Central† 0.066 0.352 195.4 1.522 0.138 0.521

Table 2: Quantitative results on the FurnLift task. For legend, see Tab. 1

Methods MD-SPL ↑ Success ↑ Ep len ↓ Final
dist

↓ Invalid
prob.

↓ TVD l Failed
pickups

↓ Missed
pickups

↓

FurnLift [41] (‘constrained’ setting with no implicit communication)

Marginal w/o comm [41] 0.029 0.15 229.5 2.455 0.11 0 25.219 6.501
Marginal [41] 0.145 0.449 174.1 2.259 0.042 0 8.933 1.426

SYNC 0.139 0.423 176.9 2.228 0 0.027 4.873 1.048

Central† 0.145 0.453 172.3 2.331 0 0.059 5.145 0.639

6.3 Quantitative evaluation

We conduct four studies: (a) performance of different methods and relative dif-
ficulty of the three tasks, (b) effect of number of components on SYNC perfor-
mance, (c) effect of CORDIAL (ablation), and (d) effect of number of agents.
Comparing methods and tasks. We compare models detailed in Sec. 5 on
tasks of varying difficulty, report metrics in Tab. 1, and show the progress of
metrics over training episodes in Fig. 4. In our FurnMove experiments, SYNC
performs better than the best performing method of [41] (i.e., marginal) on all
metrics. Success rate increases by 25.9% and 6.8% absolute percentage points on
FurnMove and Gridworld-FurnMove respectively. Importantly, SYNC is sig-
nificantly better at allowing agents to coordinate their actions: for FurnMove,
the joint policy of SYNC assigns, on average, 0.31 probability mass to invalid
actions pairs while the marginal and marginal w/o comm models assign 0.647
and 0.815 probability mass to invalid action pairs. Additionally, SYNC goes
beyond rank-one marginal methods by capturing a more expressive joint policy
using the mixture of marginals. This is evidenced by the high TVD of 0.474 vs.
0 for marginal. In Gridworld-FurnMove, oracle-perception of a 2D gridworld
helps raise performance of all methods, though the trends are similar. Tab. 2
shows similar trends for FurnLift but, perhaps surprisingly, the Success of
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Fig. 4: Success rate during training. Train (solid lines) and validation (dashed
lines) performance of our agents for FurnMove, Gridworld-FurnMove, and
FurnLift (with 95% confidence intervals). For additional plots, see Sec. A.4

Table 3: Effect of number of mixture components m on SYNC ’s performance (in
FurnMove). Generally, larger m means better performance and larger TVD .

K in SYNC MD-SPL ↑ Success ↑ Ep len ↓ Final
dist

↓ Invalid
prob.

↓ TVD l

FurnMove

1 component 0.064 0.328 194.6 1.828 0.647 0
2 components 0.084 0.502 175.5 1.227 0.308 0.206
4 components 0.114 0.569 154.1 1.078 0.339 0.421
13 components 0.114 0.587 153.5 1.153 0.31 0.474

SYNC is somewhat lower than the marginal model (2.6% lower, within statisti-
cal error). As is emphasized in [41] however, Success alone is a poor measure of
model performance: equally important are the failed pickups and missed pickups
metrics (for details, see Sec. A.4 of the supplement). For these metrics, SYNC
outperforms the marginal model. That SYNC does not completely outperform
marginal in FurnLift is intuitive, as FurnLift does not require continuous
close coordination the benefits of SYNC are less pronounced.

While the difficulty of a task is hard to quantify, we will consider the relative
test-set metrics of agents on various tasks as an informative proxy. Replacing
the complex egocentric vision in FurnMove with the semantic 2D gridworld in
Gridworld-FurnMove, we see that all agents show large gains in Success and
MD-SPL, suggesting that Gridworld-FurnMove is a dramatic simplification of
FurnMove. Comparing FurnMove to FurnLift is particularly interesting:
the MD-SPL and Success metrics for the central agent do not provide a clear
picture of relative task difficulty. However, the much higher TVD for the central
agent for FurnMove and the superior MD-SPL and Success of the Marginal
agents for FurnLift suggest that FurnMove requires more coordination and
more expressive joint policies than FurnLift.

Effect of number of mixture components in SYNC. Recall (Sec. 4) that the
number of mixture components m in SYNC is a hyperparameter controlling the
maximal rank of the joint policy. SYNC with m = 1 is equivalent to marginal.
In Tab. 3 we see TV D increase from 0.206 to 0.474 when increasing m from
2 to 13. This suggests that SYNC learns to use the additional expressivity.
Moreover, we see that this increased expressivity results in better performance. A
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Table 4: Ablation study of CORDIAL on marginal [41], SYNC , and central
methods. Marginal performs better without CORDIAL whereas SYNC and
central show improvement with CORDIAL. For legend, see Tab. 1

Method CORDIAL MD-SPL ↑ Success ↑ Ep len ↓ Final
dist

↓ Invalid
prob.

