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Abstract. Transfer of pre-trained representations improves sample effi-
ciency and simplifies hyperparameter tuning when training deep neural
networks for vision. We revisit the paradigm of pre-training on large su-
pervised datasets and fine-tuning the model on a target task. We scale
up pre-training, and propose a simple recipe that we call Big Transfer
(BiT). By combining a few carefully selected components, and trans-
ferring using a simple heuristic, we achieve strong performance on over
20 datasets. BiT performs well across a surprisingly wide range of data
regimes — from 1 example per class to 1 M total examples. BiT achieves
87.5% top-1 accuracy on ILSVRC-2012, 99.4% on CIFAR-10, and 76.3%
on the 19 task Visual Task Adaptation Benchmark (VTAB). On small
datasets, BiT attains 76.8% on ILSVRC-2012 with 10 examples per class,
and 97.0% on CIFAR-10 with 10 examples per class. We conduct detailed
analysis of the main components that lead to high transfer performance.

1 Introduction

Strong performance using deep learning usually requires a large amount of task-
specific data and compute. These per-task requirements can make new tasks
prohibitively expensive. Transfer learning offers a solution: task-specific data
and compute are replaced with a pre-training phase. A network is trained once
on a large, generic dataset, and its weights are then used to initialize subsequent
tasks which can be solved with fewer data points, and less compute [34,37,9].

We revisit a simple paradigm: pre-train on a large supervised source dataset,
and fine-tune the weights on the target task. Numerous improvements to deep
network training have recently been introduced, e.g. [47,54,21,29,17,1,56,59,46,52].
We aim not to introduce a new component or complexity, but to provide a recipe
that uses the minimal number of tricks yet attains excellent performance on many
tasks. We call this recipe “Big Transfer” (BiT).

We train networks on three different scales of datasets. The largest, BiT-L
is trained on the JFT-300M dataset [43], which contains 300 M noisily labelled
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Fig. 1: Transfer performance of our pre-trained model, BiT-L, the previous state-
of-the-art (SOTA), and a ResNet-50 baseline pre-trained on ILSVRC-2012 to
downstream tasks. Here we consider only methods that are pre-trained inde-
pendently of the final task (generalist representations), like BiT. The bars show
the accuracy when fine-tuning on the full downstream dataset. The curve on the
left-hand side of each plot shows that BiT-L performs well even when transferred
using only few images (1 to 100) per class.

images. We transfer BiT to many diverse tasks; with training set sizes rang-
ing from 1 example per class to 1M total examples. These tasks include Im-
ageNet’s ILSVRC-2012 [6], CIFAR-10/100 [22], Oxford-IIIT Pet [35], Oxford
Flowers-102 [33] (including few-shot variants), and the 1000-sample VTAB-1k
benchmark [58], which consists of 19 diverse datasets. BiT-L attains state-of-the-
art performance on many of these tasks, and is surprisingly effective when very
little downstream data is available (fig. 1). We also train BiT-M on the pub-
lic ImageNet-21k dataset, and attain marked improvements over the popular
ILSVRC-2012 pre-training.

Importantly, BiT only needs to be pre-trained once and subsequent fine-
tuning to downstream tasks is cheap. By contrast, other state-of-the-art meth-
ods require extensive training on support data conditioned on the task at hand
[32,53,55]. Not only does BiT require a short fine-tuning protocol for each new
task, but BiT also does not require extensive hyperparameter tuning on new
tasks. Instead, we present a heuristic for setting the hyperparameters for trans-
fer, which works well on our diverse evaluation suite.

We highlight the most important components that make Big Transfer ef-
fective, and provide insight into the interplay between scale, architecture, and
training hyperparameters. For practitioners, we will release the performant BiT-
M model trained on ImageNet-21k.

