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Abstract. Recently, deep networks have achieved impressive semantic
segmentation performance, in particular thanks to their use of larger con-
textual information. In this paper, we show that the resulting networks
are sensitive not only to global adversarial attacks, where perturbations
affect the entire input image, but also to indirect local attacks, where the
perturbations are confined to a small image region that does not overlap
with the area that the attacker aims to fool. To this end, we introduce
an indirect attack strategy, namely adaptive local attacks, aiming to find
the best image location to perturb, while preserving the labels at this
location and producing a realistic-looking segmentation map. Further-
more, we propose attack detection techniques both at the global image
level and to obtain a pixel-wise localization of the fooled regions. Our
results are unsettling: Because they exploit a larger context, more accu-
rate semantic segmentation networks are more sensitive to indirect local
attacks. We believe that our comprehensive analysis will motivate the
community to design architectures with contextual dependencies that
do not trade off robustness for accuracy.
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1 Introduction

Deep Neural Networks (DNNs) are highly expressive models and achieve state-
of-the-art performance in many computer vision tasks. In particular, the power-
ful backbones originally developed for image recognition have now be recycled
for semantic segmentation, via the development of fully convolutional networks
(FCNs) [29]. The success of these initial FCNs, however, was impeded by their
limited understanding of surrounding context. As such, recent techniques have
focused on exploiting contextual information via dilated convolutions [50], pool-
ing operations [26, 53], or attention mechanisms [54, 12].

Despite this success, recent studies have shown that DNNs are vulnerable to
adversarial attacks. That is, small, dedicated perturbations to the input images
can make a network produce virtually arbitrarily incorrect predictions. While
this has been mostly studied in the context of image recognition [35, 23, 9, 34,
39], a few recent works have nonetheless discussed such adversarial attacks for
semantic segmentation [49, 2, 18]. These methods, however, remain limited to
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(a) Adversarial image (b) Ground Truth (c) FCN [29]

(d) PSPNet [53] (e) PSANet [54] (f) DANet [12]

Fig. 1: Indirect Local Attacks. An adversarial input image (a) is attacked with an
imperceptible noise in local regions, shown as red boxes, to fool the dynamic objects.
Such indirect local attacks barely affect an FCN [29] (c). By contrast, modern networks
that leverage context to achieve higher accuracy on clean (unattacked) images, such
as PSPNet [53] (d), PSANet [54] (e) and DANet [12] (f) are more strongly affected,
even in regions far away from the perturbed area.

global perturbations to the entire image. Here, we argue that local attacks are
more realistic, in that, in practice, they would allow an attacker to modify the
physical environment to fool a network. This, in some sense, was the task ad-
dressed in [11], where stickers were placed on traffic poles so that an image
recognition network would misclassify the corresponding traffic signs. In this
scenario, however, the attack was directly performed on the targeted object.

In this paper, by contrast, we study the impact of indirect local attacks, where
the perturbations are performed on regions outside the targeted objects. This,
for instance, would allow one to place a sticker on a building to fool a self-driving
system such that all nearby dynamic objects, such as cars and pedestrians, be-
come mislabeled as the nearest background class. We choose this setting not only
because it allows the attacker to perturb only a small region in the scene, but
also because it will result in realistic-looking segmentation maps. By contrast,
untargeted attacks would yield unnatural outputs, which can much more easily
be detected by a defense mechanism. However, designing such targeted attacks
that are effective is much more challenging than untargeted ones.

To achieve this, we first investigate the general idea of indirect attacks, where
the perturbations can occur anywhere in the image except on the targeted ob-
jects. We then switch to the more realistic case of localized indirect attacks,
and design a group sparsity-based strategy to confine the perturbed region to
a small area outside of the targeted objects. For our attacks to remain realis-
tic and imperceptible, we perform them without ground-truth information about
the dynamic objects and in a norm-bounded setting. In addition to these indirect
attacks, we evaluate the robustness of state-of-the-art networks to a single uni-
versal fixed-size local perturbation that can be learned from all training images
to attack an unseen image in an untargeted manner.
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The conclusions of our experiments are disturbing: In short, more accurate
semantic segmentation networks are more sensitive to indirect local attacks. This
is illustrated by Figure 1, where perturbing a few patches in static regions has
much larger impact on the dynamic objects for the context-aware PSPNet [53],
PSANet [54] and DANet [12] than for a simple FCN [29]. This, however, has to
be expected, because the use of context, which improves segmentation accuracy,
also increases the network’s receptive field, thus allowing the perturbation to be
propagated to more distant image regions.

