
Supplementary Material

SRFlow: Learning the Super-Resolution Space
with Normalizing Flow

Andreas Lugmayr, Martin Danelljan, Luc Van Gool, and Radu Timofte

Computer Vision Laboratory, ETH Zurich
{andreas.lugmayr,martin.danelljan,vangool,radu.timofte}@vision.ee.ethz.ch

1 Architecture Details

In this section, we give additional details about our SRFlow architecture. The
construction of a flow-based architecture requires the flow layers to be invertible
and have a tractable Jacobian log-determinant. Since super-resolution of diverse
images has to be able to cope with different input sizes, we also ensure that our
architecture is fully convolutional. We can therefore train our network on smaller
patches, and directly apply it to the full image during testing. The computational
time of our approach is 1.13 seconds for super-resolving one 256× 256 input LR
image with a scale factor of 4× on an Nvidia V100 GPU.

1.1 Low-resolution Image Encoding

Our SRFlow network is conditioned on the encoding of the low-resolution image
u = gθ(x). To this end, we employ the RRDB-based architecture, described
in the paper. It employs several RRDB-blocks with a channel dimension of 64,
operating in the resolution of the input LR image. The final conditioning output
u = gθ(x) is achieved by concatenating the activations from 5 equally spaced
RRDB blocks, resulting in a dimensionality of 320.

1.2 The Affine Injector Layer

Our affine injector layer provide a direct means of conditioning all dimensions
of the flow feature-map hn on the LR encoding as,

hn+1 = exp
(
fnθ,s(u)

)
· hn + fθ,b(u) . (1)

The scale and bias are extracted using non-invertible networks fθ,s(u) and
fθ,b(u) respectively. The input u is first bilinearly resized to the resolution of
the corresponding flow-level. A conv-ReLU block first reduces the dimensional-
ity to 64. Another conv-ReLU block is then applied with 64-dimensional output.
The output of fθ,s(u) and fθ,b(u) are then achieved by two separate conv-layers
applied to the same 64-dimensional input. For these layers, we employ the zero-
initialization strategy proposed in [4]. All convolutions have a 3× 3 kernel.
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1.3 Conditional Affine Coupling

This building block allows applying complex unconstrained conditional learned
functions that act on the normalizing flow, without harming its invertibility.
This is made possible by bypassing half of the activations and applying an affine
transformation to the other half [2]. This transformation depends on the by-
passed half hn

A and conditional features u as,{
hn+1
A = hn

A

hn+1
B = exp

(
fnθ,s(h

n
A; u)

)
· hn

B + fnθ,b(hn
A; u)

. (2)

This expression can be easily inverted [2]. The network architectures of fθ,s
and fθ,b are similar to those of the Affine Injector, described above. The only
difference is that the two inputs hn

A and u are initially concatenated after u is
resized to the resolution of hn

A.

1.4 Squeeze Operation

This layer reshapes the activation map to half the width and height. In order to
preserve the locality, neighboring pixels are stacked as seen in Figure 1.

1.5 Activation Norm

The Activation Norm (Actnorm) is a normalization layer. Unlike Batchnorm,
it does not require synchronization among the elements of a batch. It simply
consists of a learned scaling and bias factor for each dimension of the feature
map. Thus it helps distributed learning on multiple GPUs.

2 Training Details

In this section, we give additional details about the training procedure for our
SRFlow. We employ the Adam optimizer with a starting learning rate of 5 ·10−4.
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Fig. 1. Visualization of the Squeeze Operation.
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τ = 0 τ = 0.3 τ = 0.6 τ = 0.9 Ground-Truth

Fig. 2. Super-resolved images sampled with different temperatures τ .

This learning rate is halved at 50%, 75%, 90% and 95% of the total number of
training iterations. During the first 50% of the training iterations, the pre-trained
weights of the LR encoder gθ are frozen in a warm-up phase. In the latter 50%,
all parameters of the SRFlow network, including gθ, are optimized jointly with
the same learning rate.

As has been observed in e.g. [4], adding slight random noise to the target
image helps the training process and leads to better visual results. We therefore
add Gaussian noise with a standard deviation of σ = 4√

3
to the high-resolution

image. In contrast to [4], we do not employ 5-bit quantization.

3 Detailed Quantitative Analysis

In this section, we provide additional quantitative analysis of our approach.