2 Big Transfer

We review the components that we found necessary to build an effective net-
work for transfer. Upstream components are those used during pre-training, and
downstream are those used during fine-tuning to a new task.
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2.1 Upstream Pre-Training

The first component is scale. It is well-known in deep learning that larger net-
works perform better on their respective tasks [10,40]. Further, it is recognized
that larger datasets require larger architectures to realize benefits, and vice
versa [20,38]. We study the effectiveness of scale (during pre-training) in the
context of transfer learning, including transfer to tasks with very few data-
points. We investigate the interplay between computational budget (training
time), architecture size, and dataset size. For this, we train three BiT models
on three large datasets: ILSVRC-2012 [39] which contains 1.3M images (BiT-
S), ImageNet-21k [6] which contains 14M images (BiT-M), and JFT [43] which
contains 300M images (BiT-L).

The second component is Group Normalization (GN) [52] and Weight Stan-
dardization (WS) [28]. Batch Normalization (BN) [16] is used in most state-of-
the-art vision models to stabilize training. However, we find that BN is detrimen-
tal to Big Transfer for two reasons. First, when training large models with small
per-device batches, BN performs poorly or incurs inter-device synchronization
cost. Second, due to the requirement to update running statistics, BN is detri-
mental for transfer. GN, when combined with WS, has been shown to improve
performance on small-batch training for ImageNet and COCO [28]. Here, we
show that the combination of GN and WS is useful for training with large batch
sizes, and has a significant impact on transfer learning.

2.2 Transfer to Downstream Tasks

We propose a cheap fine-tuning protocol that applies to many diverse down-
stream tasks. Importantly, we avoid expensive hyperparameter search for every
new task and dataset size; we try only one hyperparameter per task. We use
a heuristic rule—which we call BiT-HyperRule—to select the most important
hyperparameters for tuning as a simple function of the task’s intrinsic image
resolution and number of datapoints. We found it important to set the following
hyperparameters per-task: training schedule length, resolution, and whether to
use MixUp regularization [59]. We use BiT-HyperRule for over 20 tasks in this
paper, with training sets ranging from 1 example per class to over 1M total
examples. The exact settings for BiT-HyperRule are presented in section 3.3.

During fine-tuning, we use the following standard data pre-processing: we
resize the image to a square, crop out a smaller random square, and randomly
horizontally flip the image at training time. At test time, we only resize the
image to a fixed size. In some tasks horizontal flipping or cropping destroys the
label semantics, making the task impossible. An example is if the label requires
predicting object orientation or coordinates in pixel space. In these cases we
omit flipping or cropping when appropriate.

Recent work has shown that existing augmentation methods introduce in-
consistency between training and test resolutions for CNNs [49]. Therefore, it
is common to scale up the resolution by a small factor at test time. As an al-
ternative, one can add a step at which the trained model is fine-tuned to the
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test resolution [49]. The latter is well-suited for transfer learning; we include the
resolution change during our fine-tuning step.

We found that MixUp [59] is not useful for pre-training BiT, likely due to the
abundance of data. However, it is sometimes useful for transfer. Interestingly, it
is most useful for mid-sized datasets, and not for few-shot transfer, see section 3.3
for where we apply MixUp.

Surprisingly, we do not use any of the following forms of regularization during
downstream tuning: weight decay to zero, weight decay to initial parameters [25],
or dropout. Despite the fact that the network is very large—BiT has 928 million
parameters—the performance is surprisingly good without these techniques and
their respective hyperparameters, even when transferring to very small datasets.
We find that setting an appropriate schedule length, i.e. training longer for larger
datasets, provides sufficient regularization.

3 Experiments

We train three upstream models using three datasets at different scales: BiT-S,
BiT-M, and BiT-L. We evaluate these models on many downstream tasks and
attain very strong performance on high and low data regimes.