Motivated by this unsettling sensitivity of segmentation networks to indirect
local attacks, we then turn our focus to adversarial attack detection. In contrast
to the only two existing works that have tackled attack detection for semantic
segmentation [48, 25], we perform detection not only at the global image level,
but locally at the pixel level. Specifically, we introduce an approach to localizing
the regions whose predictions were affected by the attack, i.e., not the image
regions that were perturbed. In an autonomous driving scenario, this would
allow one to focus more directly on the potential dangers themselves, rather
than on the image regions that caused them.

To summarize, our contributions are as follows. We introduce the idea of in-
direct local adversarial attacks for semantic segmentation networks, which better
reflects potential real-world dangers. We design an adaptive, image-dependent
local attack strategy to find the minimal location to perturb in the static image
region. We show the vulnerability of modern networks to a universal, image-
independent adversarial patch. We study the impact of context on a network’s
sensitivity to our indirect local attacks. We introduce a method to detect indi-
rect local attacks at both image level and pixel level. Our code is available at
https://github.com/krishnakanthnakka/Indirectlocalattacks/.

2 Related Work

Context in Semantic Segmentation Networks. While context has been
shown to improve the results of traditional semantic segmentation methods [17,
21, 22, 13], the early deep fully-convolutonal semantic segmentation networks
[29, 15] only gave each pixel a limited receptive field, thus encoding relatively lo-
cal relationships. Since then, several solutions have been proposed to account
for wider context. For example, UNet [42] uses contracting path to capture
larger context followed by a expanding path to upsample the intermediate low-
resolution representation back to the input resolution. ParseNet [26] relies on
global pooling of the final convolutional features to aggregate context informa-
tion. This idea was extended to using different pooling strides in PSPNet [53], so
as to encode different levels of context. In [50], dilated convolutions were intro-
duced to increase the size of the receptive field. PSANet [54] is designed so that
each local feature vector is connected to all the other ones in the feature map,
thus learning contextual information adaptively. EncNet [52] captures context
via a separate network branch that predicts the presence of the object categories
in the scene without localizing them. DANet [12] uses a dual attention mecha-
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nism to attend to the most important spatial and channel locations in the final
feature map. In particular, the DANet position attention module selectively ag-
gregates the features at all positions using a weighted sum. In practice, all of
these strategies to use larger contextual information have been shown to out-
perform simple FCNs on clean samples. Here, however, we show that this makes
the resulting networks more vulnerable to indirect local adversarial attacks, even
when the perturbed region covers less than 1% of the input image.

Adversarial Attacks on Semantic Segmentation: Adversarial attacks aim
to perturb an input image with an imperceptible noise so as to make a DNN
produce erroneous predictions. So far, the main focus of the adversarial attack lit-
erature has been image classification, for which diverse attack and defense strate-
gies have been proposed [14, 6, 35, 23, 9, 34, 39]. In this context, it was shown that
deep networks can be attacked even when one does not have access to the model
weights [28, 37], that attacks can be transferred across different networks [45],
and that universal perturbations that can be applied to any input image exist [32,
33, 40].

Motivated by the observations made in the context of image classification,
adversarial attacks were extended to semantic segmentation. In [2], the effective-
ness of attack strategies designed for classification was studied for different seg-
mentation networks. In [49], a dense adversary generation attack was proposed,
consisting of projecting the gradient in each iteration with minimal distortion.
In [18], a universal perturbation was learnt using the whole image dataset. Fur-
thermore, [4] demonstrated the existence of perturbations that are robust over
chosen distributions of transformations.

None of these works, however, impose any constraints on the location of the
attack in the input image. As such, the entire image is perturbed, which, while
effective when the attacker has access to the image itself, would not allow one
to physically modify the scene so as to fool, e.g., autonomous vehicles. This,
in essence, was the task first addressed in [5], where a universal targeted patch
was shown to fool a recognition system to a specific target class. Later, patch
attacks were studied in a more realistic setting in [11], where it was shown
that placing a small, well-engineered patch on a traffic sign was able to fool a
classification network into making wrong decisions. While these works focused on
classification, patch attacks have been extended to object detection [44, 27, 43, 30]
and optical flow [41]. Our work differs fundamentally from these methods in the
following ways. First, none of these approaches optimize the location of the patch
perturbation. Second, [27, 5, 43] learn a separate perturbation for every target
class, which, at test time, lets the attacker change the predictions to one class
only. While this is suitable for recognition, it does not apply to our segmentation
setup, where we seek to misclassify the dynamic objects as different background
classes so as to produce a realistic segmentation map. Third, unlike [5, 41, 11], our
perturbations are imperceptible. Finally, while the perturbations in [11, 44, 41]
cover the regions that should be misclassified, and in [27, 43] affect the predictions
in the perturbed region, we aim to design an attack that affects only targeted
locations outside the perturbed region.
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In other words,we study the impact of indirect local attacks, where the per-
turbation is outside the targeted area. This would allow one to modify static
portions of the scene so as to, e.g., make dynamic objects disappear to fool the
self-driving system. Furthermore, we differ from these other patch-based attacks
in that we study local attacks for semantic segmentation to understand the im-
pact of the contextual information exploited by different networks, and introduce
detection strategies at both image- and pixel-level.Similarly to most of the ex-
isting literature [18, 25, 5, 11, 43, 44], we focus on the white-box setting for three
reasons: (1) Developing effective defense mechanisms for semantic segmentation,
which are currently lacking, requires assessing the sensitivity of semantic segmen-
tation networks to the strongest attacks, i.e., white-box ones; (2) Recent model
extraction methods [38, 46, 7] allow an attacker to obtain a close approximation
of the deployed model. 3) While effective in classification [37], black-box attacks
were observed to transfer poorly across semantic segmentation architectures [48],
particularly in the targeted scenario. We nonetheless evaluate black-box attacks
in the supplementary material.

