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1 Implementation Details

In this section, we provide detailed explanations about the experiments described in
Section 4 of the main paper.

1.1 Models

All models for the experiments were implemented in PyTorch [12]. To generate ad-
versarial attacks, we use the advertorch [5] library. Since different networks may have
different normalization values for the mean and standard deviation of the input, we
model normalization as a first layer inside the network and pass it as input an RGB
image scaled to the range [0,1].

FCN. We use the publicly released model1 from the authors of [19], which is trained
together with PSANet [19] with an additional auxiliary loss. We use the ResNet-50 ver-
sion for our experiments.

PSPNet. We use the trained model1 released by the authors of [19]. It uses the same
ResNet-50 as backbone network. The pyramid pooling module is a 4-level pyramid,
which is concatenated to the final convolutional spatial map and later fed to a classifi-
cation layer.

PSANet. We experiment with the trained model1 provided by authors of [19] with
ResNet-50 as backbone network. The PSA layer contains two sub-branches, namely
collect and distribute, that favor a bi-directional information flow from each position to
all other positions in the spatial feature map.

DANet. We use the trained model2 from the authors of DANet [7]. DANet uses ResNet-
101 as backbone network followed by a spatial and channel wise attention module. We
use DANet with a hierarchy of grids of different sizes (4,8,16) in the last layer of each

1https://github.com/hszhao/semseg
2https://github.com/junfu1115/DANet
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ResNet block.

DRN. We use the trained model3 released by authors of [17]. We choose ResNet-22 as
backbone network with dilated version corresponding to type D.

U-Net. Along with the above-mentioned models, we evaluate the robustness of the U-
Net architecture to local attacks. Due to the non-availability of a trained PyTorch [12]
version of the U-Net model, we re-trained it ourselves, achieving 33.7% mIoU on
Cityscapes.

Along with the six Cityscapes models discussed above, we experiment on PASCAL
VOC [6] with trained FCN [11]1 and PSANet [19]1 models provided by the authors
of [19]. We do not rely on ground truth masks and use predicted maps for our exper-
iments. Note that predicted segmentation maps are very accurate, with state-of-the-art
models reaching a pixel-wise accuracy > 95% on unattacked data. To be precise, we
found the percentage of perturbed pixels lying within the targeted region to be < 1% in
all cases. For example, in the adaptive attacks of Table 3 (a) of main paper, with S=75%,
this percentage is 0.2%, 0.16%, 0.12%, 0.14% for FCN, PSANet, PSPNet, DANet, re-
spectively, which shows that our attacks truly are indirect. Given the dual objective of
the loss functions, it may happen that the gradients to maximize the confidence of labels
at non-targeted locations dominate those at targeted ones. Hence, as suggested in [8],
we ignore the loss at locations where the label is predicted correctly as the target label
with a confidence of at least 0.3.

1.2 Datasets

Cityscapes: We use the validation set of the Cityscapes [4] dataset consisting of 500
images from 19 classes. We divide the pixels at every position in the image into one of
two sets, based on the category attribute provided by the authors. The first set consists of
pixels belonging to static classes with category attribute road, sidewalk, building, wall,
fence, pole, traffic light, traffic sign, vegetation, terrain, sky. The second set corresponds
to regions of dynamic classes person, rider, car, truck, bus, train, motorcycle, bicycle.

The Cityscapes dataset has on average 8% of the pixels corresponding to dynamic
classes in each image. Since our study was targeted to mis-classify the dynamic objects,
images with dynamic instances that occupy small regions might not be meaningful as
such regions lie in the immediate receptive field of their surroundings. Therefore, we
take a subset of images consisting of 150 images whose combined region of instances
corresponding to vehicle classes (car, truck, bus, train, motorcycle, bicycle) is greater
than 8%. We provide the statistics of the resulting dataset in Table 1.

While the original Cityscapes dataset was captured at 2048 × 1024 resolution, we
resize the images to the half resolution of 1024 × 512 as the original size is too large
to fit into GPU memory. Furthermore, we crop the bottom region of the image corre-
sponding to the ego-vehicle of height 62 pixels and resize the image back to 1024 ×
512 pixels. For fair comparison, all models use the same 1024× 512 resolution as input

3https://github.com/fyu/drn
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Dynamic class Images

Person 115
Rider 66
Car 150
Truck 33
Bus 23
Train 7
Motorcycle 24
Bicycle 88

Table 1: Cityscapes-sampled dataset. We provide the statistics of the 150 images
whose combined instance area of vehicle categories is more than 8%.

to the network without any tiling.

PASCAL VOC: We use a subset of 250 images from the original validation set consist-
ing of 1449 images. It contains 20 foreground classes and one background class. In all
settings, we target the pixels corresponding to all 20 foreground classes by perturbing a
subset of the background area.

1.3 Attack Algorithms

We solve the indirect attacks given in Sections 3.1 and 3.2 of the main paper using the
efficient iterative projected gradient descent algorithm [1] with an `p-norm perturbation
budget ‖M� δ‖p < ε, where p ∈ {2,∞}, using a step size α. In all our experiments,
we set the maximum perturbation ε as 100 times α for `∞ attacks. For `2 attacks, we
set the maximum `2 norm of the perturbation ε to 100.

Formally, given an input image X, the adversarial attack minimizes the objective
function, Jt(X,M,F, δ, f,ypred,yt) to find the optimal δ. We solve for δ in an iterative
manner as

δ(0) = 0 (1)

δ(n+1) = Clipp
ε

{
δ(n) − α∇XJt(X,M,F, δ, f,ypred,yt)

}
, (2)

where Clipp
ε clips the perturbation within the `p ball of radius ε. For `∞-norm based

attacks, the gradient update is given by

∇XJ = sgn(∇X(Jt(X,M,F, δ, f,ypred,yt))), (3)

where sgn is the sign function.