3.1 Data for Upstream Training

BiT-S is trained on the ILSVRC-2012 variant of ImageNet, which contains 1.28
million images and 1000 classes. Each image has a single label. BiT-M is trained
on the full ImageNet-21k dataset [6], a public dataset containing 14.2 million
images and 21k classes organized by the WordNet hierarchy. Images may con-
tain multiple labels. BiT-L is trained on the JFT-300M dataset [43,32,53]. This
dataset is a newer version of that used in [13,4]. JFT-300M consists of around 300
million images with 1.26 labels per image on average. The labels are organized
into a hierarchy of 18 291 classes. Annotation is performed using an automatic
pipeline, and are therefore imperfect; approximately 20% of the labels are noisy.
We remove all images present in downstream test sets from JFT-300M. We pro-
vide details in supplementary material. Note: the “-S/M/L” suffix refers to the
pre-training datasets size and schedule, not architecture. We train BiT with
several architecture sizes, the default (largest) being ResNet152x4.

3.2 Downstream Tasks

We evaluate BiT on long-standing benchmarks: ILSVRC-2012 [6], CIFAR-10/100
[22], Oxford-IIIT Pet [35] and Oxford Flowers-102 [33]. These datasets differ in
the total number of images, input resolution and nature of their categories, from
general object categories in ImageNet and CIFAR to fine-grained ones in Pets
and Flowers. We fine-tune BiT on the official training split and report results
on the official test split if publicly available. Otherwise, we use the val split.
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Table 1: Top-1 accuracy for BiT-L on many datasets using a single model and
single hyperparameter setting per task (BiT-HyperRule). The entries show me-
dian ± standard deviation across 3 fine-tuning runs. Specialist models are those
that condition pre-training on each task, while generalist models, including BiT,
perform task-independent pre-training. (?Concurrent work.)

BiT-L Generalist SOTA Specialist SOTA

ILSVRC-2012 87.54 ± 0.02 86.4 [49] 88.4 [53]?

CIFAR-10 99.37 ± 0.06 99.0 [14] -

CIFAR-100 93.51 ± 0.08 91.7 [47] -

Pets 96.62 ± 0.23 95.9 [14] 97.1 [32]

Flowers 99.63 ± 0.03 98.8 [47] 97.7 [32]

VTAB (19 tasks) 76.29 ± 1.70 70.5 [50] -

To further assess the generality of representations learned by BiT, we evaluate
on the Visual Task Adaptation Benchmark (VTAB) [58]. VTAB consists of 19
diverse visual tasks, each of which has 1000 training samples (VTAB-1k variant).
The tasks are organized into three groups: natural, specialized and structured.
The VTAB-1k score is top-1 recognition performance averaged over these 19
tasks. The natural group of tasks contains classical datasets of natural images
captured using standard cameras. The specialized group also contains images
captured in the real world, but through specialist equipment, such as satellite
or medical images. Finally, the structured tasks assess understanding of the the
structure of a scene, and are mostly generated from synthetic environments.
Example structured tasks include object counting and 3D depth estimation.

3.3 Hyperparameter Details

Upstream Pre-Training All of our BiT models use a vanilla ResNet-v2 ar-
chitecture [11], except that we replace all Batch Normalization [16] layers with
Group Normalization [52] and use Weight Standardization [36] in all convolu-
tional layers. See section 4.3 for analysis. We train ResNet-152 architectures in
all datasets, with every hidden layer widened by a factor of four (ResNet152x4).
We study different model sizes and the coupling with dataset size in section 4.1.

We train all of our models upstream using SGD with momentum. We use
an initial learning rate of 0.03, and momentum 0.9. During image preprocessing
stage we use image cropping technique from [45] and random horizontal mirror-
ing followed by 224 × 224 image resize. We train both BiT-S and BiT-M for 90
epochs and decay the learning rate by a factor of 10 at 30, 60 and 80 epochs.
For BiT-L, we train for 40 epochs and decay the learning rate after 10, 23, 30
and 37 epochs. We use a global batch size of 4096 and train on a Cloud TPUv3-
512 [19], resulting in 8 images per chip. We use linear learning rate warm-up

for 5000 optimization steps and multiply the learning rate by batch size
256 follow-
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Table 2: Improvement in accuracy when pre-training on the public ImageNet-21k
dataset over the “standard” ILSVRC-2012. Both models are ResNet152x4.