↓ TVD l

FurnMove

Marginal 7 0.064 0.328 194.6 1.828 0.647 0
Marginal 3 0.015 0.099 236.9 2.134 0.492 0
SYNC 7 0.091 0.488 170.3 1.458 0.47 0.36
SYNC 3 0.114 0.587 153.5 1.153 0.31 0.474

Central† 7 0.14 0.609 146.9 1.018 0.155 0.6245

Central† 3 0.161 0.648 139.8 0.903 0.075 0.543

success rate jump of 17.4% from m = 1 to m = 2 demonstrates that substantial
benefits are obtained by even small increases in expressitivity. Moreover with
more components, i.e., m = 4 & m = 13 we obtain more improvements. There
are, however, diminishing returns with the m = 4 model performing nearly as
well as the m = 13 model. This suggests a trade-off between the benefits of
expressivity and the increasing complexities in optimization.
Effect of CORDIAL. In Tab. 4 we quantify the effect of CORDIAL. When
adding CORDIAL to SYNC we obtain a 9.9% improvement in success rate. This
is accompanied by a drop in Invalid prob. from 0.47 to 0.31, which signifies better
coordination of actions. Similar improvements are seen for the central model. In
‘Challenge 2’ (Sec. 4) we mathematically laid out why marginal models gain
little from CORDIAL. We substantiate this empirically with a 22.9% drop in
success rate when training the marginal model with CORDIAL.
Effect of more agents. The final three rows of Tab. 1 show the test-set perfor-
mance of SYNC , marginal, and central models trained to accomplish a 3-agent
variant of our Gridworld-FurnMove task. In this task the marginal model fails
to train at all, achieving a 0% success rate. SYNC , on the other hand, success-
fully completes the task 57.8% of the time. SYNC ’s success rate drops by nearly
20 percentage points when moving from the 2- to the 3-agent variant of the task:
clearly increasing the number of agents substantially increases the task’s diffi-
cult. Surprisingly, the central model performs worse than SYNC in this setting.
A discussion of this phenomenon is deferred to Supp. Sec. A.4.

6.4 Qualitative evaluation

We present three qualitative results on FurnMove: joint policy summaries,
analysis of learnt communication, and visualizations of agent trajectories.
Joint policy summaries. In Fig. 5 we show summaries of the joint policy
captured by the central, SYNC , and marginal models. These matrices average
over action steps in the test-set episodes for FurnMove. Other tasks show
similar trends, see Sec. A.5 of the supplement. In Fig. 5a, the sub-matrices
corresponding to AMWO and AMO are diagonal-dominant, indicating that agents
are looking in the same direction (0◦ relative orientation in Fig. 2). Also note
the high probability associated to (Pass, RotateX) and (RotateX, Pass),



14 U. Jain & L. Weihs et al.
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Fig. 5: Qualitative results. (a,b,c) joint policy summary (Πt averaged over
steps in test episodes in FurnMove) and (d) communication analysis.

within the ANAV block. Together, this means that the central method learns to
coordinate single-agent navigational actions to rotate one of the agents (while
the other holds the TV by executing Pass) until both face the same direction.
They then execute the same action from AMO (AMWO) to move the lifted object.
Comparing Fig. 5b vs. Fig. 5c, shows the effect of CORDIAL. Recall that
the marginal model doesn’t support CORDIAL and thus suffers by assigning
probability to invalid action pairs (color outside the block-diagonal submatrices).
The banded nature of Fig. 5c suggesting agents frequently fail to coordinate.
Communication analysis. A qualitative discussion of communication follows.
Agent are colored red and green. We defer a quantitative treatment to Sec. A.5
of the supplement. As we apply SYNC on the TBONE backbone introduced by
Jain et al . [41], we use similar tools to understand the communication emerging
with SYNC policy heads. In line with [41], we plot the weight assigned by each
agent to the first communication symbol in the reply stage. Fig. 5d strongly
suggests that the reply stage is directly used by the agents to coordinate the
modality of actions they intend to take. In particular, the large weight being
assigned to the first reply symbol is consistently associated with the other agent
taking a Pass action. Similarly, we see that small reply weights coincide with
agents taking a MoveWithObject action. The talk weights’ interpretation is
intertwined with the reply weights, and is deferred to Supp. Sec. A.5.
Agent trajectories. Our supplementary video includes examples of policy roll-
outs. These clips include both agents’ egocentric views and a top-down trajectory
visualization. This enables direct comparisons of marginal and SYNC on the
same test episode. We also allow for hearing patterns in agents’ communication:
we convert scalar weights (associated with reply symbols) to audio.

7 Conclusion

We introduce FurnMove, a collaborative, visual, multi-agent task requiring
close coordination between agents and develop novel methods that allow for
moving beyond existing marginal action sampling procedures, these methods
lead to large gains across a diverse suite of metrics.
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