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Fig. 1: Given a person in the image, Visual COMET provides a graph of common
sense inferences about 1) what needed to happen before, 2) intents of the people at
present, and 3) what will happen next.

Abstract. Even from a single frame of a still image, people can rea-
son about the dynamic story of the image before, after, and beyond the
frame. For example, given an image of a man struggling to stay afloat
in water, we can reason that the man fell into the water sometime in
the past, the intent of that man at the moment is to stay alive, and
he will need help in the near future or else he will get washed away.
We propose Visual COMET,! the novel framework of visual common-
sense reasoning tasks to predict events that might have happened before,
events that might happen next, and the intents of the people at present.
To support research toward visual commonsense reasoning, we introduce
the first large-scale repository of Visual Commonsense Graphs that
consists of over 1.4 million textual descriptions of visual commonsense
inferences carefully annotated over a diverse set of 59,000 images, each
paired with short video summaries of before and after. In addition, we
provide person-grounding (i.e., co-reference links) between people ap-
pearing in the image and people mentioned in the textual commonsense
descriptions, allowing for tighter integration between images and text.
We establish strong baseline performances on this task and demonstrate
that integration between visual and textual commonsense reasoning is
the key and wins over non-integrative alternatives.

! Visual Commonsense Reasoning in Time.


https://visualcomet.xyz
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1 Introduction

Given a still image, people can reason about the rich dynamic story underlying
the visual scene that goes far beyond the frame of the image. For example, in
Figure 1, given the image of a desperate man holding onto a statue in water, we
can reason far beyond what are immediately visible in that still frame; sometime
in the past, an accident might have happened and a ship he was on might have
started sinking. Sometime in the future, he might continue struggling and even-
tually be washed away. In the current moment, his intent and motivation must
be that he wants to save himself from drowning. This type of visual understand-
ing requires a major leap from recognition-level understanding to cognitive-level
understanding, going far beyond the scope of image classification, object detec-
tion, activity recognition, or image captioning. An image caption such as “a man
in a black shirt swimming in water”, for example, while technically correct, falls
far short of understanding the dynamic situation captured in the image that
requires reasoning about the context that spans before, after, and beyond the
frame of this image. Key to this rich cognitive understanding of visual scenes is
visual commonsense reasoning, which in turn, requires rich background knowl-
edge about how the visual world works, and how the social world works.

In this paper, we propose Visual COMET, a new framework of task formu-
lations to reason about the rich visual context that goes beyond the immediately
visible content of the image, ranging from events that might have happened be-
fore, to events that might happen next, and to the intents of the people at
present. To support research toward visual commonsense reasoning, we intro-
duce the first large-scale repository of Visual Commonsense Graphs that
consists of 1.4 million textual descriptions of visual commonsense inferences
that are carefully annotated over a diverse set of about 59,000 people-centric im-
ages from VCR [47]. In addition, we provide person-grounding (i.e., co-reference
links) between people appearing in the image and people mentioned in the tex-
tual commonsense descriptions, allowing for tighter integration between images
and text. The resulting Visual Commonsense Graphs are rich, enabling a number
of task formulations with varying levels of difficulties for future research.

We establish strong baseline performances on such tasks based on GPT-2
transformer architecture [29] to combine visual and textual information. Quan-
titative results and human evaluation show that integrating both the visual and
textual commonsense reasoning is the key for enhanced performance. Further-
more, when the present eventual description is not available and only image
is given, we find that the model trained to predict both events and inferential
sentences performs better than the one trained to predict only inferences.

In summary, our contributions are as follows. (1) We introduce a new task of
visual commonsense reasoning for cognitive visual scene understanding, to reason
about events before and after and people’s intents at present. (2) We present the
first large-scale repository of Visual Commonsense Graphs that contains more
than 1M textual descriptions of commonsense inferences over 60K complex visual
scenes. (3) We extend the GPT-2 model to incorporate visual information and
allow direct supervision for grounding people in images. (4) Empirical results and
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human evaluations show that model trained jointly with visual and textual cues
outperform models with single modality, and can generate meaningful inferences
from still images.

