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1 Overview

In this document, we provide additional details, discussions, and experiments to
support the original submission. Below is a summary of the contents.

– Sec. 2 provides detailed derivation and proofs for the MT compute block
described in Sec. 4.3 of the main paper.

– Sec. 3 contains auxiliary results, including error distribution curves (Fig. 1),
ablation studies (Fig. 2), robustness tests (Fig. 3) and category-specific results
(Table 1) in support of the major results in Sec. 5 of the main paper.

– Sec. 4 shows additional visualizations of registration results (Fig. 5) and the
learned latent GMMs (Fig. 6).

– Sec. 5 discusses a limitation of our method and suggests directions for future
research.

2 Additional Derivation

2.1 KL-divergence to Maximum Likelihood

We prove the conditions whereby Eq. (12) in the main paper is equivalent to
Eq. (13), i.e. the conditions under which minimizing the KL-divergence from the

transformed source distribution T (Θ̂) to the target distribution Θ is equivalent
to maximizing the likelihood of the transformed source point cloud T (P̂) under
the target distribution Θ.

Given two probability distributions p(x) and q(x) on X , the KL-divergence
between p and q is defined to be

KL (p | q) =

∫
X
p(x) [ln p(x)− ln q(x)] dx (1)

= Ex∼p(x) ln p(x)− Ex∼p(x) ln q(x) (2)
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Thus, we can write the KL-minimization problem in Eq. (12) of the main
paper as follows,

T ∗ = argmin
T

KL (T (Θ̂) | Θ) (3)

= argmin
T

Ex∼p(x|T (Θ̂)) ln p(x | T (Θ̂))− Ex∼p(x|T (Θ̂)) ln p(x | Θ) (4)

Note that the first term, the negative entropy of p(x|T (Θ̂)), is invariant with
respect to T , so we end up with

T ∗ = argmax
T

Ex∼p(x|T (Θ̂)) ln p(x | Θ) (5)

Thus, minimizing the KL-divergence from T (Θ̂) to Θ is equivalent to maxi-

mizing the expected log likelihood of data distributed according to T (Θ̂) under
Θ. Or, in other words, minimizing the cross-entropy. Note that the transformed
source point cloud T (P̂) = {T (p̂i)}Ni=1 are sampled iid from the distribution

p(x|T (Θ̂)). Using the law of large numbers, given a suitably large point cloud,
we can approximate the expectation in Eq. (5) as

argmax
T

Ex∼p(x|T (Θ̂)) ln p(x|Θ) ≈ argmax
T

1

N

N∑
i=1

ln p(T (p̂i) | Θ) (6)

= argmax
T

N∑
i=1

ln

J∑
j=1

πjN (T (p̂i) | µj ,Σj)) (7)

which gives us Eq. (13) in the main paper.

2.2 Single Sum Reduction

We show how to reduce the NJ pairs of distances in Eq. (16) of the main paper
to J pairs of distances in Eq. (17) of the main paper using the output of MΘ

(Eqs. (7,8,9) in the main paper).

The calculations inside MΘ (Eqs. (7,8,9) in the main paper) determine the

relationships between the correspondence matrix Γ̂ = {γ̂ij}N,Ji,j=1,1, the point coor-

dinates P̂ = {p̂i}Ni=1 and the GMM parameters Θ̂ = {π̂j , µ̂j , Σ̂j}Jj=1. Specifically,
we can rewrite Eqs. (7,8) in the main paper as

N∑
i=1

γ̂ij = Nπ̂j (8)

N∑
i=1

γ̂ijT (p̂i) = Nπ̂jT (µ̂j) (9)
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To prove the latter identity, note that the 3D rigid transformation T is a
linear operator. Therefore,

N∑
i=1

γ̂ijT (p̂i) = T

(
N∑
i=1

γ̂ij p̂i

)
(10)

= T (Nπ̂jµ̂j) (11)

= Nπ̂jT (µ̂j) (12)

Next, we expand the right hand side of Eq. (16) in the main paper, which
contains NJ pairs of distances, using Eqs. (8,9).

