
Visual Commonsense Graphs: Reasoning about
the Dynamic Context of a Still Image

–Supplementary Material–

We provide detailed statistics about the VisualCOMET dataset including
its language diversity, and qualitative examples of inferences made by various
model variants. We also show results from additional experiments for varying
decoding schemes and performance for event description and place generation.

Figure 12 shows a snapshot of our Visual Commonsense Graphs. The
three images show very distinct scenes, but the graph allows us to reason that
the intent of the person sitting at a shack (bottom right image), the before event
for the woman at an indoor bar (top left image), and the likely after event for
the woman in the ballroom (bottom left) are identical – to “order a drink”.
Each image is associated with several inferences of the three types: (i) intents at
present, (ii) events before, and (iii) events after.

A Dataset Statistics

Additional statistics of the dataset are provided in Table 1. On average, there are
2.12 Intent, 4.30 Before, and 4.31 After Inferences for each event. Each image has
2.34 events on average (place is always annotated once for each image). Figure
2 shows a breakdown of most frequent phrases per each inference type. Before
and After inferences tend to focus on action statements, specifically activities
involving entering or leaving the place. Intent inferences mostly involve various
interactions with another person and also include person’s mental states, such
as “have a good time”, “be polite”, and “look formal”.

We also provide more detailed distribution of the sentences. Figure 8 shows
the number of occurrences of starting bigram (first two words) for each inference
type. As we see, the distribution is vastly different based on the inference type,
and there is no overlapping bigram among the top 5 phrases. Figure 9 shows
the a) noun and b) verb distributions of the event sentences. We omit person
in noun, and linking verbs in verb distributions for visualization purposes. We
show histogram of unique place phrases in Figure 10. Popular places that are
annotated include “office”, “living room”, “restaurant”, “kitchen”, and “party”.
Lastly, Figure 11 provides the length of event, place, and inference sentences.

B Qualitative Examples

We show more qualitative examples in Figure 3 and 4. Following Figure 6 of
the main paper, we use the best performing model when Text only, Image only,
and Image + Text input are given. Specifically, the models are Row 3 [Event +
Place], Last Row [Image + Event + Place + PG + EP Loss (No Text Given)],
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Because, Person wanted to…

Before, Person needed to…

After, Person will most likely…

Order a drink

Thank the host
Exit the party 

venue Take 
a seat

Go to 
the bar

Meet with him

Before, Person needed to…

Attend to party Be on the 
dance floor

Have interest  
in dancing

Accept 
the invitation to  

a party

Because, Person wanted to…

Impress the others

Have a date

Enjoy a romantic 
evening

After, Person will most likely…

Order another 
drink

Sip her drink

Go home with him

Before, Person needed to…

Get thirsty

Take a walk 
in the sun

Because, Person wanted to…

Flirt 
with him

Get to know him

Fig. 1: Snapshot of our Visual Commonsense Graphs. Images from very
distinct scenes are connected by the same inference sentence “order a drink”.
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Avg Count

# of Intent Inference per Event 2.12
# of Before Inference per Event 4.30
# of After Inference per Event 4.31
# of Event per Image 2.34

# of Unique Persons Mentioned in Event 1.51
# of Unique Persons Mentioned in Inference 0.27

# of Words in Event 9.93
# of Words in Place 3.44
# of Words in Inference 4.8

Table 1: Additional Statistics for VisualCOMET.

Fig. 2: Most frequent phrases mentioned per Inference Type
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and Row 8 [Image + Event + Place + PG] in Table 2 of the main paper. We
highlight obviously incorrect inference sentences as red, and plausible but not
expected as orange.

Figure 3(a) shows Person1 [P1] serving food and “putting a platter on the
table”. While the event and place information does not mention that [P1] is a
waiter, our Image + Text model uses the visual information to correctly infer
that he needed to “be hired as a waiter at a formal event”. The model also
generates inferences that involve other relevant people (e.g. “serve [P2], [P4],
[P5]”). Text only model fails to infer that [P1] is a waiter and sees him as the
one joining the meal. For example, the model generates “ask [P2] for a menu” and
“sip the water” in the after inferences. Image only model can generate inferences
involving other people and recognize that the place is a restaurant; however, it
fails to get the detail that [P1] is the one serving the food. Figure 3(b) shows an
example focusing on person’s mental state. While the image takes place at an
outdoor party, it is unlikely that Person2 [P2] will dance, based on the event “is
alone and feeling awkward” and her passive body language. We see that Image
only and Text only models fail to incorporate this information and generate
typical activities at a party, such as “dancing” or “drinking”. Image + Text
model makes inferences that suggests [P2] is not having fun and even predicts
that she might “return to her car and drive away” or “yell at the people” after
the event. Additional examples are shown in Figure 4 and we see that Image +
Text model generates more coherent and plausible inferences.