2 Related Work

Visual Understanding with Language: Various tasks have been introduced
for joint understanding of visual information and language, such as image cap-
tioning [7,42,33], visual question answering [1,16,23] and referring expressions
[17,28,22]. These works, however, perform inference about only the current con-
tent of images and fall short of understanding the dynamic situation captured
in the image, which is the main motivation of our work. There is also a re-
cent body of work addressing representation learning using vision and language
cues [37,21,35]. We propose a baseline for our task, which is inspired by these
techniques.

Visual Commonsense Inference: Prior works have tried to incorporate com-
monsense knowledge in the context of visual understanding. [39] use human-
generated abstract scenes made from clipart to learn common sense, but not on
real images. [27] try to infer the motivation behind the actions of people from im-
ages. Visual Commonsense Reasoning (VCR) [17] tests if the model can answer
questions with rationale using commonsense knowledge. While [17] includes rich
visual common sense information, their question answering setup makes it diffi-
cult to have models to generate commonsense inferences. ATOMIC [32] provides
a commonsense knowledge graph containing if-then inferential textual descrip-
tions in generative setting; however, it relies on generic, textual events and does
not consider visually contextualized information. In this work, we are interested
in extending [47] and [32] for general visual commonsense by building a large-
scale repository of visual commonsense graphs and models that can explicitly
generate commonsense inferences for given images.

Visual Future Prediction: There is a large body of work on future prediction

in different contexts such as future frame generation [30,34,16,43,24,41,5], pre-
diction of the trajectories of people and objects [14,2,25], predicting human pose
in future frames [12,45,6] and semantic future action recognition [19,50,30]. In

contrast to all these approaches, we provide a compact description for the future
events using language.

3 Task: Cognitive Image Understanding via
Visual Commonsense Graphs

3.1 Definition of Visual Commonsense Graphs

The ultimate goal is to generate the entire visual commonsense graph illustrated
in Figure 1 that requires reasoning about the dynamic story underlying the input
image. This graph consists of four major components:
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Fig.2: Task Overview: Our proposed task is to generate commonsense infer-
ences of events before, events after and intents at present, given an image,
a description of an event at present in the image and a plausible scene / lo-
cation of the image.

(1) a set of textual descriptions of events at present,
(2) a set of commonsense inferences on events before,
(3)
(

3) a set of commonsense inferences on events after, and
4) a set of commonsense inferences on people’s intents at present.

The events before and after can broadly include any of the following: (a)
actions people might take before and after (e.g., people jumping to the water),
(b) events that might happen before and after (e.g., a ship sinking), and (c)
mental states of people before and after (e.g., people scared and tired). Our
design of the commonsense graph representation is inspired by ATOMIC [32],
a text-only atlas of machine commonsense knowledge for if-then reasoning, but
tailored specifically for cognitive understanding of visual scenes in images.

Location and Person Grounding: In addition, the current event descriptions
are accompanied by additional textual descriptions of the place or the overall
scene of the image, e.g., “at a bar” or “at a party”. We also provide person-
grounding (i.e., co-reference links) between people appearing in the image and
people mentioned in the textual commonsense descriptions, allowing for tighter
integration between images and text.

Dense Event Annotations with Visual Commonsense Reasoning: Gen-
erally speaking, the first component of the visual commonsense graph, “events
at present”, is analogous to dense image captioning in that it focuses on the
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immediate visual content of the image, while components (2) - (4), events before
and after and intents at present, correspond to visual commonsense reasoning.

Importantly, in an image that depicts a complex social scene involving mul-
tiple people engaged in different activities simultaneously, the inferences about
before, after, and intents can be ambiguous as to which exact current event the
inferences are based upon. Therefore, in our graph representation, we link up all
the commonsense inferences to a specific event at present.

3.2 Definition of Tasks

Given the complete visual commonsense graph representing an image, we can
consider multiple task formulations of varying degrees of difficulties. In this pa-
per, we focus on two such tasks: (1) Given an image and one of the events at
present, the task is to generate the rest of visual commonsense graph that is con-
nected to the specific current event. (2) Given an image, the task is to generate
the complete set of commonsense inferences from scratch.