ILSVRC-2012 CIFAR-10 CIFAR-100 Pets Flowers VTAB-1k

BiT-S (ILSVRC-2012) 81.30 97.51 86.21 93.97 89.89 66.87

BiT-M (ImageNet-21k) 85.39 98.91 92.17 94.46 99.30 70.64

Improvement +4.09 +1.40 +5.96 +0.49 +9.41 +3.77

ing [7]. During pre-training we use a weight decay of 0.0001, but as discussed in
section 2, we do not use any weight decay during transfer.

Downstream Fine-Tuning To attain a low per-task adaptation cost, we do
not perform any hyperparameter sweeps downstream. Instead, we present BiT-
HyperRule, a heuristic to determine all hyperparameters for fine-tuning. Most
hyperparameters are fixed across all datasets, but schedule, resolution, and usage
of MixUp depend on the task’s image resolution and training set size.

For all tasks, we use SGD with an initial learning rate of 0.003, momentum
0.9, and batch size 512. We resize input images with area smaller than 96 × 96
pixels to 160 × 160 pixels, and then take a random crop of 128 × 128 pixels. We
resize larger images to 448 × 448 and take a 384 × 384-sized crop.1 We apply
random crops and horizontal flips for all tasks, except those for which cropping
or flipping destroys the label semantics, we provide details in supplementary
material.

For schedule length, we define three scale regimes based on the number of ex-
amples: we call small tasks those with fewer than 20 k labeled examples, medium
those with fewer than 500 k, and any larger dataset is a large task. We fine-tune
BiT for 500 steps on small tasks, for 10k steps on medium tasks, and for 20k
steps on large tasks. During fine-tuning, we decay the learning rate by a factor
of 10 at 30%, 60% and 90% of the training steps. Finally, we use MixUp [59],
with α = 0.1, for medium and large tasks.

3.4 Standard Computer Vision Benchmarks

We evaluate BiT-L on standard benchmarks and compare its performance to the
current state-of-the-art results (table 1). We separate models that perform task-
independent pre-training (“general” representations), from those that perform
task-dependent auxiliary training (“specialist” representations). The specialist
methods condition on a particular task, for example ILSVRC-2012, then train
using a large support dataset, such as JFT-300M [32] or Instagram-1B [55]. See
discussion in section 5. Specialist representations are highly effective, but require
a large training cost per task. By contrast, generalized representations require
large-scale training only once, followed by a cheap adaptation phase.

1 For our largest R152x4, we increase resolution to 512× 512 and crop to 480× 480.
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Fig. 2: Experiments in the low data regime. Left: Transfer performance of BiT-L.
Each point represents the result after training on a balanced random subsample
of the dataset (5 subsamples per dataset). The median across runs is highlighted
by the curves. The variance across data samples is usually low, with the exception
of 1-shot CIFAR-10, which contains only 10 images. Right: We summarize the
state-of-the-art in semi-supervised learning as reference points. Note that a direct
comparison is not meaningful; unlike BiT, semi-supervised methods have access
to extra unlabelled data from the training distribution, but they do not make
use of out-of-distribution labeled data.

BiT-L outperforms previously reported generalist SOTA models as well as,
in many cases, the SOTA specialist models. Inspired by strong results of BiT-L
trained on JFT-300M, we also train models on the public ImageNet-21k dataset.
This dataset is more than 10 times bigger than ILSVRC-2012, but it is mostly
overlooked by the research community. In table 2 we demonstrate that BiT-M
trained on ImageNet-21k leads to substantially improved visual representations
compared to the same model trained on ILSVRC-2012 (BiT-S), as measured by
all our benchmarks. In section 4.2, we discuss pitfalls that may have hindered
wide adoption of ImageNet-21k as a dataset model for pre-training and highlight
crucial components of BiT that enabled success on this large dataset.