For `2-norm based attacks, the gradient update is given by

r = ∇X(Jt(X,M,F, δ, f,ypred,yt)) (4)

∇XJ =
r

‖r‖2
. (5)
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We observe that the DAG attack [16] is similar to the PGD-`2 attack. While DAG
projects the gradient as r

‖r‖∞ , PGD-`2 projects the gradient as r
‖r‖2 . We emphasize

that our formalism for local indirect attacks is general and could be applied to other
adversary generation techniques [16, 3].

1.4 Attack Detection Algorithms

State-of-the-art methods. In this paper, we compare our approach with the spatial con-
sistency [15] method and image re-synthesis method [9] for adversarial attack detection
at image level. For the former, following [15], given an input image of 1024× 512 pix-
els, we crop 50 sufficiently overlapping pairs of patches of size 256× 256 and compute
the average mIoU of the overlapped patch regions as the confidence score for attack
detection. For the latter, following [9], we use the pix2pix generator to re-synthesize
the image from the label map and then compute the `2 distance of the input image and
the re-synthesized one in HOG feature space.

Our method. Let us now provide the implementation details of our attack detection
based on the Mahalanobis distance. During training, we compute the class-conditional
mean µ`

c at every layer ` of the network within locations corresponding to class label c
of the ground truth. Furthermore, we compute the group variance Σ` for every layer `
of the network using the features extracted at layer `. Since the number of features ex-
tracted from the training set can be high, we propose to compute the mean and variance
of averaged features within locations corresponding to each label.

Formally, let X`
j be the feature extracted at layer ` at position j for image X. Let the

size of the feature map X` be W` ×H` ×K`, where W`, H`, K` are the width, height
and number of channels for layer `. Let Lc ∈ RW`×H` be the label mask activated at
positions where the label is c, i.e., Lc

j = 1 if the j-th pixel location belongs to label c
and Lc

j = 0 otherwise.
First, we compute the averaged feature corresponding to label c given by X̂`

c =∑
j|Lj=1 X`

j . We then learn µ`
c and Σ` using {X̂`

c|X ∈ [X0, ...,XN ]} extracted from
all N images in the training set. In the end, we obtain µ`

c ∈ RK` and Σ` ∈ RK`×K` for
a layer ` in the network, and use these values to compute the confidence score of Eq.(6)

We extract features at the end of every block in the ResNet backbone followed by a
context layer and a classification layer. By doing so, we obtain a feature vector for the
logistic detector of size L = 6 for FCN; L = 7 for PSANet; L = 7 for PSPNet; L = 5
for DANet; L = 5 for DRN. We pass the confidence map at each level through 5 × 5
average kernel to smooth the scores. For evaluation purpose, we use 80% of the data for
training and the remaining 20% for testing.

1.5 Performance Metrics

For evaluation, we use the following metrics to measure the effectiveness of our indirect
local attacks.
Intersection over Union. We report the IoU used in the domain of segmentation to
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evaluate the effectiveness of the attack. We report the mIoU at positions that we aim to
fool (f ) since at the remaining positions, the label is retained around 98% of the time.
For untargeted attacks, we report mIoUf

u as the mIoU calculated between the normal
image prediction and its counterpart adversarial image prediction at fooling positions.
In the case of targeted attacks, along with mIoUf

u, we report mIoUf
t as the mIoU calcu-

lated between the normal image prediction and targeted label map at fooling positions.

Attack Success Rate. We report the attack success rate at the percentage of pixels
mis-classified/preserved relative to the total number of pixels in the fooling/preserved
positions, respectively. We report the mASR separately at two positions: 1) at positions
that we aim to fool (f ); 2) at the remaining positions where the label should be preserved
(p). We report mASRf

u and mASRp
u as the success rates calculated between the normal

prediction and its adversarial image prediction at the fooling and preserved positions,
respectively, for untargeted attacks. Specifically to calculate mASRf

u, we assume the
attack to be successful at a pixel if it misclassifies it to any label other than the normal
predicted label. In the case of targeted attacks, we additionally report mASRf

t as the
success rates calculated between the normal prediction and targeted label map at fool-
ing positions.

Perceptibility. We take the `∞-norm and `2-norm of the perturbation image as the two
perceptibility scores.

We average the above metrics over the entire test set. Since in almost all experiments
the labels are retained around 98% of the time at preserved positions, we omitted re-
porting mASRp

u in the main paper. We reported only mASRf
t and mIoUf

u at the fooling
positions in the main paper as these metrics values are the most diverse in our different
attack settings.

AUROC. The area under the receiver operating characteristic curve (AUROC) is com-
puted by plotting the true positive rate (TPR) against the false positive rate (FPR) by
varying a threshold. We compute the AUROC both at image level and pixel level and
report them in all perturbation settings.

1.6 Time Complexity

For an input image of size 512×1024, the PGD-based indirect attack of Eq. (2) in
the main paper takes on average ∼ 35 seconds for 100 iterations, whereas our group-
sparsity-based attack in Eq. (4) of the main paper takes on average ∼ 90 seconds when
using a maximum of 400 gradient computations. For comparison, a dense adversary
generation attack [16], consisting of projecting the gradient in each iteration, takes∼ 40
seconds for a maximum of 200 iterations. Importantly, these timings remain practical
in the scenario of physical attacks where the perturbation can be computed offline.
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2 Additional Results

2.1 Cityscapes Experiments

Tables 2 and 3 show the performance of different networks by varying the noise levels
for `∞ and `2 attacks. Tables 4 and 5 show the impact of indirect attacks by perturbing
static regions that are at least d pixels away from any dynamic object class with `∞ and
`2 attacks. Furthermore, Table 6 shows the complete performance statistics of different
networks by tuning the sparsity levels in our adaptive attack strategy. We then show the
impact of universal, single fixed-size patch attacks in Table 7 by varying the size of the
patch placed at the center of the image.

Finally, we show the attack detection results with four perturbation settings: Global
image perturbations (Global) to fool the entire image; Universal patch perturbations
(UP) at a fixed location to fool the entire image; Full static (FS) class perturbations to
fool the dynamic classes; Adaptive patch (AP) perturbations in the static class regions to
fool the dynamic objects. Tables 8, 9, 10 and 11 show the attack detection results of our
method and of the two state-of-the-art detection techniques with FCN, PSP, PSANet,
and DANet, respectively.