When it comes to detecting attacks to semantic segmentation networks, only
two techniques have been proposed [48, 25]. In [48], detection is achieved by
checking the consistency of predictions obtained from overlapping image patches.
In [25], the attacked label map is passed through a pix2pix generator [19] to re-
synthesize an image, which is then compared with the input image to detect the
attack. In contrast to these works that need either multiple passes through the
network or an auxiliary detector, we detect the attack by analyzing the internal
subspaces of the segmentation network. To this end, inspired by the algorithm
of [24] designed for image classification, we compute the Mahalanobis distance
of the features to pre-trained class conditional distributions. In contrast to [48,
25], which study only global image-level detection, we show that our approach
is applicable at both the image and the pixel level, yielding the first study on
localizing the regions fooled by the attack.

3 Indirect Local Segmentation Attacks

Let us now introduce our diverse strategies to attack a semantic segmenta-
tion network. In semantic segmentation, given a clean image X ∈ RW×H×C ,
where W , H and C are the width, height, and number of channels, respec-
tively, a network is trained to minimize a loss function of the form L(X) =∑W×H
j=1 J(ytruej , f(X)j), where J is typically taken as the cross-entropy between

the true label ytruej and the predicted label f(X)j at spatial location j. In this
context, an adversarial attack is carried out by optimizing for a perturbation
that forces the network to output wrong labels for some (or all) of the pixels.
Below, we denote by F ∈ {0, 1}W×H the fooling mask such that Fj = 1 if the
j-th pixel location is targeted by the attacker to be misclassified and Fj = 0
is the predicted label should be preserved. We first present our different local
attack strategies, and finally introduce our attack detection technique.
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3.1 Indirect Local Attacks

To study the sensitivity of segmentation networks, we propose to perform local
perturbations, confined to predefined regions such as class-specific regions or
patches, and to fool other regions than those perturbed. For example, in the
context of automated driving, we may aim to perturb only the regions belonging
to the road to fool the car regions in the output label map. This would allow
one to modify the physical, static scene while targeting dynamic objects.

Formally, given a clean image X ∈ RW×H×C , we aim to find an additive
perturbation δ ∈ RW×H×C within a perturbation mask M that yields erroneous
labels within the fooling mask F. To achieve this, we define the perturbation
mask M ∈ {0, 1}W×H such that Mj = 1 if the j-th pixel location can be

perturbed and Mj = 0 otherwise. Let ypredj be the label obtained from the clean
image at pixel j. An untargeted attack can then be expressed as the solution to
the optimization problem

δ∗ = arg min
δ

∑
j|Fj=1

−J(ypredj , f(X + M� δ)j) +
∑

j|Fj=0

J(ypredj , f(X + M� δ)j) (1)

which aims to minimize the probability of ypredj in the targeted regions while
maximizing it in the rest of the image. By contrast, for a targeted attack whose
goal is to misclassify any pixel j in the fooling region to a pre-defined label ytj ,
we write the optimization problem

δ∗ = arg min
δ

∑
j|Fj=1

J(ytj , f(X + M� δ)j) +
∑
i|Fj=0

J(ypredj , f(X + M� δ)j) . (2)

We solve (1) and (2) via the iterative projected gradient descent algorithm [3]
with an `p-norm perturbation budget ‖M� δ‖p < ε, where p ∈ {2,∞}.

Note that the formulations above allow one to achieve any local attack. To
perform indirect local attacks, we simply define the masks M and F so that they
do not intersect, i.e., M� F = 0, where � is the element-wise product.

3.2 Adaptive Indirect Local Attacks

The attacks described in Section 3.1 assume the availability of a fixed, prede-
fined perturbation mask M. In practice, however, one might want to find the
best location for an attack, as well as make the attack as local as possible. In
this section, we introduce an approach to achieving this by enforcing structured
sparsity on the perturbation mask.