Inference vs Captioning Figure 5 shows an example highlighting the main
difference between our task and other visual captioning models. For fair com-
parison with image captioning models, we show the inference sentences using
Image only model in Figure 5 (a). Top of Figure 5 (b) shows results from dense
captioning model [3] that predicts the bounding boxes and associated captions.
Bottom of the figure provides five captioning outputs using the strong baseline
in [1]. We see that captioning models are mostly correct, such as the phrase “A
woman is wearing a black shirt” and caption “a group of people sitting around
a laptop”. The descriptions, however, miss the detail of people working in the
office. On the other hand, our Image only model can go beyond the simple de-
tails of sitting down at the desk and generate more contextualized information
in office environment, such as “arrive at work early to get an interview”, “see
what was on the computer”, and “gather up all her files”. Using our visual com-
monsense graphs, we see that we can infer more salient and detailed information
in still images that captioning tasks fail to provide.

C Annotation Template

Figure 6 shows the template used for our two stage annotation pipeline. The
first stage Figure 6(a) involves writing at least two events and place per image.
Then, each event is given optional choice of writing 2-3 intent inferences. Note
only one worker is assigned for each image in the first stage. In the second stage
Figure 6(b), each event is then annotated with 2-4 before and after inferences.
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(a)

(b)

Fig. 3: Qualitative Results. Qualitative Examples comparing our best Text
only, Image only, and Image + Text model. Red highlights inference statements
that are incorrect. Orange highlights if the sentences are plausible, but not ex-
pected. [PersonX] in the inference type refers to the subject of the event.

Here, we assign two distinct workers to get the two inferences. In sum, each event
is annotated with at least 10 inference sentences.

D Decoding Strategies

In the main paper, the inference sentences are generated using Nucleus Sampling
[2], which is the state of the art decoding method to get more coherent and



6 Park et al.

(a)

(b)

Fig. 4: Qualitative Results. Qualitative Examples comparing our best Text
only, Image only, and Image + Text model. Red highlights inference statements
that are incorrect. Orange highlights if the sentences are plausible, but not ex-
pected. [PersonX] in the inference type refers to the subject of the event.

diverse sentences. Another option is to use beam search, which has shown to
perform well in language metric but provides far less diverse sentences [9]. This
is especially problematic for generating multiple inferences, where we want to
avoid generating duplicating phrases within the inference set.

Table 2 shows the comparison between the two decoding schemes and gener-
ate 5 sentences for each inference. We use the models from Row 3, 8, 10, and 12
in Table 2 of the main paper. We report BLEU-2 [6], and diversity metrics, such
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as proportion of unique inferences (UI), and ratio of unique unigrams/bigrams
to number of words within the set of 5 sentences (DIV1/2-S) [7]. In language
metric, we see that the model performance is consistent regardless of the decod-
ing strategy: Image + Text model (Image + Event + Place + PG) outperforms
other Text only and Image only baselines for Nucleus Sampling and beam search.
Image + Text model also gets the most number of unique sentences for the both
decoding schemes. While BLEU-2 [6] scores are higher using beam search, we
see that the diversity scores are much worse. Specifically, UI drops by half, and
DIV1/2-S scores also suffer for the best performing model. We also see that
Nucleus Sampling gets similar DIV1/2-S to the ground truth across all models,
while there is around 30 and 20 point gap respectively for beam search methods.
Note that getting the highest DIV1/2-S does not necessarily indicate having
the highest diversity if these scores above a certain threshold. For instance, the
model trained with No Input gets the highest DIV1-S and even higher than
ground truth sentences, while UI is close to 0.

Figure 7 qualitatively shows the problem of using beam search over sampling
methods. Beam search is prone to repeating the same phrases across the set,
such as “sit down at the table”, which are correct but not desirable for our task.
On the other hand, Nucleus Sampling captures correct inference statements but
also diverse and rich in content. This suggests that sampling based decoding
scheme is far preferable to beam search, when generating multiple candidates.