2.2 Transferability Analysis

Tables 12a and 12b show the performance of black-box attacks when the entire image
is perturbed to misclassify the dynamic objects in an untargeted and targeted manner,
respectively. We observe that transferring adversarial examples to FCN, PSPNet and
PSANet is more successful than to DANet, which is more robust to black-box attacks.

Table 13a shows the transferability of perturbations when the complete regions be-
longing to the static classes are perturbed to perform a targeted attack on the dynamic
objects. Note that the transfer rate mASRf

t is low (< 5%) in many cases across all net-
works for this setting.

Table 13b shows the transferability of perturbations when the regions belonging to
the static classes that are d = 50 pixels away from any dynamic object boundary are
perturbed to perform a targeted attack on the dynamic objects. This, however, results in
an even lower transfer rate mASRf

t < 3% across architectures as the contextual depen-
dency differs across different architectures.

Finally, Tables 14a and 14b provide the transferability analysis with adaptive patch
attacks and universal local attacks. We observe similar results in this setting, where the
success rates mASRf

t of black-box attacks are very low (< 5%) when attacked with
patch attacks. We conjecture that attacking segmentation networks that differ in con-
textual reasoning can be difficult for patch based attacks that perturb a small region.
Furthermore, note that the poor transferability of black-box attacks in semantic seg-
mentation was also observed in [15], although only for global attacks.
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2.3 Comparison to Other Patch Attacks

Similarly to [10, 14, 2], we perform universal patch attacks that are fixed in terms of size
and location. Table 15 shows the success rate of class-specific, targeted universal patch
attacks on dynamic object regions, preserving the background region. Furthermore, we
also learn a patch that is targeted to all dynamic classes, which in most cases results
in mASRf

t < 5% for all networks. We observe that such fixed-size and fixed-location
patches are not suitable for semantic segmentation unlike for object detection [10, 14]
and image recognition [2]. This can be attributed, for image recognition, to global av-
erage pooling, which extends the receptive field to most parts of the image, making the
perturbation location invariant, and, for object detection, to the anchor proposal layer
that typically encompasses different scales so as to cover the entire image for any loca-
tion as anchor center. In both cases, this makes the networks more vulnerable to attacks,
even when the perturbations are far from the object of interest. By contrast, for segmen-
tation without contextual layer such as FCN, the receptive field is limited to that of the
backbone network, and the impact of a patch perturbation is limited to its surrounding.

2.4 Qualitative Results on Cityscapes

Figure 1 visualizes adversarial images obtained by varying the step size α in both `∞
and `2 indirect local attacks with PSANet [19]. Figure 2 shows the outputs of indirect
local attacks by perturbing static class pixels that are at least a distance d from a dy-
namic class pixel. Figure 3 shows the outputs of universal patch attacks on different
networks by varying the patch area in {1%, 2.3%, 4%, 9%} of the image area. Figure 4
shows the results of adaptive local attacks on different networks by varying the sparsity
level of the perturbation.

To understand the effectiveness of the Mahalanobis distance for attack detection,
we visualize the internal subspaces of normal and adversarial samples. Figures 5 and 6
show the visualizations of the nearest cluster assignment for each spatial location in
the top-4 layers for PSPNet [18] and PSANet [19], respectively. Figure 7 depicts the
output of pixel-level adversarial attack detection using the Mahalanobis distance on
PSANet [19] with adaptive indirect local attacks at a sparsity level of 75%.

2.5 Quantitative Results on PASCAL VOC

Table 16 shows the better robustness to adaptive local indirect attacks of FCN [11]
than of PSANet [19]. For example, at a sparsity level of 95%, FCN [11] has a success
rate of 13%, compared to 68% for PSANet. Furthermore, Table 17 shows the higher
vulnerability to fixed-size universal patch attacks of PSANet [19] and PSPNet [18] than
of FCN [11].

2.6 Qualitative Results on PASCAL VOC

Figure 8 shows the results of adaptive local attacks on PSANet [19] at a sparsity level
of 95%. Figure 9 depicts the outputs of universal local attacks on different networks for
PASCAL VOC.
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Networks α
mIoU mASR Norm of δ

mIoUf
u mIoUf

t mASRp
u mASRf

u mASRf
t `∞-norm `2-norm

FCN [11]

1e-5 0.65 0.08 100% 6% 5% 0.001 0.83
1e-4 0.29 0.27 100% 35% 29% 0.01 4.70
1e-3 0.14 0.49 100% 63% 56% 0.10 15.12
5e-3 0.11 0.55 100% 69% 62% 0.40 50.93

PSPNet [18]

1e-5 0.71 0.10 99% 15% 12% 0.001 0.77
1e-4 0.06 0.53 100% 98% 86% 0.01 3.10
1e-3 0.00 0.62 100% 100% 90% 0.05 8.30
5e-3 0.00 0.63 99% 100% 90% 0.20 37.99

PSANet [19]

1e-5 0.60 0.10 98% 22% 14% 0.001 0.72
1e-4 0.04 0.51 99% 99% 86% 0.01 2.68
1e-3 0.01 0.60 99% 100% 90% 0.05 8.10
5e-3 0.00 0.60 99% 100% 90% 0.18 35.71

DANet [7]

1e-5 0.80 0.06 100% 6% 5% 0.001 0.81
1e-4 0.11 0.50 99% 91% 80% 0.01 3.90
1e-3 0.01 0.65 99% 99% 90% 0.04 8.30
5e-3 0.00 0.66 99% 100% 90% 0.15 31.71

DRNet [17]

1e-5 0.64 0.09 99% 9% 6% 0.001 0.87
1e-4 0.15 0.44 99% 67% 56% 0.01 4.95
1e-3 0.03 0.67 99% 92% 84% 0.08 12.78
5e-3 0.02 0.67 99% 94% 87% 0.27 40.2

U-Net [13]