N∑
i=1

J∑
j=1

γ̂ij‖T (p̂i)− µj‖2Σj
(13)

=

J∑
j=1

N∑
i=1

γ̂ij‖T (p̂i)‖2Σj
− 2

J∑
j=1

µ>j Σ
−1
j

N∑
i=1

γ̂ijT (p̂i) +

J∑
j=1

‖µ>j ‖2Σj

N∑
i=1

γ̂ij (14)

=

J∑
j=1

(
N∑
i=1

γ̂ij‖T (p̂i)‖2Σj
− 2µ>j Σ

−1
j Nπ̂jT (µ̂j) + ‖µ>j ‖2Σj

Nπ̂j

)
(15)

Now, we complete the square by adding Nπ̂j‖T (µ̂j)‖2Σj
to the latter two

terms in the summation and subtracting it from the first term. For the latter
two terms, we have

Nπ̂j‖T (µ̂j)‖2Σj
− 2µ>j Σ

−1
j Nπ̂jT (µ̂j) + ‖µ>j ‖2Σj

Nπ̂j (16)

=Nπ̂j

(
‖T (µ̂j)‖2Σj

− 2µ>j Σ
−1
j T (µ̂j) + ‖µ>j ‖2Σj

)
(17)

=Nπ̂j‖µj − T (µ̂j)‖2Σj
(18)

For the first term, we have

N∑
i=1

γ̂ij‖T (p̂i)‖2Σj
−Nπ̂j‖T (µ̂j)‖2Σj

(19)

=

N∑
i=1

γ̂ij‖T (p̂i)‖2Σj
− 2Nπ̂j‖T (µ̂j)‖2Σj

+Nπ̂j‖T (µ̂j)‖2Σj
(20)

=

N∑
i=1

γ̂ij‖T (p̂i)‖2Σj
− 2Nπ̂jT (µ̂j)

>Σ−1j T (µ̂j) +

N∑
i=1

γ̂ij‖T (µ̂j)‖2Σj
(21)

=

N∑
i=1

γ̂ij‖T (p̂i)‖2Σj
−

N∑
i=1

γ̂ijT (p̂j)
>Σ−1j T (µ̂j) +

N∑
i=1

γ̂ij‖T (µ̂j)‖2Σj
(22)

=

N∑
i=1

γ̂ij‖T (p̂i)− T (µ̂j)‖2Σj
(23)
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Eq. (21) and (22) uses the relationship in Eq. (8) and (9) respectively. Notice
that the result in Eq. (23) is invariant to T because we assume Σj is isotropic.
Therefore, if we are optimizing over T , we can reduce Eq. (15), i.e. the right
hand side of Eq. (16) in the main paper, to the single term in Eq. (18), which
gives us

T ∗ = argmin
T

N∑
i=1

J∑
j=1

γ̂ij‖T (p̂i)− µj‖2Σj
(24)

= argmin
T

J∑
j=1

Nπ̂j‖µj − T (µ̂j)‖2Σj
(25)

= argmin
T

J∑
j=1

π̂j
σ2
j

‖T (µ̂j)− µj‖2 (26)

This is exactly Eq. (17) in the main paper.

2.3 SVD Solution

We derive the solution to the weighted ICP criterion in Eq. (17) of the main
paper using a weighted version of Umeyama’s method [5]. First, we center the
data and construct the cross-covariance matrix M ,

µc
def
=

J∑
j=1

π̂jµj (27)

µ̂c
def
=

J∑
j=1

π̂jµ̂j (28)

M
def
=

J∑
j=1

π̂j
σ2
j

(µj − µc)(µ̂j − µ̂c)
T (29)

Assuming T ∈ SE(3), given the SVD decomposition of M = USV T , the
optimal rotation R∗ and translation t∗ are as follows,

R∗ = V

1 0 0
0 1 0
0 0 detV UT

UT (30)

t∗ = µc −R∗µ̂c (31)

The center matrix in Equation (30) comes from the fact that we want to
enforce detR∗ = +1 to prevent reflections.
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3 Additional Quantitative Results

3.1 Full Error Distribution

Fig. 1 contains the cumulative distribution function (CDF) curves of the RMSE
metric for the methods tested in Sec. 5 of the main paper. To be specific, a point
(x, y) on the curve implies that fraction y of the instances in the test set has
RMSE less than x. The CDF curves show the complete error distribution which
reveals more information than a single metric. In fact, recall@0.2 shown in the
main paper is a single point on the CDF curve with x = 0.2.