Modalities BLEU-2 ↑ UI↑ DIV1-S DIV2-S

Nucleus Sampling

No Input 4.88 0.00 89.30 75.20
Event + Place 10.49 47.42 82.89 75.22
Image + PG. 7.84 35.62 83.70 75.99
Image + Event + Place + PG. 11.76 51.99 80.36 74.89

Beam Search

No Input 7.36 0.00 54.00 48.70
Event + Place 18.97 23.64 56.10 54.50
Image + PG. 13.21 8.79 53.91 52.75
Image + Event + Place + PG. 19.81 26.49 54.70 53.92

GT - 83.08 86.13 75.63

Table 2: Generating Inferences using Beam Search vs Nucleus Sampling on the
Test set.
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E Event and Place Generation

We report the performance of event and place generation given an image. We
try two training schemes with the same model architecture used for generating
inferences: 1) train only on event and place, and 2) train on event, place, and
inference. The second model is the same model [Image + Event + Place + PG
+ EP Loss] in Table 2 of the main paper. Note that there are around 10 times
more inference sentences than events, meaning the second setup has access to
10 times more data. For fair comparison between the two models, we randomly
sample 10% of the data (Row 2 in Table 3) and train the second model.

Table 3 shows the performance of two settings. We report the language met-
rics, CIDER [8], BLEU-4 [6], METEOR [4], and ROUGE [5], vocab size, and
sentence length. Overall, we see that the two models perform similarly when
the same amount of data are given. CIDER is higher for the first model, while
the rest of language metrics are lower. When we use the entire data (All) for
the second setup, we see that the improvement is significant for both language
metrics and vocab size.

Inference using Generated Event Can the generated event be used as text
input to generate the inferences? We use the generated event from Row3 in
Table 3 as auxiliary text input and evaluate the quality of inferences. In Table
4 we show human evaluation using the same images and setup in Table 3 of
the main paper. Under the section With Generated Text Input, we see that the
Image + Text model performs better than Text only model, when generated
event and place is given as input. However, the scores are lower than the best
model without text input (36.0 vs 38.2). Note that this does not indicate that
event and place information are not useful. As mentioned in the main paper, the
model trained to generate event, place, and inference [Image + Event + Place
+ PG + EP Loss] performs the best when image is only given as input.

Training Scheme C B-4 M R Vocab Sent Len

Image → Event + Place 17.61 1.85 11.78 22.62 1632 9.61
Image → Event + Place + Inference (10%) 15.69 2.35 12.01 23.34 1618 10.10

Image → Event + Place + Inference (All) 22.97 3.47 13.21 25.23 2578 9.71

GT 3799 9.98

Table 3: Event + Place Generation Performance on Test Set. We report the
following language metrics: CIDER (C), BLEU-4 (B-4), METEOR (M), and
ROUGE (R). We additionally include vocab size and sentence length. See Section
E for more details.
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Modalities Human Human Human Human
Before Intent After Avg

With Generated Text Input

Event + Place 34.6 35.8 29.5 33.3
Image + Event + Place + PG. 38.9 37.5 31.7 36.0
Image + Event + Place + PG + EP Loss. 37.2 32.9 30.4 33.5

With GT Text Input.

Event + Place 54.9 52.6 42.9 50.1
Image + Event + Place + PG 63.36 63.5 56.0 61.0

Without Text Input.

No Input 5.3 4.9 3.5 4.6
Image + PG 38.2 34.8 30.3 34.4
Image + Event + Place + PG + EP Loss 42.9 36.8 34.8 38.2

Table 4: Generated Inference Results. Human score for the generated infer-
ences on the Test split. We select 200 random images and generate 5 sentences
for each of the three inference type (3000 sentences total). Then, we assign three
annotators to determine if each inference sentence is correct, and take the major-
ity vote. Refer to Table 2 and Section 6.2 for model details. We see that the best
model using generated event and place as input provides a worse performance
than the best model without the text input.
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(a) Inference with Image Only Model (event and place
are not taken as input, and shown just for visualization)

(b) Results from Dense Captioning [3] and Bottom-up and Top-
down image captioning model [1]

Fig. 5: Difference between Inference and Captioning. We see that our
task (a) generates sentences that are more diverse and rich in content than the
captioning models (b).
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(a) We annotate event, place, and intent inferences in the First
Annotation Stage.

(b) We annotate before and after inferences in the Second Annotation
Stage.

Fig. 6: Our Two-Stage Annotation Pipeline. See Section C for more details.
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Fig. 7: Comparison between beam search and Nucleus Sampling from the same
model. We see that beam search repeats the phrase “sit down at the table”,
while Nucleus Sampling gets more diverse and richer sentences.
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(a) Before

(b) Intent

(c) After

Fig. 8: Most Frequent Starting bigram in a) Before, b) Intent, and c) After In-
ferences.
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(a) Nouns in Event Sentences

(b) Verb Phrases in Event Sentences

Fig. 9: Most Frequent Noun & Verbs in Event Sentences
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Fig. 10: Place Phrases
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(a) Number of Words in Event

(b) Number of Words in Place

(c) Number of Words in Inference

Fig. 11: Sentence Length
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Fig. 12: Overview of our Visual Commonsense Graphs
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