1e-5 0.35 0.15 99% 29% 20% 0.001 0.91
1e-4 0.02 0.37 99% 95% 76% 0.01 5.74
1e-3 0.00 0.48 99% 99% 87% 0.08 13.34
5e-3 0.00 0.52 99% 100% 89% 0.28 38.89

Table 2: Indirect attacks on Cityscapes to fool dynamic classes while perturbing entire static
ones with `∞ strategy. The success rate of the attacks increases with higher step size α
although with higher perceptibility values. FCN is more robust to indirect attacks, while
PSANet and PSPNet are more vulnerable to attacks even at small step sizes such as α
= 1e-4.
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Networks α
mIoU mASR Norm of δ

mIoUf
u mIoUf

t mASRp
u mASRf

u mASRf
t `∞-norm `2-norm

FCN [11]
8e-3 0.60 0.10 100% 13% 10% 0.02 0.58
4e-2 0.36 0.21 99% 33% 26% 0.05 1.75
8e-2 0.27 0.28 99% 44% 36% 0.08 2.58

PSPNet [18]
8e-3 0.68 0.12 99% 24% 20% 0.01 0.51
4e-2 0.23 0.37 99% 81% 67% 0.02 1.28
8e-2 0.02 0.84 99% 96% 91% 0.03 1.17

PSANet [19]
8e-3 0.60 0.10 98% 25% 14% 0.01 0.39
4e-2 0.21 0.32 99% 85% 63% 0.02 0.90
8e-2 0.06 0.53 99% 96% 83% 0.03 1.44

DANet [7]
8e-3 0.79 0.08 99% 16% 12% 0.02 0.56
4e-2 0.43 0.28 99% 62% 50% 0.03 1.32
8e-2 0.13 0.54 99% 90% 79% 0.035 1.95

DRNet [17]
8e-3 0.63 0.10 99% 16% 10% 0.02 0.65
4e-2 0.24 0.37 99% 60% 48% 0.06 2.14
8e-2 0.13 0.45 99% 76% 65% 0.08 3.02

U-Net [13]
8e-3 0.32 0.17 99% 36% 25% 0.02 0.70
4e-2 0.05 0.32 98% 85% 66% 0.08 2.76
8e-2 0.02 0.43 98% 95% 79% 0.09 3.43

Table 3: Indirect attacks on Cityscapes to fool dynamic classes while perturbing entire static
ones with `2 strategy. The perceptibility values of `2 attacks are much lower than those of `∞
attacks at a given success rate. As in the case of `∞ attacks, FCN is more robust to indirect attacks
than PSANet and PSPNet.

Networks d
mIoU mASR Norm of δ

mIoUf
u mIoUf

t mASRp
u mASRf

u mASRf
t `∞-norm `2-norm

FCN [11]

50 0.77 0.05 100% 4% 3% 0.38 43.37
100 0.98 0.00 100% 0% 0% 0.38 33.46
150 1.00 0.00 100% 0% 0% 0.38 22.23

PSPNet [18]

50 0.14 0.37 99% 96% 74% 0.28 41.83
100 0.24 0.26 98% 86% 60% 0.29 33.00
150 0.55 0.12 97% 35% 23% 0.34 22.86

PSANet [19]

50 0.11 0.33 98% 98% 72% 0.25 42.11
100 0.13 0.27 98% 97% 65% 0.25 33.00
150 0.28 0.21 98% 75% 47% 0.30 22.47

DANet [7]

50 0.14 0.50 99% 92% 81% 0.29 41.17
100 0.48 0.24 98% 53% 43% 0.33 34.50
150 0.80 0.07 98% 14% 10% 0.35 23.45

DRNet [17]

50 0.37 0.20 99% 34% 22% 0.43 46.30
100 0.73 0.05 99% 5% 3% 0.44 37.24
150 0.94 0.00 100% 0% 0% 0.47 25.87

U-Net [13]

50 0.01 0.25 98% 97% 70% 0.43 44.62
100 0.03 0.20 96% 90% 60% 0.47% 39.61
150 0.10 0.17 95% 74% 47% 0.49% 33.27

Table 4: Impact of local attacks by perturbing pixels that are at least d pixels away from any
dynamic class with `∞ strategy. We observe PSANet [19] and UNet [13] to be vulnerable to indi-
rect attacks even when the perturbations are at large distances, such as d = 150, while FCN [11]
is barely affected.
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Networks d
mIoU mASR Norm of δ

mIoUf
u mIoUf

t mASRp
u mASRf

u mASRf
t `∞-norm `2-norm

FCN [11]

50 0.80 0.05 100% 3% 3% 0.31 10.71
100 0.98 0.00 100% 0% 0% 0.32 9.95
150 1.00 0.00 100% 0% 0% 0.40 9.43

PSPNet [18]

50 0.18 0.35 99% 94% 73% 0.13 9.58
100 0.30 0.24 98% 78% 56% 0.16 9.70
150 0.59 0.11 98% 29% 20% 0.24 9.65

PSANet [19]

50 0.10 0.37 99% 98% 76% 0.19 9.41
100 0.14 0.29 98% 95% 67% 0.22 9.43
150 0.31 0.21 98% 70% 45% 0.27 9.55

DANet [7]

50 0.27 0.40 99% 83% 72% 0.19 9.90
100 0.67 0.15 98% 33% 26% 0.22 9.87
150 0.85 0.05 98% 10% 7% 0.30 9.51

DRNet [17]

50 0.44 0.15 99% 30% 17% 0.31 12.55
100 0.77 0.04 99% 5% 3% 0.32 12.23
150 0.95 0.00 100% 0% 0% 0.37 11.50

U-Net [13]

50 0.02 0.23 98% 95% 67% 0.28 16.13
100 0.12 0.16 95% 68% 42% 0.58 19.51
150 0.12 0.16 95% 67% 42% 0.58 19.56

Table 5: Impact of local attacks by perturbing pixels that are at least d pixels away from any
dynamic class with `2 strategy. We observe PSANet [19] and UNet [13] to be vulnerable to indi-
rect attacks even when the perturbations are at large distances, such as d = 150, while FCN [11]
is barely affected.