A couple of observations can be drawn from the error distribution

– Some local methods such as ICP [3] and HGMR [4] are quite accurate on a
fraction of instances (in particular, those with small transformations).

– Methods based on point-to-point (ICP [3], DCP [6], PRNet [7]) and fea-
ture correspondences (FGR [8], PointNetLK [1]) performs worse on noisy
data, whereas methods based on probabilistic data association (HGMR [4],
DeepGMR) are unaffected.

– Learning-based methods (PointNetLK [1], DCP [6], PRNet [7]) except Deep-
GMR perform significantly worse on data from unseen categories, which
shows that the generalization to unseen data demonstrated in these works
does not hold in the case of unrestricted rotation.

3.2 Ablation Studies

We perform ablations on several design choices mentioned in Sec. 4 of the main
paper, including the number of GMM components J , the input to correspondence
network fψ and the loss function. The dataset used is ModelNet noisy. The
results are compared using CDF of RMSE on the test set shown in Fig. 2.

Number of GMM components It can be seen that the performance of
DeepGMR saturates with J > 16, so we use J = 16 across our experiments.

Input feature While the performance of DeepGMR is indeed improved with
RRI features [2], DeepGMR taking raw xyz coordinates still outperforms the
most competitive baseline DCP.

Loss function We trained DeepGMR directly with the RMSE metric used for
evaluation (Eq. 20 of the main paper) and compared it to DeepGMR trained
with the simple MSE loss in Eq. 18 of the main paper. We found the two models
perform almost identically (the MSE-trained model has slightly lower maximum
error). This shows that DeepGMR is not sensitive to the particular choice of loss
function. Although it is possible to design a better loss function, it is not the
focus of our work.

3.3 Robustness Tests

We perform additional tests on the robustness of DeepGMR to input point density
and transformation magnitude. The results are shown in Fig. 3.
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(a) ModelNet clean (b) ModelNet noisy

(c) ModelNet unseen (d) ICL-NUIM

Fig. 1: Cumulative distribution function (CDF) of RMSE metric on the test set
of the evaluation datasets in Sec. 5 of the main paper. A point (x, y) on the
curve indicates the method achieve a recall of y with threshold x on that dataset.
The diamonds show where the CDF reaches 1, i.e. the maximum error across the
entire test set for that method. If there is no diamond, it means the maximum
error is beyond the x-axis limit.

Point density Because DeepGMR performs registration in the latent GMM
space, it is invariant to the density of input point clouds. To demonstrate this, we
test the DeepGMR model trained on ModelNet noisy in Sec. 5 of the main paper
on point clouds with various density without any finetuning. Here, we can use the
number of points N as a proxy for density since the point clouds are uniformly
sampled from same surface. From the results in Fig. 3a, it can be seen that the
performance of DeepGMR is unaffected on point clouds up to 4 times denser
than training and is only slightly worse on point clouds up to 4 times sparser,
which can be attributed to missing geometric details in sparse point clouds.

We note that the accuracy of methods that depend on hand-crafted feature
correspondences, e.g. FGR, may improve with more input points as better normals
can be estimated. However, we found that this is only true on data without
noise. With 4096 input points, the accuracy of FGR improves on ModelNet clean
(0.04 RMSE, 0.96 recall), but stays the same on ModelNet noisy (0.22 RMSE,
0.77 recall). This test indicates that FGR’s normal estimation accuracy is more
contingent on the noise level than on the sampling density.
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(a) Number of components (b) Input feature (c) Loss function

Fig. 2: Ablation studies on (a) the number of GMM components J , (b) the input
to correspondence network (RRI [2] or raw XYZ) and (c) loss function. Ablated
models are compared using CDF of RMSE on the ModelNet noisy test set. The
diamonds show where the CDF reaches 1, i.e. the maximum error across the
entire test set for that method.