4 Dataset Overview

We present the first large-scale dataset of Visual Commonsense Graphs for im-
ages with person grounding (i.e., multimodal co-reference chains). We collect a
dataset of 1.4 million commonsense inferences over 59,356 images and 139,377
distinct events at present (Table 1). Figure 3 gives an overview of our Visual
Commonsense Graphs including a diverse set of images, connected with the in-

ference sentences 2.

‘ ‘ Train Dev Test ‘ Total

47,595 5,973 5,968 59,356
111,796 13,768 13,813 139,377

467,025 58,773 58,413 | 584,211
469,430 58,665 58,323 | 586,418
237,608 28,904 28,568 | 295,080

# Total Inferences || 1,174,063 146,332 145,309 | 1,465,704

# Images/Places
# Events at Present

# Inferences on Events Before
# Inferences on Events After
# Inferences on Intents at Present

Table 1: Statistics of our Visual Commonsense Graph repository: there are in
total 139,377 distinct Visual Commonsense Graphs over 59,356 images involving
1,465,704 commonsense inferences.

2 Larger figure available in the Appendix.
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4.1 Source of Images

As the source of the images, we use the VCR [17] dataset that consists of images
corresponding to complex visual scenes with multiple people and activities. The
dataset also includes automatically detected object bounding boxes, and each
person in the image uniquely identified with a referent tag (e.g. Personl and
Person2 in Fig 1).

4.2 Crowdsourcing Visual Commonsense Graphs

Annotating the entire commonsense graph solely from an image is a daunting
task even for humans. We design a two-stage crowdsourcing pipeline to make
the annotation task feasible and to obtain focused and consistent annotations.
We run our annotation pipeline on Amazon Mechanical Turk (AMT) platform
and maintain the ethical pay rate of at least $15/hr. This amounts to $4 per
image on average. Figure 4 shows an overview of our annotation pipeline.

Stage 1: Grounded Event Descriptions with Locations and Intents

In the first stage, we show crowdworkers an image along with tags identifying
each person in the image. Crowdworkers select a person and author a description
for the event involving that person. One key concern during event annotation
is to encourage crowdworkers to annotate informative, interesting events as op-
posed to low-level events like standing, sitting, looking, etc. While technically
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Fig.4: Annotation Pipeline: Our two-stage crowdsourcing annotation pipeline
used for collecting our high-quality Visual Commonsense Graphs.

correct, such descriptions do not contribute to higher-level understanding of the
image. To obtain more meaningful events, we ask crowdworkers to write an event
description and intent inferences at the same time. Finally, we ask crowdworkers
to annotate the plausible location of the scene depicted in the image. In addi-
tion to priming workers, such location information provides more contextualized
information for the task. The location information is not just a physical place,
but can also include occasions, e.g., in a business meeting. At the end of stage
1, we collect (i) the location of an image, (ii) two to three events for each image,
and (iii) two to four intents for each event of each image.

Stage 2: Collecting Before and After Inferences

In stage 2, we collect visual commonsense inferences of what might have
happened before and what might happen after for each event description for
each image annotated in stage 1 above. Images in our dataset were originally
part of movie scenes. Based on the timestamp of the image being annotated, we
show crowdworkers two short, fast-forwarded clips of events that happen before
and after the image. This allows crowdworkers to author inferences that are more
meaningful, rather than authoring correct but trivial inferences — e.g. “before,
Personl needed to be born”, “after, Personl will be dead”, etc.

We assign two workers for each event and ask each to annotate between
two and four before and after inferences. At the end of the two stages in our
annotation pipeline, we have up to ten (2 intent, 4 before, 4 after) inferences for
each pair of image and a textual description of event at present.
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5 Our Approach

Our task assumes the following inputs for each image: a sequence of visual em-
beddings V representing the image and people detected in the image, grounded
event description e, scene’s location information p, and inference type r. Then,
we wish to generate a set of possible inferences H = {s7, sb, ...s’I”Hl}.