To this end, we first re-write the previous attack scheme under an `2 budget
as an optimization problem. Let Jt(X,M,F, δ, f,ypred,yt) denote the objective
function of either (1) or (2), where yt can be ignored in the untargeted case.
Following [6], we write an adversarial attack under an `2 budget as the solution
to the optimization problem

δ∗ = arg min
δ

λ1‖δ‖22 + Jt(X,M,F, δ, f,ypred,yt) , (3)
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where λ1 balances the influence of the term aiming to minimize the magnitude of
the perturbation. While solving this problem, we further constrain the resulting
adversarial image X+ M� δ to lie in the valid pixel range [0,1].

To identify the best location for an attack together with confining the per-
turbations to as small an area as possible, we divide the initial perturbation
mask M into T non-overlapping patches. This can be achieved by defining T
masks {Mt ∈ RW×H} such that, for any s, t, with s 6= t, Ms �Mt = 0, and∑T
t=1 Mt = M. Our goal then becomes that of finding a perturbation that is

non-zero in the smallest number of such masks. This can be achieved by modi-
fying (3) as

δ∗ = arg min
δ

λ2

T∑
t=1

‖Mt � δ‖2 + λ1‖δ‖22 + Jt(X,M,F, δ, f,ypred,yt) , (4)

whose first term encodes an `2,1 group sparsity regularizer encouraging com-
plete groups to go to zero. Such a regularizer has been commonly used in the
sparse coding literature [51, 36], and more recently in the context of deep net-
works for compression purposes [47, 1]. In our context, this regularizer encourages
as many as possible of the {Mt� δ} to go to zero, and thus confines the pertur-
bation to a small number of regions that most effectively fool the targeted area
F. λ2 balances the influence of this term with the other ones.

3.3 Universal Local Attacks

The strategies discussed in Sections 3.1 and 3.2 are image-specific. However, [5]
showed the existence of a universal perturbation patch that can fool an image
classification system to output any target class. In this section, instead of finding
optimal locations for a specific image, we aim to learn a single fixed-size local
perturbation that can fool any unseen image in an untargeted manner. This
will allow us to understand the contextual dependencies of a fixed size universal
patch on the output of modern networks. Unlike in the above-mentioned adaptive
local attacks, but as in [5, 41, 28, 43], such a universal patch attack will require a
larger perturbation norm. Note also that, because it is image-independent, the
resulting attack will typically not be indirect. While [5] uses a different patch for
different target classes, we aim to learn a single universal local perturbation that
can fool all classes in the image. This will help to understand the propagation of
the attack in modern networks using different long-range contextual connections.
As will be shown in our experiments in Section 4.3, such modern networks are
the most vulnerable to universal attacks, while their effect on FCNs is limited to
the perturbed region. To find a universal perturbation effective across all images,
we write the optimization problem

δ∗ = arg min
δ

1

N

N∑
i=1

Ju(Xi,M,Fi, δ, f,ypredi ) , (5)

where Ju(·) is the objective function for a single image, as in the optimization
problem (1), N is the number of training images, Xi is the i-th image with
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fooling mask Fi, and the mask M is the global perturbation mask used for all
images. In principle, M can be obtained by sampling patches over all possible
image locations. However, we observed such a strategy to be unstable during
learning. Hence, in our experiments, we confine ourselves to one or a few fixed
patch positions. Note that, to give the attacker more flexibility, we take the
universal attack defined in (5) to be an untargeted attack.

3.4 Adversarial Attack Detection

To understand the strength of the attacks discussed above, we introduce a de-
tection method that can act either at the global image level or at the pixel level.
The latter is particularly interesting in the case of indirect attacks, where the
perturbation regions and the fooled regions are different. In this case, our goal
is to localize the pixels that were fooled, which is more challenging than finding
those that were perturbed, since their intensity values were not altered. To this
end, we use a score based on the Mahalanobis distance defined on the inter-
mediate feature representations. This is because, as discussed in [24, 31] in the
context of image classification, the attacked samples can be better characterized
in the representation space than in the output label space. Specifically, we use a
set of training images to compute class-conditional Gaussian distributions, with
class-specific means µ`c and covariance Σ` shared across all C classes, from the
features extracted at every intermediate layer ` of the network within locations
corresponding to class label c. We then define a confidence score for each spa-
tial location j in layer ` as C(X`

j) = max
c∈[1,C]

−
(
X`
j − µ`c

)>
Σ`
−1
(
X`
j − µ`c

)
, where

X`
j denotes the feature vector at location j in layer `. We handle the different

spatial feature map sizes in different layers by resizing all of them to a fixed spa-
tial resolution. We then concatenate the confidence scores in all layers at every
spatial location and use the resulting L-dimensional vectors, with L being the
number of layers, as input to a logistic regression classifier with weights {α`}.
We then train this classifier to predict whether a pixel was fooled or not. At
test time, we compute the prediction for an image location j as

∑
` α`C(X`

j). To
perform detection at the global image level, we sum over the confidence scores
of all spatial positions. That is, for layer `, we compute an image-level score as
C(X`) =

∑
j C(X`

j). We then train another logistic regression classifier using
these global confidence scores as input.