Input transformation magnitude DeepGMR learns latent correspondences
between points and GMM components that are pose-invariant, which means that
its output is invariant to the magnitude of the transformation between the input
point clouds. From Fig. 3b, we can see that DCP [6], another learning-based
global method, shares the same invariance property while the performance of
local methods (ICP [3], HGMR [4], PointNetLK [1]) degrades significantly with
larger transformation. We also observe an interesting class of registration methods
including FGR [8] and PRNet [7]. The formulations of these methods are global
but they rely on feature matching or keypoint detection that become unstable
with larger transformation, which makes their performance worse on these cases.

(a) Point density (b) Transformation magnitude

Fig. 3: Robustness tests. (a) RMSE CDF curves of the same DeepGMR model
(trained with N = 1024) tested on point clouds of different density (density is
measured by the number of subsampled points N). (b) RMSE vs magnitude of
ground truth rotation between source and target on ModelNet noisy test set.
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3.4 Per-category Results

Table 1 compares the average RMSE within each of the 40 categories in ModelNet
noisy. DeepGMR achieves consistently good performance across all categories,
while the baseline methods struggle with objects that have rotation or reflection
symmetry (e.g. bowl, glass box), repetitive structure (e.g. bookshelf, stairs) or
thin parts (e.g. radio, lamp).

4 Additional Qualitative Results

4.1 Registration Results

More qualitative registration results on ModelNet noisy and ICL-NUIM are shown
in Fig. 5. It can be seen that DeepGMR is able to deal with challenging cases that
trap other methods in local minima, such as repetitive structure, undersampled
thin parts and non-planar geometry, which demonstrate the consistency and
robustness of the correspondences learned by DeepGMR.

4.2 GMM Visualization

We show more visualization of the learned GMM and correspondence in Fig. 6.
We can see that different object parts are assigned to different GMM components
consistently across views. Note that no explicit supervision is provided on the
correspondence. Everything is learned end-to-end with the registration objective.

5 Future Work

One limitation of DeepGMR is that it does not explicitly consider partial overlap,
i.e. when the IoU between source and target point clouds is less than 1 after
alignment. The reason is that DeepGMR estimates the correspondence between
all points and all components in the latent GMM. In the case of partial overlap,
however, it is more ideal to estimate a partial correspondence, i.e. the correspon-
dence between some of the points and some of the components in the latent
GMM.

To measure the consequence of this limitation, we performed a preliminary
experiment on partial data artificially created from ModelNet40. Specifically, we
generate partial point clouds by approximating the rendering procedure of an
orthographic depth camera. First, we randomly rotate the complete point cloud
and project the points onto a zero-centered grid of dimension 200× 200 and size
2× 2 (same size as the bounding box of the point cloud, which is normalized to
[−1, 1]3 across the dataset) on the xy-plane. Then, for each grid cell, we keep one
point with the smallest z value and throw away the others. In this way, we end
up with a partial point cloud that closely resembles the observation of a depth
camera. Finally, we add independent Gaussian noise to the points.



DeepGMR: Learning Latent Gaussian Mixture Models for Registration 9

Experimental results on this partial dataset are summarized in Fig. 4. On one
hand, we note that even though DeepGMR does not explicitly consider partial
overlap, its performance is still competitive. In addition, if we apply a refinement
stage afterwards (i.e. use the prediction of a global method as the initialization
of a local method such as ICP), DeepGMR achieves the best performance on
this partial dataset. This demonstrates the power of the robust data association
learned by DeepGMR. On the other hand, PRNet [7], a prior work that explicitly
considers partial overlap, fails on this dataset. This shows that their method of
dealing with partial overlap only works with limited transformation magnitude,
i.e. it is a local registration method.

Although DeepGMR is able to outperform baselines on partial overlap data
with the help of local refinement, its performance is still far below its performance
on completely overlapping data. Therefore, a promising future research direction is
to combine the robust point-to-latent-GMM correspondence learned by DeepGMR
with techniques that deal with partial overlap (e.g. the attention mechanisms in
[6,7]).