For completeness, we also report top-5 accuracy on ILSVRC-2012 with me-
dian ± standard deviation format across 3 runs: 98.46% ± 0.02% for BiT-L,
97.69% ± 0.02% for BiT-M and 95.65% ± 0.03% for BiT-S.

3.5 Tasks with Few Datapoints

We study the number of downstream labeled samples required to transfer BiT-L
successfully. We transfer BiT-L using subsets of ILSVRC-2012, CIFAR-10, and
CIFAR-100, down to 1 example per class. We also evaluate on a broader suite
of 19 VTAB-1k tasks, each of which has 1000 training examples.

Figure 2 (left half) shows BiT-L using few-shots on ILSVRC-2012, CIFAR-
10, and CIFAR-100. We run multiple random subsamples, and plot every trial.
Surprisingly, even with very few samples per class, BiT-L demonstrates strong
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performance and quickly approaches performance of the full-data regime. In
particular, with just 5 labeled samples per class it achieves top-1 accuracy of
72.0% on ILSVRC-2012 and with 100 samples the top-1 accuracy goes to 84.1%.
On CIFAR-100, we achieve 82.6% with just 10 samples per class.

Semi-supervised learning also tackles learning with few labels. However, such
approaches are not directly comparable to BiT. BiT uses extra labelled out-of-
domain data, whereas semi-supervised learning uses extra unlabelled in-domain
data. Nevertheless, it is interesting to observe the relative benefits of transfer
from out-of-domain labelled data versus in-domain semi-supervised data. In fig. 2
we show state-of-the-art results from the semi-supervised learning.

Figure 3 shows the performance of BiT-L on the 19 VTAB-1k tasks. BiT-L
with BiT-HyperRule substantially outperforms the previously reported state-of-
the-art. When looking into performance of VTAB-1k task subsets, BiT is the
best on natural, specialized and structured tasks. The recently-proposed VIVI-
Ex-100% [50] model that employs video data during upstream pre-training shows
very similar performance on the structured tasks.

We investigate heavy per-task hyperparameter tuning in supplementary ma-
terial and conclude that this further improves performance.

3.6 Object Detection

Table 3: Object detection performance on
COCO-2017 [28] validation data of Reti-
naNet models with pre-trained BiT back-
bones and the literature baseline.

Model Upstream data AP

RetinaNet [27] ILSVRC-2012 40.8

RetinaNet (BiT-S) ILSVRC-2012 41.7
RetinaNet (BiT-M) ImageNet-21k 43.2
RetinaNet (BiT-L) JFT-300M 43.8

Finally, we evaluate BiT on ob-
ject detection. We use the COCO-
2017 dataset [28] and train a top-
performing object detector, Reti-
naNet [27], using pre-trained BiT
models as backbones. Due to mem-
ory constraints, we use the ResNet-
101x3 architecture for all of our
BiT models. We fine-tune the de-
tection models on the COCO-2017
train split and report results on the
validation split using the standard
metric [28] in table 3. Here, we do not use BiT-HyperRule, but stick to the
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standard RetinaNet training protocol, we provide details in supplementary ma-
terial. Table 3 demonstrates that BiT models outperform standard ImageNet
pre-trained models. We can see clear benefits of pre-training on large data beyond
ILSVRC-2012: pre-training on ImageNet-21k results in a 1.5 point improvement
in Average Precision (AP), while pre-training on JFT-300M further improves
AP by 0.6 points.

4 Analysis

We analyse various components of BiT: we demonstrate the importance of model
capacity, discuss practical optimization caveats and choice of normalization layer.

4.1 Scaling Models and Datasets

The general consensus is that larger neural networks result in better perfor-
mance. We investigate the interplay between model capacity and upstream dataset
size on downstream performance. We evaluate the BiT models of different sizes
(ResNet-50x1, ResNet-50x3, ResNet-101x1, ResNet-101x3, and ResNet-152x4)
trained on ILSVRC-2012, ImageNet-21k, and JFT-300M on various downstream
benchmarks. These results are summarized in fig. 4.