3.1 Influence of the Sampling Temperature

Here, we analyze the impact of the sampling temperature τ used during inference.
It controls the variance of the Gaussian latent variable used when sampling SR
images as y = f−1θ (z; x), z ∼ N (0, τ). As described in Section 4.1 of the main
paper, a slightly reduced temperature τ < 1, increases the image quality. When
further decreasing the temperature to τ = 0, the sampling process becomes
deterministic. We analyze the effect of the sampling temperature τ on the main
performance metrics, and on the sampling diversity itself. Results are shown in
Figures 3, 4 and 5. A temperature τ = 0 generates predictions with high fidelity,
in terms of PSNR and SSIM. However, the results are blurry, as seen in Figure 2,
explaining the poor perceptual quality (LPIPS) for this setting. Increasing the
temperature leads to a drastic improvements in perceptual quality in terms of
LPIPS distance. This is also clearly seen in the visual results in Figure 2. We
also plot how the sampling diversity improves with increased temperature τ in
terms of pixel-wise variance.
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Fig. 3. Analysis of the sampling temperature τ in terms of PSNR, SSIM, LPIPS and
sample diversity on CelebA (8×). Results of RRDB [7] and ESRGAN [7] are provided
for reference.
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Fig. 4. Analysis of the sampling temperature τ in terms of PSNR, SSIM, LPIPS and
sample diversity on DIV2K (4×). Results of RRDB [7] and ESRGAN [7] are provided
for reference.
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Fig. 5. Analysis of the sampling temperature τ in terms of PSNR, SSIM, LPIPS and
sample diversity on DIV2K (8×). RRDB [7] and ESRGAN [7] are used as reference.

3.2 Perception–Distortion analysis

Here, we analyze the perception–distortion trade-off provided by our SRFlow.
This trade off is an important choice decision for super-resolution methods [5,1].
While most techniques do not allow to influence the super-resolution process
during inference, SRFlow provides an effective means of controlling this trade-
off using the sampling temperature τ . We analyze this by plotting the perceptual
quality (LPIPS) vs. the distortion (PSNR) with respect to the ground-truth in
Figure 6. We plot the results for different τ for SRFlow. Our approach provides
different alternative trade-offs. It achieves similar PSNR compared to the L1-
loss trained RRDB [7] for τ = 0. On the other hand, SRFlow provides similar or
better perceptual quality compared to ESRGAN [7] for τ ≥ 0.8, while achieving
superior fidelity (PSNR).

3.3 Impact of LR-Encoder Initialization

To efficiently compare different variants of SRFlow, we reduced training time by
pretraining the LR-Encoder gθ. As shown in Table 1, the perceptual quality is
comparable, while the fidelity is slightly higher, compared to using a randomly
initalized LR-Encoder. The default SRFlow network was trained for 200k steps
and uses a pretrained LR-Encoder, which was trained for 200k steps. The model
without pretraining was trained for 300k iterations to make up for the missing
pretraining. Since the main bottleneck during training is the calculation of the
log determinant, this reduces training time.
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Fig. 6. Analysis of the trade-off between perceptual quality and fidelity (distortion).
SRFlow allows the trade-off to be controlled by varying the sampling temperature τ .
In comparison, RRDB [7] and ESRGAN [7] provide only a single operating point each.

Table 1. Quantitative comparison on CelebA between training the SRFlow model with
and without first pretraining the LR-Encoder gθ.

PSNR SSIM LPIPS

Pretrained LR-Encoder 25.24 0.71 0.110
Without pretrained LR-Encoder 25.06 0.70 0.108
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#Samples n 1 10 100 1000 10000 GT
LPIPS 0.108 0.105 0.099 0.098 0.093 0

Fig. 7. Best of n super-resolved (8×) images in terms of the LPIPS metric.
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Fig. 8. Analysis of the improvement in performance metrics when choosing the best
out of n samples. The performance of ESRGAN [7] is included for reference.

3.4 Oracle Analysis of the Sampling Space

As opposed to other state-of-the-art super-resolution approaches, SRFlow can be
used to sample many variants of plausible super-resolutions. To further demon-
strate the potential of this property, we analyze the performance of our SRFlow
when selecting the best result among n random samples. Results, using a sam-
pling temperature of τ = 0.8, are shown in Figure 8. The results are computed
over the full CelebA test set of 5000 images. The best result w.r.t. the ground-
truth in each plot is selected based on the corresponding performance metric for
n = 1, . . . , 10 samples. This results shows that the perceptual quality in partic-
ular benefits from the oracle selection. This might be explained by our tempera-
ture setting, which forces the model to prefer perceptual quality over fidelity. It
demonstrates that SRFlow provides a rich and diverse space of super-resolved
images, from which solutions can be sampled. It provides the opportunity for
improving the predictions of SRFlow by rejecting lower quality samples. A visual
example is shown in Figure 7, when selecting the best out of n samples using
the LPIPS distance.
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Table 2. SRFlow results for image denoising on CelebA and DIV2K. Measurements
for original images with Gaussian noise σ = 20, images that were super-resolved after
downsampling, and restored images that use our latent space normalization approach,
which also exploits the original HR image. We use the SRFlow model trained for 8×
on CelebA and 4× on DIV2k

Original Super-Resloved Restored

D
IV

2
K PSNR↑ 22.48 23.19 27.81

SSIM↑ 0.49 0.51 0.73
LPIPS↓ 0.370 0.364 0.255

C
el

eb
A PSNR↑ 22.52 24.25 27.62

SSIM↑ 0.48 0.63 0.78
LPIPS↓ 0.326 0.172 0.143

Original (Noise
σ = 20)

Direct SR Restored
Original (Noise
σ = 12 + JPEG)

Direct SR Restored

Fig. 9. Image restoration examples on CelebA images with different degradations. Di-
rectly super-resolving (8×) the LR of the original removes noise but does not preserve
details. Our SRFlow restoration also directly employs the original image by performing
latent space normalization.