5.1 Visual Features

The sequence of visual representations V consists of a representation of the whole
image and an additional representations for each person detected in the image.
We use Region of Interest (Rol) Align features [13] from Faster RCNN [31]
as our visual embedding and pass it through a non-linear layer to obtain the
final representation for an image or each detected person. The final sequence of
representations V = {vg, v, ..v; } where k is the number of people detected.

As described in §4.2, we provide special tags identifying each person in the
image (e.g. Personl in Fig. 4) in our dataset. To use these tags, we introduce
new person tokens, e.g. [Personl], in the vocabulary and create additional word
embedding for these tokens. Then, we sum the visual representation for a person
with the word embedding of the token referencing the person in text. This way,
our model has visually grounded information about the image. We refer to this
approach as “Person Grounding” (PG) input.

5.2 Text Representation

Transformer models used for language tasks [11,29] use special separator tokens
to enable better understanding of the input structure. Since our task involves tex-
tual information of different kinds (event, place, and relation), we follow [4,48,3]
to include special tokens for our language representation as well. Specifically, we
append special token indicating the start and end of image (e.g. s_img, e_img),
event, place, and inference fields. To generate inference statements, we use one
of the three inference types (before, intent, after) as the start token, depending
on the desired dimension.

5.3 Single Stream Vision-Language Transformer

We fix the model architecture as GPT-2 [29], a strong Transformer model [38]
for natural language generation, conditioned on V,e,p. Our model is a single
stream transformer that encodes visual and language representations with a
single transformer model, which has been shown to be more effective in vision
and language tasks [38,19] compared to designing separate transformer models
for each modality [21].

For each inference s}, € H, our objective is to maximize P(s},|v, e, p,r). Sup-
pose s, = {wh,wh,,..w}h,;} is a sequence of [ tokens. Then, we minimize the
negative log-likelihood loss over inference instances in dataset:
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!
L=- ZlogP(wmeQ,T, €,p,v) (1)

i=1
While our dataset provides events associated with each image, it is impracti-
cal to assume the availability of this information on new images. We experiment
with a more general version of our model which does not take e and p as input.
Nonetheless, we can supervise such models to generate e and p in the train-
ing phase. If we denote the event at present {e} = {w§,ws,...ws} and place
{p} = {w},wh,...wP } as a sequence of tokens, we apply the seq2seq loss on e,p
(EP Loss in Section 6) as follows:

L=- Zlog P(wi|we;,v)) — ZlogP(wﬂw’;i, e,v))
i=1 i=1
. 2)
- ZIOg P(w2i|wz<i7r7eap)v)

i=1

6 Experiments and Results

6.1 Implementation Details

We use Adam optimizer [18] with a learning rate of 5e-5 and batch size of 64.
Visual features for image and person embeddings use ResNet101 [14] backbone



10 Park et al.

pretrained on ImageNet [10]. We set the maximum number of visual features to
15. We use pre-trained GPT2-base model [29] as our model architecture with
maximum total sequence length as 256. For decoding, we use nucleus sampling
[15] with p = 0.9, which has shown to be effective generating text that is di-
verse and coherent. We have found beam search, which is a popular decoding
scheme for generating multiple candidates, to be repetitive and produce unin-
teresting inferences. We report the effect of different decoding schemes in the
supplementary material.

6.2 Experimental Setup

Baselines based on Different Inputs

In our experiments, we fix the same model architecture but ablate on the
inputs available, e.g. place, event, and image. We also measure the effect of
Person Grounding (PG) trick stated in Section 5.1. The models are trained
with the same seq2seq objective in Eq. 1, and we mask out the visual and/or
textual input based on the ablation of interest. We additionally experiment if
learning to generate the event at present and place can improve the performance
of generating the inferences using the objective in Eq. 2. For simplicity, we denote
the loss on the two textual input as [+ EP. Loss]. Thus, we test two settings
when generating the inferences: 1) one that uses event, place, and image, and 2)
one that uses only image. We mark the two options in the Text Given column. *
Automatic Evaluation