When pre-training on ILSVRC-2012, the benefit from larger models dimin-
ishes. However, the benefits of larger models are more pronounced on the larger
two datasets. A similar effect is observed when training on Instagram hash-
tags [30] and in language modelling [20].

Not only is there limited benefit of training a large model size on a small
dataset, but there is also limited (or even negative) benefit from training a small
model on a larger dataset. Perhaps surprisingly, the ResNet-50x1 model trained
on the JFT-300M dataset can even performs worse than the same architecture
trained on the smaller ImageNet-21k. Thus, if one uses only a ResNet50x1,
one may conclude that scaling up the dataset does not bring any additional
benefits. However, with larger architectures, models pre-trained on JFT-300M
significantly outperform those pre-trained on ILSVRC-2012 or ImageNet-21k.

ILSVRC-2012 ImageNet-21k JFT-300M
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Fig. 4: Effect of upstream data (shown on the x-axis) and model size on down-
stream performance. Note that exclusively using more data or larger models may
hurt performance; instead, both need to be increased in tandem.
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Fig. 5: Performance of BiT models in the low-data regime. The x-axis corresponds
to the architecture, where R is short for ResNet. We pre-train on the three up-
stream datasets and evaluate on two downstream datasets: ILSVRC-2012 (left)
and CIFAR-10 (right) with 1 or 5 examples per class. For each scenario, we
train 5 models on random data subsets, represented by the lighter dots. The line
connects the medians of these five runs.

Figure 2 shows that BiT-L attains strong results even on tiny downstream
datasets. Figure 5 ablates few-shot performance across different pre-training
datasets and architectures. In the extreme case of one example per class, larger
architectures outperform smaller ones when pre-trained on large upstream data.
Interestingly, on ILSVRC-2012 with few shots, BiT-L trained on JFT-300M out-
performs the models trained on the entire ILSVRC-2012 dataset itself. Note that
for comparability, the classifier head is re-trained from scratch during fine-tuning,
even when transferring ILSVRC-2012 full to ILSVRC-2012 few shot.

4.2 Optimization on Large Datasets

For standard computer vision datasets such as ILSVRC-2012, there are well-
known training procedures that are robust and lead to good performance. Progress
in high-performance computing has made it feasible to learn from much larger
datasets, such as ImageNet-21k, which has 14.2M images compared to ILSVRC-
2012’s 1.28M. However, there are no established procedures for training from
such large datasets. In this section we provide some guidelines.

Sufficient computational budget is crucial for training performant models on
large datasets. The standard ILSVRC-2012 training schedule processes roughly
100 million images (1.28M images × 90 epochs). However, if the same compu-
tational budget is applied to ImageNet-21k, the resulting model performs worse
on ILSVRC-2012, see fig. 6, left. Nevertheless, as shown in the same figure, by
increasing the computational budget, we not only recover ILSVRC-2012 perfor-
mance, but significantly outperforms it. On JFT-300M the validation error may
not improve over a long time —fig. 6 middle plot, “8 GPU weeks” zoom-in—
although the model is still improving as evidenced by the longer time window.

Another important aspect of pre-training with large datasets is the weight
decay. Lower weight decay can result in an apparent acceleration of conver-
gence, fig. 6 rightmost plot. However, this setting eventually results in an under-
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Fig. 6: Left: Applying the “standard” computational budget of ILSVRC-2012
to the larger ImageNet-21k seems detrimental. Only when we train longer (3x
and 10x) do we see the benefits of training on the larger dataset. Middle: The
learning progress of a ResNet-101x3 on JFT-300M seems to be flat even after 8
GPU-weeks, but after 8 GPU-months progress is clear. If one decays the learning
rate too early (dashed curve), final performance is significantly worse. Right:
Faster initial convergence with lower weight decay may trick the practitioner
into selecting a sub-optimal value. Higher weight decay converges more slowly,
but results in a better final model.

performing final model. This counter-intuitive behavior stems from the interac-
tion of weight decay and normalization layers [23,26]. Low weight decay results
in growing weight norms, which in turn results in a diminishing effective learn-
ing rate. Initially this effect creates an impression of faster convergence, but it
eventually prevents further progress. A sufficiently large weight decay is required
to avoid this effect, and throughout we use 10−4.