3.5 Image Restoration

We provide additional quantitative and qualitative results for image restoration,
described in Section 4.5. Table 2 shows quantitative results for the task of image
denoising when using white Gaussian noise with standard deviation σ = 20. We
report performance metrics w.r.t. the clean ground-truth for the original noisy
image, when just super-resolving the down-sampled image, and when using our
restoration approach based on latent space normalization, as described in Sec-
tion 4.5. Despite only being trained for the task of super-resolving clean images,
our approach provides promising results for image denoising. This demonstrates
the strong image posterior learned by our SRFlow. We show visual examples on
CelebA and DIV2K in Figure 9 and Figure 10 respectively.
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Original Direct SR Restored

Fig. 10. Image denoising examples on DIV2k images. Directly super-resolving (4×) the
LR of the original removes noise but does not preserve details. Our SRFlow restoration
also directly employs the original image by performing latent space normalization.

4 Visual Results

In this section, we provide additional visual results.

4.1 State-of-the-Art for Face Super-Resolution

Additional examples that compare SRFlow with state-of-the-art for face super-
resolution on CelebA are shown in Figure 11. For fair comparison, we also show
SRFlow results when trained and applied on the same bilinear downsampling
kernel as ProgFSR [3]. Our approach provides superior perceptual quality and
better fidelity compared to the GAN-based methods.
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LR
RRDB [7] ESRGAN [7] SRFlow ProgFSR [3] SRFlow Ground-Truth

Fig. 11. Comparison of our SRFlow with state-of-the-art for 8× face super-resolution
on CelebA. The three columns with super-resolutions on the left are trained and applied
on bicubic downsampled images. The next two colums employ the bilinear kernel [3].
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Low Resolution Bicubic EDSR [6] RRDB [7] ESRGAN [7] RankSRGAN [8] SRFlow τ = 0.9 Ground Truth

Fig. 12. Comparison to state-of-the-art for general super-resolution on the DIV2k 4×
validation set.

4.2 State-of-the-Art General Super-Resolution

We provide more visual examples for the experiments on DIV2K, comparing SR-
Flow with with state-of-the-art super-resolution methods. In Figure 12 illustrates
results for 4×. In addition, we provide results for DIV2K 8× in Figure 13. SR-
Flow achieves perceptual quality similar or better than ESRGAN in most cases.
Moreover, our approach do not suffer from the hallucination artifacts typically
seen in GAN-based methods.

4.3 Stochastic Face Super-Resolution

Here we provide additional examples to show the variety when sampling SR
images with our default temperature τ = 0.8 for CelebA. As seen for 8× super-
resolution sampling in Figure 14, the low resolution image still contains sig-
nificant information about facial characteristics. This bounds the diversity of
super-resolution in order to be consistent. On the other hand in Figure 15 we
show 16× super-resolution which is much more free while still being consistent
to the low-resolution. Therefore one can observe a much higher variety.

4.4 Stochastic General Super-Resolution

In analogy to the visual sampling experiments for CelebA, we show results for
the same procedure applied to DIV2K. An example for the variety of upscaling
factor 4× is shown in Figure 16. For example, one can observe that the door in
the lower right sometimes looks more like an archway and other examples more
square. In addition we show the results for 8× upsampling in Figure 17. There
it can be observed that the texture of the stones varies from being smooth to
being rough.
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Fig. 13. Comparison to state-of-the-art for general super-resolution on the DIV2k 8×
validation set.

4.5 Image Content Transfer

Additional examples for image content transfer are depicted in Figure 18. For
this task we trained SRFlow with random shifts of 4px in HR to obtain a higher
flexibility.
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Fig. 14. Random SR samples generated by SRFlow using the given LR image on
CelebA (8×).

Fig. 15. Random SR samples generated by SRFlow using the given LR image on
CelebA (16×).

Fig. 16. Random SR samples generated by SRFlow using the given LR image on
DIV2K (4×).

Fig. 17. Random SR samples generated by SRFlow using the given LR image on
DIV2K (8×).
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Source Target y Input ỹ Transferred ŷ

Fig. 18. Image content transfer for an existing HR image (top) and an SR prediction
(bottom). Content from the source is applied directly to the target. By applying latent
space normalization in our SRFlow, the content is integrated.
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