Here, we describe the automatic evaluation measuring the quality of inference
sentences. We first report the automatic metrics used in image captioning [7],
such as BLEU-2 [26], METEOR [20], and CIDER [410] across the 5 inferences.
Inspired by the metric in visual dialog [9], we also use perplexity score to rank
the ground truth inferences and inferences from the different image. We append
negatives such that there are 50 candidates to choose from, rank each candidate
using perplexity score, and get the average accuracy of retrieved ground truth
inferences (Acc@50 in Table 2). Note that perplexity is not necessarily the perfect
measure to rank the sentences, but good language models should still be able
to filter out inferences that do not match the content in image and event at
present. Lastly, we measure the diversity of sentences, so that we do not reward
the model for being conservative and making the same predictions. We report
the number of inference sentences that are unique within the generated sentences
divided by the total number of sentences (Unique in Table 2), and the number
of generated sentences that are not in the training data divided by the total
number of sentences (Novel in Table 2). To capture the semantic diversity, we
replace the predicted person tags with the same tag when calculating the above
diversity scores.

3 We have tried running inferences on predicted events at present, but have gotten
worse results than using no events. We report the results on predicted events in the
supplemental.
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Modalities Text B-2 M C Acc@50 Unique Novel
Given
Place Yes 6.26 6.25 4.59 14.55 8.08 47.88
Event Yes  10.37 9.58 14.48 31.95 44.12  47.37
Event + Place Yes 10.75 9.82 15.42 33.06 46.22  47.90
Image + Place Yes 740 733  6.55 20.39 31.36  46.90
Image + Event Yes 11.47 10.73 16.14 37.00 49.31 47.39
Image + Event + Place Yes 11.74 10.87 16.79 38.25 50.39 48.37
Image + Event + Place + EP Loss Yes 10.4 10.02 13.32 33.23 49.00 51.55
Image + Event 4+ Place + PG Yes 12.33 11.55 17.94 38.72 50.57 49.24
Image + Event + Place + PG + EP Loss Yes 11.12 10.74 14.70 34.07 47.9 52.02
No Input No 4.96 523 0.02 6.87 0.00  33.33
Image No 6.97 7.13  5.50 18.22 29.88 47.16
Image + PG No 8.09 844 7.43 21.5 34.25 45.83
Image + Event + Place No 7.03 755 5.85 16.81 31.09 45.49
Image + Event + Place + EP Loss No 7.12 7.77 6.22 20.02 39.36  50.67
Image + Event + Place + PG No 8.58 9.19 8.57 17.35 33.56  47.75
Image + Event + Place + PG + EP Loss No 9.71 10.66 11.60 22.7 44.20 50.02
GT - - - - - 81.67 56.05

Table 2: Ablation Results. Ablations of our baseline model on the Validation
set. We use nucleus sampling with p = 0.9 to generate 5 sentences for all models.
Automatic metrics used are BLEU-2 (B-2) [26], METEOR (M) [20], and CIDER
(C) [10]. Acc@50 is the accuracy of correctly retrieved inference sentences with 50
candidates to choose from. Unique is the number of inference sentences that are
unique within the generated sentences, divided by the total number of sentences.
Novel refers to the number of generated sentences that are not in the training
data, divided by the total number of sentences. Text Given is when model is
given any textual input during test time to generate the inferences. We bold the
models based on the following order: 1) Best Text only model, 2) Best Image +
Text model given visual and text input, 3) Best Image only model, and 4) Best
Image + Text model given just visual input.

6.3 Results

Table 2 shows our experimental results testing multiple training schemes and
input modalities. We make the following observations: 1) Adding PG trick gives
a boost for model over all metrics. 2) Model trained with both visual and textual
(Image + Event + Place + PG) modalities outperform models trained with
only one of modality (Event + Place; Image + PG) in every metric, including
retrieval accuracy and diversity scores. This indicates that the task needs visual
information to get higher quality inferences. 3) Adding place information helps
in general. 4) Models with access to textual event and place information during
test time, generate higher quality sentences than the same models without them
(Text Given Yes vs No). This is not surprising as our dataset was collected
with workers looking at the event, and the event already gives a strong signal
understanding the content in the image. 5) Lastly, adding the EP Loss boosts the
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Modalities B-2 M C Human Human Human Human
Before Intent After Avg

With Text Input.