Finally, we note that in all of our experiments we use stochastic gradient
descent with momentum without any modifications. In our preliminary experi-
ments we did not observe benefits from more involved adaptive gradient methods.

4.3 Large Batches, Group Normalization, Weight Standardization

Currently, training on large datasets is only feasible using many hardware ac-
celerators. Data parallelism is the most popular distribution strategy, and this
naturally entails large batch sizes. Many known algorithms for training with
large batch sizes use Batch Normalization (BN) [16] as a component [7] or even
highlight it as the key instrument required for large batch training [5].

Our larger models have a high memory requirement for any single accelera-
tor chip, which necessitates small per-device batch sizes. However, BN performs
worse when the number of images on each accelerator is too low [15]. An al-
ternative strategy is to accumulate BN statistics across all of the accelerators.
However, this has two major drawbacks. First, computing BN statistics across
large batches has been shown to harm generalization [5]. Second, using global BN
requires many aggregations across accelerators which incurs significant latency.
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Table 4: Top-1 accuracy of ResNet-50
trained from scratch on ILSVRC-2012
with a batch-size of 4096.

Plain Conv Weight Std.

Batch Norm. 75.6 75.8

Group Norm. 70.2 76.0

Table 5: Transfer performance of the
corresponding models from table 4
fine-tuned to the 19 VTAB-1k tasks.

Plain Conv Weight Std.

Batch Norm. 67.72 66.78

Group Norm. 68.77 70.39

We investigated Group Normalization (GN) [52] and Weight Standardization
(WS) [36] as alternatives to BN. We tested large batch training using 128 accel-
erator chips and a batch size of 4096. We found that GN alone does not scale
to large batches; we observe a performance drop of 5.4% on ILSVRC-2012 top-1
accuracy compared to using BN in a ResNet-50x1, and less stable training. The
addition of WS enables GN to scale to such large batches, stabilizes training,
and even outperforms BN, see table 4. We do not have theoretical understanding
of this empirical finding.

We are not only interested in upstream performance, but also how models
trained with GN and WS transfer. We thus transferred models with different
combinations of BN, GN, and WS pre-trained on ILSVRC-2012 to the 19 tasks
defined by VTAB. The results in table 5 indicate that the GN/WS combination
transfers better than BN, so we use GN/WS in all BiT models.

5 Related Work

Large-scale Weakly Supervised Learning of Representations A number
of prior works use large supervised datasets for pre-training visual representa-
tions [18,43,24,30]. In [18,24] the authors use a dataset containing 100M Flickr
images [48]. This dataset appears to transfer less well than JFT-300M. While
studying the effect of dataset size, [43] show good transfer performance when
training on JFT-300M, despite reporting a large degree of noise (20% precision
errors) in the labels. An even larger, noisily labelled dataset of 3.5B Instagram
images is used in [30]. This increase in dataset size and an improved model
architecture [54] lead to better results when transferring to ILSVRC-2012. We
show that we can attain even better performance with ResNet using JFT-300M
with appropriate adjustments presented in section 2. The aforementioned pa-
pers focus on transfer to ImageNet classification, and COCO or VOC detection
and segmentation. We show that transfer is also highly effective in the low data
regime, and works well on the broader set of 19 tasks in VTAB [58].