Networks Sparsity
mIoU mASR Norm of δ

mIoUf
u mIoUf

t mASRp
u mASRf

u mASRf
t `∞-norm `2-norm

FCN [11]

75% 0.52 0.12 100% 18% 13% 0.15 4.04
85% 0.67 0.07 100% 9% 6% 0.14 3.11
90% 0.73 0.05 100% 6% 4% 0.12 2.54
95% 0.84 0.03 100% 2% 2% 0.10 1.78

PSPNet [18]

75% 0.19 0.38 99% 89% 71% 0.09 4.87
85% 0.32 0.28 98% 74% 55% 0.11 5.25
90% 0.42 0.21 98% 60% 42% 0.13 5.30
95% 0.60 0.11 98% 33% 22% 0.15 4.85

PSANet [19]

75% 0.10 0.44 99% 97% 79% 0.09 4.76
85% 0.16 0.38 98% 94% 71% 0.10 5.20
90% 0.20 0.32 98% 89% 64% 0.12 5.19
95% 0.36 0.22 98% 70% 44% 0.14 5.07

DANet [7]

75% 0.30 0.37 99% 78% 65% 0.12 5.63
85% 0.49 0.23 99% 57% 46% 0.14 5.79
90% 0.64 0.16 99% 40% 30% 0.15 5.80
95% 0.71 0.12 99% 29% 21% 0.13 3.95

DRNet [17]

75% 0.42 0.19 100% 35% 22% 0.18 5.40
85% 0.55 0.11 100% 22% 13% 0.15 4.43
90% 0.63 0.08 100% 15% 10% 0.14 3.84
95% 0.77 0.05 100% 8% 5% 0.13 2.81

U-Net [13]

75% 0.12 0.20 96% 70% 44% 0.15 6.56
85% 0.19 0.15 96% 52% 32% 0.19 6.81
90% 0.25 0.13 96% 42% 25% 0.22 6.54
95% 0.36 0.11 96% 27% 16% 0.23 5.73

Table 6: Adaptive indirect local attacks on Cityscapes. We compute the performance statistics
for different sparsity levels of perturbation. By enforcing group sparsity, we can attack context-
aware networks such as PSANet [19], PSPNet [18] and DANet [7] with higher success rates than
for the baseline FCN [11].
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Networks
Patch size

h×w (area%)
mIoU mASR Norm of δ

mIoUf
u mASRf

u `∞-norm `2-norm

FCN [11]

51× 102 (1.0%) 0.86 2% 0.30 25.36
76× 157 (2.3%) 0.78 4% 0.30 37.60
102× 204 (4.0%) 0.73 10% 0.30 51.80
153× 306 (9.0%) 0.58 18% 0.30 78.32

PSPNet [18]

51× 102 (1.0%) 0.80 3% 0.30 25.52
76× 157 (2.3%) 0.63 10% 0.30 38.43
102× 204 (4.0%) 0.44 27% 0.30 50.32
153× 306 (9.0%) 0.09 84% 0.30 74.92

PSANet [19]

51× 102 (1.0%) 0.41 38% 0.30 26.69
76× 157 (2.3%) 0.23 60% 0.30 38.60
102× 204 (4.0%) 0.14 71% 0.30 50.39
153× 306 (9.0%) 0.04 90% 0.30 78.02

DANet [7]

51× 102 (1.0%) 0.79 4% 0.30 26.45
76× 157 (2.3%) 0.71 10% 0.30 37.24
102× 204 (4.0%) 0.65 15% 0.30 49.86
153× 306 (9.0%) 0.40 42% 0.30 74.60

DRNet [17]

51× 102 (1.0%) 0.82 2% 0.30 26.28
76× 157 (2.3%) 0.77 7% 0.30 39.27
102× 204 (4.0%) 0.70 14% 0.30 52.23
153× 306 (9.0%) 0.55 28% 0.30 78.32

U-Net [13]

51× 102 (1.0%) 0.32 26% 0.30 29.95
76× 157 (2.3%) 0.13 58% 0.30 44.42
102× 204 (4.0%) 0.06 76% 0.30 58.15
153× 306 (9.0%) 0.02 90% 0.30 86.06

Table 7: Universal local attacks on Cityscapes by tuning the patch size h×w (area%) on dif-
ferent networks. PSANet [19] and UNet [13] are highly sensitive to patch attacks even when the
patch is 1% of image area. Note that the attack is untargeted and aimed to fool the entire scene
by placing a fixed-size patch at the center of the image. We use `∞ based attacks with α = 0.001

and ε = 0.3.
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Networks
Perturbation

region
Fooling
region

Norm of δ Misclassified
pixels %

Global AUROC Local AUROC

`∞ `2 SC [15] / Re-Syn [9] / Ours Ours

FCN [11]

Global Full 0.09 17.67 91% 1.00 / 1.00 / 0.94 0.90

FS Dyn

0.001 0.83 1% 0.48 / 0.53 / 0.89 0.80
0.01 4.70 5% 0.54 / 0.67 / 1.00 0.83
0.10 15.12 9% 0.65 / 0.75 / 1.00 0.83
0.40 50.93 10% 0.93 / 0.76 / 1.00 0.73

0.02 0.58 2% 0.51 / 0.56 / 0.58 0.83
0.05 1.75 5% 0.55 / 0.67 / 0.82 0.86
0.08 2.58 6% 0.57/ 0.71 / 0.90 0.87

UP Full

0.30 25.46 2% 0.70 / 0.55 / 0.88 0.96
0.30 37.60 4% 0.82 / 0.64 / 1.00 0.94
0.30 51.80 10% 0.90 / 0.75 / 1.00 0.94
0.30 7.32 18% 0.99 / 0.94 / 1.00 0.95

AP Dyn

0.15 4.04 3% 0.68 / 0.65 / 0.92 0.88
0.14 3.11 2% 0.61 / 0.57 / 0.87 0.89
0.12 2.54 1% 0.60 / 0.55 / 0.80 0.90
0.10 1.78 1% 0.60 / 0.52 / 0.73 0.91