Event + Place 1049 9.65 14.83 54.9 52.6 42.9 50.1
Image + Event + Place + PG 11.76 11.13 17.05 | 63.36 63.5 56.0 61.0
Without Text Input.

No Input 488 520 1.77 5.3 4.9 3.5 4.6
Image + PG 7.84 817 T7.14 38.2 34.8 30.3 34.4
Image + Event + Place + PG + EP Loss 9.07 10.12 10.59 42.9 36.8 34.8 38.2
GT - - - | 838 84.5 76 81.4

Table 3: Generated Inference Results. BLEU-2 (B-2) [26], METEOR (M)
[20], CIDER (C), [10] and Human scores for the generated inferences on the
Test split. We select 200 random images and generate 5 sentences for each of the
three inference type (3000 sentences total). Then, we assign three annotators to
determine if each inference sentence is correct, and take the majority vote. The
models are chosen based on their best performance on the validation set when
visual and/or textual modalities are available (bolded models in Table 2).

performance if only the image content is available in the test time. This indicates
that training the model to recognize events at present helps the performance,
when the model has to generate inferences directly from image.

Human Evaluation

While the numbers in automatic evaluation give favorable results to our
Image + Text model, they are not sufficient enough to evaluate the quality of
generated inferences. We choose the best performing model when only image,
text, or both inputs are available (model trained with no input and bolded
models in Table 2). We take 200 random images and the generated inferences,
and ask the humans to evaluate their quality based on just the image content.
Even for models that use ground truth inferences, we do not show the events to
the workers and make them rely on image to make the decision. Specifically, we
ask three different workers to evaluate if each inference is likely (1) or unlikely
(0) to happen based on the image. We then take the majority out of three and
calculate the average across all the inferences.

Table 3 shows automatic metrics and human evaluation scores on the test
split. We notice a similar pattern based on our automatic metric results: Image
+ Text model outperforms the Text only model (61.0 vs 50.1 on average) when
text input is given in test time, and Image + Text model outperforms Image
only model when text input is not given (38.2 vs 34.4 on average). We see that
Text only model performs better than the Image + Text model without text
input in test time, as the event sentence already describes the relevant details
in the image and is a strong signal itself. Note that there is still a 20 point
gap between our best model and ground truth inferences, meaning there is more
room to improve our best model.
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6.4 Qualitative Examples

Figure 6 presents some qualitative examples comparing the outputs of the various
systems with the human annotated ground truth inferences. Overall, models that
integrate information from both the visual and textual modalities generate more
consistent and better contextualized predictions than models that only use either
visual or textual information.

Specifically, the first example (on the top) illustrates that in the absence of
the event description, a model that solely relies on visual information generates
incorrect predictions like “order a drink at a bar”, “dance and have fun” etc. —
none of which are reasonable in the context of the event description. Similarly, a
model that solely relies on the textual description, but not the visual information,
generates “get off of the stage” and even predicts “her job as a scientist”. This
inference could be true in the absence of the visual features, but the image clearly
shows that the person is in the audience, and not the one giving a presentation,
nor she is portrayed as a scientist.

This pattern continues in the bottom example. [Person2] clearly looks worried
but the Text only model predicts that he wants to “alleviate his boredom”, and
does not incorporate this visual detail. Image only model again hallucinates
wrong objects like “have grabbed the wire”. On the other hand, Image + Text
model has the appropriate balance between the two models by stating there is
possibly a criminal nearby as Person 2 is making an urgent call, and still predicts
relevant visual details in the image. Thus, we see that both visual and textual
features contribute to generating coherent inferences.