4 Experiments

Datasets. In our experiments, we use the Cityscapes [8] and Pascal VOC [10]
datasets, the two most popular semantic segmentation benchmarks. Specifically,
for Cityscapes, we use the complete validation set, consisting of 500 images, for
untargeted attacks, but use a subset of 150 images containing dynamic object
instances of vehicle classes whose combined area covers at least 8% of the image
for targeted attacks. This lets us focus on fooling sufficiently large regions, be-
cause reporting results on too small one may not be representative of the true
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behavior of our algorithms. For Pascal VOC, we use 250 randomly selected im-
ages from the validation set because of the limited resources we have access to
relative to the number of experiments we performed.
Models. We use publicly-available state-of-the-art models, namely FCN [29],
DRNet [50], PSPNet [53], PSANet [54], DANet [12] on Cityscapes, and FCN [29]
and PSANet [54] on PASCAL VOC. FCN, PSANet, PSPNet and DANet share
the same ResNet [16] backbone network. We perform all experiments at the
image resolution of 512× 1024 for Cityscapes and 512× 512 for PASCAL VOC.
Adversarial attacks. We use the iterative projected gradient descent (PGD)
method with `∞ and `2 norm budgets, as described in Section 3. Following [2],
we set the number of iterations for PGD to a maximum of 100, with an early
termination criterion of 90% of attack success rate on the targeted objects. We
evaluate `∞ attacks with a step size α ∈ {1e-5, 1e-4, 1e-3, 5e-3}. For `2 attacks,
we set α ∈ {8e-3, 4e-2, 8e-2}. We set the maximum `p-norm of the perturbation ε
to 100 ·α for `∞ attacks, and to 100 for `2 attacks. For universal attacks, we use
a higher `∞ ε bound of 0.3, with a step size α = 0.001. We perform two types of
attacks; targeted and untargeted. The untargeted attacks focus on fooling the
network to move away from the predicted label. For the targeted attacks, we
chose a safety-sensitive goal, and thus aim to fool the dynamic object regions
to be misclassified as their (spatially) nearest background label. We do not use
ground-truth information in any of the experiments but perform attacks based
on the predicted labels only.
Evaluation metric. Following [18, 2, 49], we report the mean Intersection over
Union (mIoU) and Attack Success Rate (ASR) computed over the entire dataset.
The mIoU of FCN [29], DRNet [50], PSPNet [53], PSANet [54], and DANet [12]
on clean samples at full resolution are 0.66, 0.64, 0.73, 0.72, and 0.67, respectively.
For targeted attacks, we report the average ASRt, computed as the percentage of
pixels that were predicted as the target label. We additionally report the mIoUu,
which is computed between the adversarial and normal sample predictions. For
untargeted attacks, we report the ASRu, computed as the percentage of pixels
that were assigned to a different class than their normal label prediction. Since,
in most of our experiments, the fooling region is confined to local objects, we
compute the metrics only within the fooling mask. We observed that the non-
targeted regions retain their prediction label more than 98% of the time, and
hence we report the metrics at non-targeted regions in the supplementary ma-
terial. To evaluate detection, we report the Area under the Receiver Operating
Characteristics (AUROC), both at image level, as in [48, 25], and at pixel level.

4.1 Indirect Local Attacks

Let us study the sensitivity of the networks to indirect local attacks. In this
setting, we first perform a targeted attack, formalized in (2), to fool the dynamic
object areas by allowing the attacker to perturb any region belonging to the static
object classes. This is achieved by setting the perturbation mask M to 1 at all
the static class pixels and the fooling mask F to 1 at all the dynamic class pixels.
We report the mIoUu and ASRt metrics in Tables 1a and 1b on Cityscapes for `∞
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Network α = 0.00001 α = 0.0001 α = 0.001 α = 0.005

FCN [29] 0.64 / 5.0% 0.28 / 29% 0.13 / 55% 0.11 / 61%
PSPNet [53] 0.70 / 12% 0.05 / 85% 0.00 / 89% 0.00 / 90%
PSANet [54] 0.59 / 14% 0.03 / 85% 0.01 / 90% 0.00 / 90%
DANet [12] 0.80 / 5.0% 0.11 / 79% 0.01 / 90% 0.00 / 90%
DRN [50] 0.64 / 6.0% 0.15 / 56% 0.03 / 84% 0.02 / 86%