Specialized Representations Rather than pre-train generic representations,
recent works have shown strong performance by training task-specific represen-
tations [55,32,53]. These papers condition on a particular task when training
on a large support dataset. [55,53] train student networks on a large unlabelled
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Fig. 7: Cases where BiT-L’s predictions (top word) do not match the ground-
truth labels (bottom word), and hence are counted as top-1 errors. Left: All
mistakes on CIFAR-10, colored by whether five human raters agreed with BiT-
L’s prediction (green), with the ground-truth label (red) or were unsure or dis-
agreed with both (yellow). Right: Selected representative mistakes of BiT-L
on ILSVRC-2012. Top group: The model’s prediction is more representative of
the primary object than the label. Middle group: According to top-1 accuracy
the model is incorrect, but according to top-5 it is correct. Bottom group: The
model’s top-10 predictions are incorrect.

support dataset using the predictions of a teacher network trained on the tar-
get task. [32] compute importance weights on the a labelled support dataset by
conditioning on the target dataset. They then train the representations on the
re-weighted source data. Even though these approaches may lead to superior re-
sults, they require knowing the downstream dataset in advance and substantial
computational resources for each downstream dataset.

Unsupervised and Semi-Supervised Representation learning Self-super-
vised methods have shown the ability to leverage unsupervised datasets for down-
stream tasks. For example, [8] show that unsupervised representations trained
on 1B unlabelled Instagram images transfer comparably or better than super-
vised ILSVRC-2012 features. Semi-supervised learning exploits unlabelled data
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drawn from the same domain as the labelled data. [2,42] used semi-supervised
learning to attain strong performance on CIFAR-10 and SVHN using only 40 or
250 labels. Recent works combine self-supervised and semi-supervised learning to
attain good performance with fewer labels on ImageNet [57,12]. [58] study many
representation learning algorithms (unsupervised, semi-supervised, and super-
vised) and evaluate their representation’s ability to generalize to novel tasks,
concluding that a combination of supervised and self-supervised signals works
best. However, all models were trained on ILSVRC-2012. We show that super-
vised pre-training on larger datasets continues to be an effective strategy.

Few-shot Learning Many strategies have been proposed to attain good per-
formance when faced with novel classes and only a few examples per class. Meta-
learning or metric-learning techniques have been proposed to learn with few or
no labels [51,41,44]. However, recent work has shown that a simple linear clas-
sifier on top of pre-trained representations or fine-tuning can attain similar or
better performance [3,31]. The upstream pre-training and downstream few-shot
learning are usually performed on the same domain, with disjoint class labels. In
contrast, our goal is to find a generalist representation which works well when
transferring to many downstream tasks.

6 Discussion

We revisit classical transfer learning, where a large pre-trained generalist model
is fine-tuned to downstream tasks of interest. We provide a simple recipe which
exploits large scale pre-training to yield good performance on all of these tasks.
BiT uses a clean training and fine-tuning setup, with a small number of carefully
selected components, to balance complexity and performance.

In fig. 7 and supplementary material, we take a closer look at the remaining
mistakes that BiT-L makes. In many cases, we see that these label/prediction
mismatches are not true ‘mistakes’: the prediction is valid, but it does not match
the label. For example, the model may identify another prominent object when
there are multiple objects in the image, or may provide an valid classification
when the main entity has multiple attributes. There are also cases of label noise,
where the model’s prediction is a better fit than the ground-truth label. In a
quantitative study, we found that around half of the model’s mistakes on CIFAR-
10 are due to ambiguity or label noise (see fig. 7, left), and in only 19.21% of the
ILSVRC-2012 mistakes do human raters clearly agree with the label over the
prediction. Overall, by inspecting these mistakes, we observe that performance
on the standard vision benchmarks seems to approach a saturation point.

We therefore explore the effectiveness of transfer to two classes of more chal-
lenging tasks: classical image recognition tasks, but with very few labelled exam-
ples to adapt to the new domain, and VTAB, which contains more diverse tasks,
such as spatial localization in simulated environments, and medical and satellite
imaging tasks. These benchmarks are much further from saturation; while BiT-L
performs well on them, there is still substantial room for further progress.
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