7 Conclusion

We present Visual COMET, a novel framework of visual commonsense reason-
ing tasks to predict events that might have happened before, events that that
might happen after, and the intents of people at present. To support research
in this direction, we introduce the first large-scale dataset of Visual Common-
sense Graphs consisting of 1.4 million textual descriptions of visual commonsense
inferences carefully annotated over a diverse set of 59,000 images.

We present experiments with comprehensive baselines on this task, evaluating
on two settings: 1) Generating inferences with textual input (event and place)
and images, and 2) Directly generating inferences from images. For both setups,
we show that integration between visual and textual commonsense reasoning is
crucial to achieve the best performance.
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Event: is looking ferward,
watching the presentation closely.

Place: At a presentation

Event: [Person2] is holding a phone
to his ear as he takes an urgent call
Place: Outside.

Text Only

Image Only

Image + Text

Ground Truth

Text Only

Image Only

Image + Text

Ground Truth

Before, [Person2] needed to...

[Person2] wanted

- walk towards the desk.
- hear the words.

-goto the business event.
-arrive at the political event.
- attend the event.

- show that she knows the target
area.

- solve a problem.

- do her job as a scientist.

- hear all the details at the
conference.

- appreciate the ideas of the
speakers

- turn towards others.

- wish the others luck.

- ask questions

- clap at the end of the
presentation

- get off of the stage

- decide what she wanted
to watch,

- witness a good performer

- order a drink at the bar

- arrive at the party

- get dressed up for the night.

- smoke her cigarette.

- dance in a flirtatious manner.

- see what other people are
looking at.

- hear the story while they wait.

- observe the performance.

- have loads of fun

-dance and have fun

- eat her meal at the table

- wipe her hands with a napkin

-get into an argument with
the man

- enter the presentation.
- purchase a ticket.
- put on her blouse
- enjoy the presentation.
- attend the event.

- judge the presentation given
by the presenter.

- witness the event.

- see what will be the next step.

- enjoy the presentation.

- appreciate the vision of the
presenter.

- watch someone speak.

-nod in agreement

- ask gquestions.

- clap at the end of the
presentation.

- get excited

- watch a presentation

- wait for everyone to come

- listen to the lecture

- watch the product
demonstration

- think about what is being said.
- tell the group her opinion.

- watch the screens

- become very angry

- talk with the others about the
product

- go over to examin:

Before, [Person2] needed to...

on2] wanted t¢

- wait outside his house for
the call.

- see what time the call was
taking.

- hear the phone ring.

- hear the phone ring.

- hear the phone ring.

- make sure it was there

- hear the call.

- respond to the call.

- hear the information better.
- alleviate his boredom.

- hang up the phone.

- yell for help.

- have a conversation on the
phone.

-end the call.

- put his phone back in his
pocket.

- have grabbed the wire.

- gather the team.

- see something happening
to the left.

- hear the phone ring.

- get inside the building.

- make someone angry.
fantasize

- check for trouble in the
background.

- hear what the person is
saying.

- be heard.

- say goodbye

- fear for his life

- start shooting someone

- yell at the person in front
of him

- let go of the device

- take out his phone.

- enter the crime scene.
- receive a call.

- hear the phone ring.

- hear the phone ring.

- make sure his voice is heard

- tape the call.

- stop the criminal from going
further.

- hear the person on the phone.

- get information.

- take pictures

- slam the phone

- lay down on a table

- unlock the front door

- put the phone in his pocket

- be told some important
information.

- hear his phone ringing.

- see that an important person
was calling.

- listen for someone on the line.

- find out what the emergency is
- plug his ear so he can hear the
call better

- go somewhere he can hear the

call better.

- ask the caller to speak up

- stand up and scan for the
person calling

- question the caller as to his
intentions.

Fig.6: Qualitative Results. Qualitative Examples comparing our best Text
only, Image only, and Image + Text only model. Red highlights inference state-
ments that are incorrect. Orange highlights if the sentences are plausible, but
not expected. We see that our Image + Text model gives more consistent and
contextualized predictions than the baseline models.
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