(a) `∞ attack

Network α = 0.008 α = 0.04 α = 0.08

FCN [29] 0.60 / 10% 0.56 / 26% 0.27 / 36%
PSPNet [53] 0.67 / 19% 0.23 / 67% 0.06 / 84%
PSANet [54] 0.59 / 14% 0.21 / 63% 0.06 / 82%
DANet [12] 0.79 / 11% 0.43 / 49% 0.13 / 79%
DRN [50] 0.63 / 10% 0.24 / 47% 0.13 / 64%

(b) `2 attack

Table 1: Indirect attacks on Cityscapes to fool dynamic classes while perturb-
ing static ones. The numbers indicate mIoUu/ASRt, obtained using different step
sizes α for `∞ and `2 attacks. The most robust network in each case is underlined
and the most vulnerable models are highlighted in bold.

Network d = 0 d = 50 d = 100 d = 150

FCN [29] 0.11 / 64% 0.77 / 2.0% 0.98 / 0% 1.00 / 0.0%
PSPNet [53] 0.00 / 90% 0.14 / 73% 0.24 / 60% 0.55 / 23%
PSANet [54] 0.00 / 90% 0.11 / 71% 0.13 / 65% 0.29 / 47%
DANet [12] 0.00 / 90% 0.13 / 81% 0.48 / 43% 0.80 / 10%
DRN [50] 0.02 / 86% 0.38 / 22% 0.73 / 3% 0.94 / 1.0%

(a) `∞ attack

Network d = 0 d = 50 d = 100 d = 150

FCN [29] 0.27 / 36% 0.79 / 2.0% 0.98 / 2.0% 0.99 / 1.0%
PSPNet [53] 0.06 / 84% 0.18 / 73% 0.55 / 23% 0.99 / 0.0%
PSANet [54] 0.06 / 82% 0.10 / 75% 0.14 / 66 % 0.31 / 44%
DANet [12] 0.13 / 79% 0.27 / 71% 0.67 / 26% 0.85 / 7.0%
DRN [50] 0.13 / 64% 0.44 / 17% 0.76 / 3.0% 0.95 / 0.0%

(b) `2 attack

Table 2: Impact of local attacks by perturbing pixels that are at least d pixels
away from any dynamic class. We report mIoUu/ASRt for different values of d.

and `2 attacks, respectively. As evidenced by the tables, FCN is more robust to
such indirect attacks than the networks that leverage contextual information. In
particular, PSANet, which uses long range contextual dependencies, and PSPNet
are highly sensitive to these attacks.

To further understand the impact of indirect local attacks, we constrain the
perturbation region to a subset of the static class regions. To do this in a sys-
tematic manner, we perturb the static class regions that are at least d pixels
away from any dynamic object, and vary the value d. The results of this ex-
periment using `2 and `∞ attacks are provided in Table 2. Here, we chose a
step size α = 0.005 for `∞ and α = 0.08 for `2. Similar conclusions to those in
the previous non-local scenario can be drawn: Modern networks that use larger
receptive fields are extremely vulnerable to such perturbations, even when they
are far away from the targeted regions. By contrast, FCN is again more robust.
For example, as shown in Figure 2, while an adversarial attack occurring 100
pixels away from the nearest dynamic object has a high success rate on the
context-aware networks, the FCN predictions remain accurate.

4.2 Adaptive Indirect Local Attacks

We now study the impact of our approach to adaptively finding the most sensitive
context region to fool the dynamic objects. To this end, we use the group sparsity
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(a) Adversarial (b) Perturbation (c) FCN [29] (d) PSPNet [53] (e) PSANet [54] (f) DANet [12]

Fig. 2: Indirect Local attack on different networks with perturbations at least d =
100 pixels away from any dynamic class.

Network S = 75% S = 85% S = 90% S = 95%

FCN [29] 0.52 / 12% 0.66 / 6% 0.73 / 4% 0.84 / 1.0%
PSPNet [53] 0.19 / 70% 0.31 / 54% 0.41 / 42% 0.53 / 21%
PSANet [54] 0.10 / 78% 0.16 / 71% 0.20 / 64% 0.35 / 44%
DANet [12] 0.30 / 64% 0.52 / 43% 0.64 / 30% 0.71 / 21%
DRN [50] 0.42 / 23% 0.55 / 13% 0.63 / 9% 0.77 / 4.5%

(a) Cityscapes

Network S = 75% S = 85% S = 90% S = 95%

FCN [29] 0.50 / 32% 0.59 / 27% 0.66 / 22% 0.80 / 12%
PSANet [54] 0.28 / 68% 0.21 / 77% 0.20 / 80% 0.30 / 69%

(b) PASCAL VOC

Table 3: Adaptive indirect local attacks on Cityscapes and PASCAL VOC. We
report mIoUu/ASRt for different sparsity levels S.