Table 8: Attack detection on Cityscapes with different perturbation settings on FCN [11]. We
perform Mahalanobis-based attack detection in three settings, namely, Global: Global image per-
turbations; UP: Universal patch perturbations; FS: Full static class perturbations. We tune the
noise level or patch size or sparsity level of the attack generation process to achieve different
ranges of success rates. Note that SC [15] and Re-Syn [9] perform well only when large per-
centages of pixels are misclassified, while we outperform them by a large margin in all other
settings.
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Networks
Perturbation

region
Fooling
region

Norm of δ Misclassified
pixels %

Global AUROC Local AUROC

`∞ `2 SC [15] / Re-Syn [9] / Ours Ours

PSPNet [18]

Global Full 0.06 10.74 83% 0.90 / 1.00 / 0.99 0.81

FS Dyn

0.001 0.77 3% 0.49 / 0.56 / 1.00 0.84
0.01 3.10 14% 0.48 / 0.76 / 1.00 0.90
0.05 8.30 14% 0.52 / 0.77 / 1.00 0.85
0.20 37.99 14% 0.88 / 0.78 / 1.00 0.88

0.01 0.51 4% 0.50 / 0.59 / 1.00 0.85
0.02 1.28 12% 0.52 / 0.72 / 1.00 0.87
0.03 1.17 14% 0.52 / 0.73 / 1.00 0.87

UP Full

0.30 25.52 3% 0.57 / 0.55 / 1.00 0.93
0.30 38.43 10% 0.62 / 0.70 / 1.00 0.96
0.30 50.32 27% 0.65 / 0.89 / 1.00 0.96
0.30 74.92 84% 0.87 / 1.00 / 1.00 0.97

AP Dyn

0.09 4.87 12% 0.65 / 0.82 / 0.99 0.90
0.11 5.25 10% 0.59 / 0.76 / 0.98 0.82
0.13 5.30 9% 0.56 / 0.72 / 0.99 0.82
0.15 4.85 5 % 0.55 / 0.69 / 1.00 0.84

Table 9: Attack detection on Cityscapes with different perturbation settings on PSPNet [18].
We perform Mahalanobis-based attack detection in three settings, namely, Global: Global image
perturbations; UP: Universal patch perturbations; FS: Full static class perturbations. We tune the
noise level or patch size or sparsity level of the attack generation process to achieve different
ranges of success rates. Note that SC [15] and Re-Syn [9] perform well only when large per-
centages of pixels are misclassified, while we outperform them by a large margin in all other
settings.
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Networks
Perturbation

region
Fooling
region

Norm of δ Misclassified
pixels %

Global AUROC Local AUROC

`∞ `2 SC [15] / Re-Syn [9] / Ours Ours

PSANet [19]

Global Full 0.04 8.26 93% 0.90 / 1.00 / 0.94 0.75

FS Dyn

0.001 0.72 4% 0.49 / 0.56 / 1.00 0.88
0.01 2.68 14% 0.48 / 0.77 / 1.00 0.92
0.05 8.10 14% 0.50 / 0.78 / 1.00 0.89
0.18 35.71 14% 0.87 / 0.78 / 1.00 0.87

0.01 0.39 4% 0.51 / 0.57 / 1.00 0.88
0.02 0.90 13% 0.49 / 0.73 / 1.00 0.92
0.03 1.44 14% 0.49 / 0.77 / 1.00 0.92

UP Full

0.30 26.69 38% 0.60 / 1.00 / 1.00 0.99
0.30 38.60 60% 0.62 / 1.00 / 1.00 0.98
0.30 50.39 71% 0.69 / 1.00 / 1.00 0.97
0.30 78.02 90% 0.85 / 1.00 / 1.00 0.98

AP Dyn

0.09 4.76 14% 0.54 / 0.85 / 1.00 0.95
0.10 5.20 14% 0.52 / 0.83 / 1.00 0.94
0.12 5.19 13% 0.54 / 0.81 / 1.00 0.92
0.14 5.07 10% 0.52 / 0.78 / 0.94 0.91

Table 10: Attack detection on Cityscapes with different perturbation settings on PSANet [19].
We perform mahalanobis based attack detection in four settings namely Global:Global image
perturbations, UP:Universal patch perturbations; FS : Full static class perturbations. . We tune the
noise level or patch size or sparsity levels of attack generation process to achieve different range
of success rate. As observed, SC [15] and Re-Syn [9] perform well only when large percentage
of pixels are misclassified while we outperform them by a large margin in all other settings.
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Networks
Perturbation

region
Fooling
region

Norm of δ Misclassified
pixels %

Global AUROC Local AUROC

`∞ `2 SC [15] / Re-Syn [9] / Ours Ours

DANet [7]

Global Full 0.06 12.55 82% 0.89 / 1.00 / 1.00 0.68

FS Dyn

0.01 0.81 1% 0.50 / 0.51 / 0.64 0.88
0.01 3.90 14% 0.52 / 0.72 / 0.96 0.86
0.04 8.30 14% 0.56 / 0.74 / 0.99 0.92
0.15 31.71 14% 0.84 / 0.75 / 1.00 0.94

0.02 0.56 3% 0.50 / 0.54 / 0.67 0.86
0.03 1.32 9% 0.48 / 0.64 / 0.89 0.86
0.03 1.95 14% 0.50 / 0.70 / 0.87 0.88

UP Full

0.30 26.45 4% 0.74 / 0.57 / 0.77 0.89
0.30 37.24 10% 0.80 / 0.64 / 0.92 0.83
0.30 49.86 15% 0.73 / 0.75 / 0.99 0.87
0.30 74.60 42% 0.88 / 0.92 / 1.00 0.89

AP Dyn

0.12 5.63 12% 0.58 / 0.75 / 0.99 0.82
0.14 5.79 9% 0.54 / 0.68 / 0.99 0.82
0.15 5.80 6% 0.50 / 0.63 / 0.95 0.81
0.13 3.95 5% 0.51 / 0.58 / 0.85 0.83

Table 11: Attack detection on Cityscapes with different perturbation settings on DANet [7].
We perform mahalanobis based attack detection in four settings namely Global:Global image
perturbations, UP:Universal patch perturbations; FS : Full static class perturbations. . We tune the
noise level or patch size or sparsity levels of attack generation process to achieve different range
of success rate. As observed, SC [15] and Re-Syn [9] perform well only when large percentage
of pixels are misclassified while we outperform them by a large margin in all other settings.