based optimization given in (4) and find the minimal perturbation region to fool
all dynamic objects to their nearest static label. Specifically, we achieve this in
two steps. First, we divide the perturbation mask M corresponding to all static
class pixels into uniform patches of size h×w, and find the most sensitive ones by
solving (4) with a relatively large group sparsity weight λ2 = 100 for Cityscapes
and λ2 = 10 for PASCAL VOC. Second, we limit the perturbation region by
selecting the n patches that have the largest values ‖Mt � δ‖2, choosing n so
as to achieve a given sparsity level S ∈ {75%, 85%, 90%, 95%}. Specifically, S
is computed as the percentage of pixels that are not perturbed relative to the
initial perturbation mask. We then re-optimize (4) with λ2 = 0. In both steps,
we set λ1 = 0.01 and use the Adam optimizer [20] with a learning rate of 0.01.
For Cityscapes, we use patch dimensions h = 60, w = 120, and, for PASCAL
VOC, h = 60, w = 60. We clip the perturbation values below 0.005 to 0 at
each iteration. This results in very local perturbation regions, active only in the
most sensitive areas, as shown for PSANet in Figure 3 on Cityscapes and in
Figure 4 for PASCAL VOC. As shown in Table 3, all context-aware networks
are significantly affected by such perturbations, even when they are confined to
small background regions. For instance, on Cityscapes, at a high sparsity level of
95%, PSANet yields an ASRt of 44% compared to 1% for FCN. This means that,
in the physical world, an attacker could add a small sticker at a static position
to essentially make dynamic objects disappear from the network’s view.

4.3 Universal Local Attacks

In this section, instead of considering image-dependent perturbations, we study
the existence of universal local perturbations and their impact on semantic seg-
mentation networks. In this setting, we perform untargeted local attacks by
placing a fixed-size patch at a predetermined position. While the patch location
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(a) Adversarial image (b) Perturbation (c) Normal Seg. (d) Adversarial Seg.

Fig. 3: Adaptive indirect local attacks on Cityscapes with PSANet [54]. An
adversarial input image (a) when attacked at positions shown as red boxes with a
perturbation (b) is misclassified within the dynamic object areas of the normal seg-
mentation map (c) to result in (d).

(a) Adversarial image (b Perturbation (c) Normal seg. (d) Adversarial seg. (h) Adversarial seg.(g) Normal seg.(f) Perturbation(e) Adversarial image

Fig. 4: Adaptive indirect local attacks on PASCAL VOC with PSANet [54].
An adversarial input image (a),(e) when attacked at positions shown as red boxes
with a perturbation (b),(f) is misclassified within the foreground object areas of the
normal segmentation map (c), (g) to result in (d), (h), respectively.

can in principle be sampled at any location, we found learning its position to
be unstable to due to the large number of possible patch locations in the entire
dataset. Hence, here, we consider the scenario where the patch is located at the
center of the image. We then learn a local perturbation that can fool the entire
dataset of images for a given network by optimizing the objective given in (5).
Specifically, the perturbation mask M is active only at the patch location and
the fooling mask F at all image positions, i.e., at both static and dynamic classes.
For Cityscapes, we learn the universal local perturbation using 100 images and
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(a) Adversarial image (b) Ground truth (c) FCN [29] (d) PSANet [54] (e) PSPNet [53]

Fig. 5: Universal local attacks on Cityscapes and PASCAL VOC. In both datasets,
the degradation in FCN [29] is limited to the attacked area, whereas for context-aware
networks, such as PSPNet [53], PSANet [54], DANet [12], it extends to far away regions.

Network 51× 102(1.0%) 76× 157(2.3%) 102× 204(4.0%) 153× 306(9.0%)

FCN [29] 0.85 / 2.0% 0.78 / 4.0% 0.73 / 9.0% 0.58 / 18%
PSPNet [53] 0.79 / 3.0% 0.63 / 11% 0.44 / 27% 0.08 / 83%
PSANet [54] 0.41 / 37% 0.22 / 60% 0.14 / 70% 0.10 / 90%
DANet [12] 0.79 / 4.0% 0.71 / 10% 0.65 / 15% 0.40 / 42%
DRN [50] 0.82 / 3.0% 0.78 / 8.0% 0.71 / 14% 0.55 / 28%

(a) Cityscapes

Network 51× 51(1.0%) 76× 76(2.3%) 102× 102(4.0%) 153× 153(9.0%)

FCN [29] 0.70 / 6% 0.70 / 7% 0.63 / 10% 0.52 / 20%
PSANet [54] 0.83 / 4% 0.76 / 8 % 0.56 / 28% 0.35/ 56%

(b) PASCAL VOC

Table 4: Universal local attacks. We show the impact of the patch size h×w (area%)

on different networks and report mIoUu/ASRu.

use the remaining 400 images for evaluation purposes. For PASCAL VOC, we
perform training on 100 images and evaluate on the remaining 150 images. We
use `∞ optimization with α = 0.001 for 200 epochs on the training set. We report
the results of such universal patch attacks in Tables 4a and 4b on Cityscapes
and PASCAL VOC for different patch sizes. As shown in the table, PSANet
and PSPNet are vulnerable to such universal attacks, even when only 2.3% of
the image area is perturbed. From Figure 5, we can see that the fooling region
propagates to a large area far away from the perturbed one. While these exper-
iments study untargeted universal local attacks, we report additional results on
single-class targeted universal local attacks in the supplementary material.