Train / Eval FCN [11] PSPNet [18] PSANet [19] DANet [7]

FCN [11] 0.00 / 90% 0.02 / 81% 0.01 / 88% 0.57 / 10%
PSPNet [18] 0.25 / 43% 0.01 / 83% 0.09 / 73% 0.74 / 4%
PSANet [19] 0.22 / 47% 0.23 / 55% 0.00 / 92% 0.77 / 3%
DANet [7] 0.14 / 45% 0.50 / 12% 0.50 / 12% 0.02 / 81%

(a) `∞ untargeted direct attack

Train / Eval FCN [11] PSPNet [18] PSANet [19] DANet [7]

FCN [11] 0.00 / 90% 0.09 / 67% 0.03 / 84% 0.72 7%
PSPNet [18] 0.20 / 12% 0.06 / 91% 0.16 / 28% 0.72 / 7%
PSANet [19] 0.11 / 31% 0.14 / 45% 0.01 / 91% 0.72 / 6%
DANet [7] 0.54 / 1% 0.59 / 6% 0.60 / 5% 0.06 / 91%

(b) `∞ targeted direct attack

Table 12: Transferability of direct attacks. On the left, we show the transfer rate of
untargeted attacks perturbing the entire static region to misclassify the dynamic regions.
On the right, we show the transfer rate of targeted attacks perturbing the entire static
region to misclassify the dynamic regions to their nearest static class. We set ε = 0.1.

Train / Eval FCN [11] PSPNet [18] PSANet [19] DANet [7]

FCN [11] 0.29 / 29% 0.30 / 13% 0.19 / 24% 0.77 / 6%
PSPNet [18] 0.42 / 3% 0.05 / 85% 0.35 / 5% 0.83 / 5%
PSANet [19] 0.34 % 5% 0.38 / 5% 0.04 / 85% 0.84 / 5%
DANet [7] 0.68 / 4% 0.68 / 4% 0.71 / 4% 0.11 / 79%

(a) `∞ indirect local attack

Train / Eval FCN [11] PSPNet [18] PSANet [19] DANet [7]

FCN [11] 0.98 / 0% 0.75 / 2% 0.73 / 2% 0.86 / 6%
PSPNet [18] 0.97 / 1% 0.24 / 60% 0.50 / 3% 0.85 / 5%
PSANet [19] 0.98 / 1% 0.63 / 2% 0.13 / 65% 0.86 / 5%
DANet [7] 0.99 / 4% 0.82 / 5% 0.84 / 4% 0.48 / 43%

(b) `∞ attack with boundary d = 50 pixels

Table 13: Transferability of indirect local attacks. On the left, we show the transfer
rate of attacks perturbing the complete static region to misclassify the dynamic regions.
On the right, we show the transfer rate of attacks perturbing pixels that are at least
d = 100 pixels away from the object boundary.
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Train / Eval FCN [11] PSPNet [18] PSANet [19] DANet [7]

FCN [11] 0.52 / 12% 0.52 / 5% 0.37 / 8% 0.85 / 6%
PSPNet [18] 0.69 / 1% 0.25 / 63% 0.50 / 3% 0.85 / 5%
PSANet [19] 0.69 / 1% 0.62 / 2% 0.10 / 79% 0.87 / 5%
DANet [7] 0.85 / 4% 0.80 / 4% 0.82 / 4% 0.32 / 62%

(a) adaptive indirect local attack with
S = 75%

Train / Eval FCN [11] PSPNet [18] PSANet [19] DANet [7]

FCN [11] 0.58 / 18% 0.61 / 10% 0.60 / 13% 0.74 / 5%
PSPNet [18] 0.69 / 8% 0.08 / 86% 0.52 / 21% 0.73 / 7%
PSANet [19] 0.66 / 8% 0.64 / 11% 0.04 / 90% 0.75 / 6%
DANet [7] 0.72 / 8% 0.67 / 8% 0.68 / 8% 0.39 / 42%

(b) `∞ universal local attack with patch size at
the center of image

Table 14: Transferability of adaptive indirect local attacks. On the left, we report the transfer
rate of adaptive local attacks with S = 75%. On the right, we report the transfer rate of universal
local attacks with patch size 153× 153(9.0%).

Network person rider car truck bus train motorcycle bicycle All

FCN [11] 1.00 / 0% 1.00 / 0% 1.00 / 0% 1.00 / 0% 1.00 / 0% 1.00 / 0% 0.98 / 1% 0.90 / 3% 0.97 / 2%
PSPNet [18] 0.87 / 11% 0.98 / 6% 0.94 /2% 0.63 / 30% 0.91 / 6% 0.92 / 3% 0.66 / 28% 0.53 / 2% 0.78 / 2%
PSANet [19] 0.67 / 23% 0.60 / 24% 0.78 / 7% 0.70 / 22% 0.66 / 22% 0.10 / 21% 0.50 /39% 0.94 / 5% 0.39 / 4%
DANet [7] 0.43 / 39% 0.86 /12% 0.90 / 7% 0.50 / 25% 0.29 / 69% 0.75 / 14% 0.28 / 41% 0.67 / 22% 0.87 / 6%

Table 15: Success rate of universal, class-specific targeted, fixed-size patches for
Cityscapes similar to those in [14, 10]. We place a 102×102(4.0%) patch at the top left
of the image. We observe that such patches at fixed location perform poorly for targeted
attacks aiming to misclassify pixels to their nearest static label.