4.4 Attack Detection

We now turn to studying the effectiveness of the attack detection strategies
described in Section 3.4. We also compare our approach to the only two de-
tection techniques that have been proposed for semantic segmentation [48, 25].
The method in [48] uses the spatial consistency of the predictions obtained from
K = 50 random overlapping patches of size 256× 256. The one in [25] compares
an image re-synthesized from the predicted labels with the input image. Both
methods were designed to handle attacks that fool the entire label map, unlike
our work where we aim to fool local regions. Furthermore, both methods perform
detection at the image level, and thus, in contrast to ours, do not localize the
fooled regions at the pixel level.
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Networks
Perturbation Fooling `∞ / `2 Mis. Global AUROC Local AUROC

region region norm pixels % SC [48] / Re-Syn [25] / Ours Ours

FCN [29]

Global Full 0.10 / 17.60 90% 1.00 / 1.00 / 0.94 0.90
UP Full 0.30 / 37.60 4% 0.71 / 0.63 / 1.00 0.94
FS Dyn 0.07 / 2.58 13% 0.57 / 0.71 / 1.00 0.87
AP Dyn 0.14 / 3.11 1.7% 0.51 / 0.65 / 0.87 0.89

PSPNet [53]

Global Full 0.06 / 10.74 83% 0.90 / 1.00 / 0.99 0.85
UP Full 0.30 / 38.43 11% 0.66 / 0.70 / 1.00 0.96
FS Dyn 0.03 / 1.78 14% 0.57 / 0.75 / 0.90 0.87
AP Dyn 0.11 / 5.25 11% 0.57 / 0.75 / 0.90 0.82

PSANet [54]

Global Full 0.05 / 8.26 92% 0.90 / 1.00 / 1.00 0.67
UP Full 0.30 / 38.6 60% 0.65 / 1.00 / 1.00 0.98
FS Dyn 0.02 / 1.14 12% 0.61 / 0.76 / 1.00 0.92
AP Dyn 0.10 / 5.10 10% 0.50 / 0.82 / 1.00 0.94

DANet [12]

Global Full 0.06 / 12.55 82% 0.89 / 1.00 / 1.00 0.68
UP Full 0.30 / 37.20 10% 0.67 / 0.63 / 0.92 0.89
FS Dyn 0.05 / 1.94 13% 0.57 / 0.69 / 0.94 0.88
AP Dyn 0.14 / 6.12 43% 0.59 / 0.68 / 0.98 0.82

Table 5: Attack detection on Cityscapes with different perturbation settings.

We study detection in four perturbation settings: Global image perturbations
(Global) to fool the entire image; Universal patch perturbations (UP) at a fixed
location to fool the entire image; Full static (FS) class perturbations to fool the
dynamic classes; Adaptive patch (AP) perturbations in the static class regions
to fool the dynamic objects. As shown in Table 5, while the state-of-the-art
methods [48, 25] have high Global AUROC in the first setting where the entire
image is targeted, our detection strategy outperforms them by a large margin
in the other scenarios. We believe this to be due to the fact that, with local
attacks, the statistics obtained by studying the consistency across local patches,
as in [48], are much closer to the clean image statistics. Similarly, the image re-
synthesized by a pix2pix generator, as used in [25], will look much more similar
to the input one in the presence of local attacks instead of global ones. For all the
perturbation settings, we also report the mean percentage of pixels misclassified
relative to the number of pixels in the image.

5 Conclusion

In this paper, we have studied the impact of indirect local image perturbations on
the performance of modern semantic segmentation networks. We have observed
that the state-of-the-art segmentation networks, such as PSANet and PSPNet,
are more vulnerable to local perturbations because their use of context, which
improves their accuracy on clean images, enables the perturbations to be prop-
agated to distant image regions. As such, they can be attacked by perturbations
that cover as little as 2.3% of the image area. We have then proposed a Ma-
halanobis distance-based detection strategy, which has proven effective for both
image-level and pixel-level attack detection. Nevertheless, the performance at
localizing the fooled regions in a pixel-wise manner can still be improved, which
will be our goal in the future.
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