Networks Sparsity
mIoU mASR Norm of δ

mIoUf
u mIoUf

t mASRp
u mASRf

u mASRf
t `∞-norm `2-norm

FCN [11]

75% 0.50 0.32 100% 35% 32% 0.14 2.40
85% 0.58 0.27 100% 30% 27% 0.13 2.15
90% 0.66 0.22 100% 24% 22% 0.12 1.91
95% 0.80 0.12 100% 13% 13% 0.11 1.37

PSPNet [18]

75% 0.22 0.79 99% 80% 79% 0.07 2.15
85% 0.21 0.81 98% 83% 81% 0.08 2.40
90% 0.22 0.80 98% 81% 79% 0.10 2.71
95% 0.39 0.60 99% 63% 60% 0.15 3.07

PSANet [19]

75% 0.29 0.68 99% 70% 68% 0.07 1.77
85% 0.22 0.78 98% 79% 78% 0.07 1.93
90% 0.20 0.80 98% 82% 80% 0.08 2.21
95% 0.30 0.69 99% 70% 68% 0.13 2.81

Table 16: Adaptive indirect local attacks on PASCAL VOC. We observe that PSANet [19] is
more vulnerable to local adaptive attacks than FCN [11].
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Fig. 1: Indirect attacks on Cityscapes to fool dynamic classes while perturbing complete
static ones using `2 and `∞ attacks. We use α = {8e-3, 4e-2, 8e-2} for `2 attacks and
α={1e-5, 1e-4, 1e-3, 5e-3} for `∞ attacks. We observe that PGD [1] is effective at computing
an imperceptible perturbations for different ranges of step-size α.
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Fig. 2: Indirect local attack on different networks with perturbations at least d pixels
away from any dynamic class. In most cases, FCN [11] is not affected by indirect at-
tacks, while PSANet [19], PSPNet [18] and DANet [7] are affected due to their larger
contextual dependencies for prediction.
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Fig. 3: Universal local attacks on segmentation networks. The degradation in FCN [11]
is limited to the attacked area, whereas for context-aware networks, such as PSP-
Net [18], PSANet [19], DANet [7], it extends to far-away regions.
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Fig. 4: Adaptive indirect local attacks on Cityscapes with different networks by
tuning the sparsity levels. We observe that PSPNet [18] and PSANet [19] are vulnera-
ble to adaptive indirect local attacks even with perturbations with high levels of sparsity,
while FCN [11] is the least affected.
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Fig. 5: Visualizing internal subspaces of normal and adversarial samples of
Cityscapes with PSPNet [18]. For each spatial location of the extracted feature map
at layer `, we assign the label of the nearest pre-trained class-conditional distribution
computed using the Mahalanobis distance. As shown in the figure, the nearest cluster
label looks almost the same as the predicted label map for clean samples. By contrast,
for adversarial samples, the nearest cluster moves towards the predicted adversarial la-
bel in the final layers. Furthermore, in the PSP context layer, for adversarial samples,
the nearest conditional distribution values are completely erroneous and far away from
the normal cluster assignments.
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Fig. 6: Visualizing internal subspaces of normal and adversarial samples of
Cityscapes with PSANet [19]. For each spatial location of the extracted feature map
at layer `, we assign the label of the nearest pre-trained class-conditional distribution
computed using the Mahalanobis distance. As shown in the figure, the nearest cluster
label looks almost the same as the predicted label map for clean samples. By contrast,
for adversarial samples, the nearest cluster moves towards the predicted adversarial la-
bel in the final layers. Furthermore, in the PSA context layer, for adversarial samples,
the nearest conditional distribution values are completely erroneous and far away from
the normal cluster assignments.
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(a) Adversarial image (b) Fooling mask (GT) (c) Predicted  mask

Fig. 7: Visualization of attack detection at pixel level by adaptive indirect local at-
tacks on Cityscapes with PSANet [19]. The first column shows the adversarial image,
the second column shows the ground-truth fooling locations and the third column the
predicted fooling positions.
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Networks
Patch size

h×w (area%)
mIoU mASR Norm of δ

mIoUf
u mASRf

u `∞-norm `2-norm

FCN [11]

51× 51 (1.0%) 0.77 3% 0.30 19.84
76× 76 (2.3%) 0.69 6% 0.30 29.64

102× 102 (4.0%) 0.63 10% 0.30 38.81
153× 153 (9.0%) 0.51 19% 0.30 59.09

PSPNet [18]

51× 51 (1.0%) 0.82 5% 0.30 20.20
76× 76 (2.3%) 0.75 9% 0.30 29.57

102× 102 (4.0%) 0.62 16% 0.30 38.62
153× 153 (9.0%) 0.39 41% 0.30 57.28

PSANet [19]

51× 51 (1.0%) 0.83 4% 0.30 20.24
76× 76 (2.3%) 0.75 8% 0.30 29.40

102× 102 (4.0%) 0.56 28% 0.30 38.63
153× 153 (9.0%) 0.35 56% 0.30 57.6

Table 17: Universal local attacks on PASCAL VOC by tuning the patch size h×w (area%) on
different networks. PSANet [19] and UNet [13] are highly sensitive to patch attacks even when
the patch is 1% of the image area. Note that the attack is untargeted and aimed to fool the entire
scene by placing a fixed size patch at the center of the image. We use `∞ based attacks with
α = 0.001 and ε = 0.3.
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(c) Normal  Seg. (d) Adversarial  Seg.(a) Adversarial image (b) Perturbation

Fig. 8: Adaptive indirect local attacks on PASCAL VOC with PSANet [19]. We show
an adversarial image (a) perturbed with an imperceptible noise (b) at local background
regions, which forces the foreground regions in the normal segmentation map (c) to be
misclassified as background classes, as shown in (d).
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Fig. 9: Universal local attacks on PASCAL VOC segmentation networks. The degra-
dation in FCN [11] is limited to the attacked area, whereas, for context-aware networks,
such as PSPNet [18] and PSANet [19] it extends to far-away regions.



Indirect Local Attacks for Context-aware Semantic Segmentation Networks 27

References

1. Athalye, A., Carlini, N., Wagner, D.: Obfuscated gradients give a false sense of security:
Circumventing defenses to adversarial examples. arXiv preprint arXiv:1802.00420 (2018)
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