RMSE ↓ Re@0.2 ↑

ICP [3] 2.45 0.29
HGMR [4] 0.58 0.45

PointNetLK [1] 0.66 0.33
PRNet [7] 0.79 0.12

FGR [8] 0.50 0.43
DCP [6] 0.68 0.19

DeepGMR 0.46 0.34

FGR+ICP 0.44 0.55
DCP+ICP 3.46 0.09

DeepGMR+ICP 0.34 0.64

(a) RMSE and recall (b) CDF curves

Fig. 4: Results on ModelNet partial: (a) Average RMSE and recall with threshold
0.2; (b) CDF of RMSE. Local methods outperform global methods on a fraction
of instances with small transformations but fail on the remaining ones. Deep-
GMR+ICP, a global+local method that uses the output of DeepGMR as the
initialization for ICP, achieves the best overall performance. Although DeepGMR
by itself is not as accurate as in the case of complete overlap, it is able to bring
most instances in the convergence basin of local methods. Best viewed in color.
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Input ICP[3] HGMR[4] PointNetLK [1] PRNet[7] FGR[8] DCP[6] DeepGMR

1.031 0.814 0.615 1.153 0.991 0.500 0.793 0.006

0.847 0.603 0.809 0.916 0.103 0.846 1.153 0.011

1.175 0.460 0.005 1.472 0.559 1.108 1.322 0.015

0.860 0.799 0.977 1.112 0.120 0.771 0.524 0.004

1.081 0.409 0.004 1.567 0.878 0.611 0.932 0.001

1.172 1.265 1.271 1.046 1.423 0.238 0.363 0.038

1.158 1.431 1.380 1.049 1.322 0.217 0.872 0.006

Fig. 5: Qualitative registration results on ModelNet40 noisy (top 5 rows) and ICL-
NUIM point clouds (bottom 2 rows). The RMSE of each example is labeled below
the plot. These examples highlight some typical failure modes of existing methods
such as 1) ignoring parts with sparse point samples 2) erroneous data association
due to repetitive structures and symmetry. DeepGMR avoids these errors by
estimating consistent point-to-distribution correspondence and performing robust
registration on GMMs.



DeepGMR: Learning Latent Gaussian Mixture Models for Registration 11

Input Correspondence GMM Output

Fig. 6: Visualization of learned correspondences and GMMs. In the second and
third column, each color indicates a different GMM component. The point colors
are calculated as weighted averages of the component colors according to the
learned correspondences. The radius of each sphere is equal to the standard
deviation of the GMM component. Note how DeepGMR learns to correspond the
points and GMMs in the source (red in first column, top in each row) and target
(blue in first column, bottom in each row) without any explicit supervision.
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Table 1: Comparison of average RMSE within each category on ModelNet noisy

Category ICP[3] HGMR[4] PointNetLK [1] PRNet[7] FGR[8] DCP[6] DeepGMR

airplane 0.49 0.48 0.51 0.24 0.15 0.08 0.01
bathtub 0.53 0.43 0.62 0.31 0.30 0.13 0.01

bed 0.46 0.66 0.52 0.20 0.24 0.08 0.01
bench 0.51 0.62 0.42 0.41 0.38 0.15 0.02

bookshelf 0.58 0.50 0.56 0.33 0.22 0.14 0.01
bottle 0.51 0.55 0.51 0.27 0.25 0.07 0.01
bowl 0.77 0.76 0.80 0.57 0.61 0.15 0.02
car 0.41 0.44 0.47 0.23 0.16 0.09 0.01

chair 0.55 0.51 0.55 0.25 0.20 0.09 0.01
cone 0.50 0.77 0.54 0.24 0.30 0.13 0.02
cup 0.64 0.67 0.72 0.48 0.39 0.10 0.01

curtain 0.58 0.41 0.41 0.34 0.36 0.10 0.01
desk 0.58 0.54 0.53 0.21 0.18 0.11 0.01
door 0.55 0.53 0.55 0.26 0.60 0.14 0.02

dresser 0.57 0.51 0.59 0.34 0.23 0.10 0.02
flower pot 0.27 0.51 0.37 0.25 0.15 0.09 0.01
glass box 0.65 0.68 0.61 0.41 0.47 0.11 0.02

guitar 0.40 0.52 0.36 0.31 0.47 0.05 0.00
keyboard 0.55 0.44 0.53 0.47 0.45 0.07 0.01

lamp 0.59 0.78 0.37 0.27 0.18 0.07 0.01
laptop 0.32 0.53 0.51 0.37 0.37 0.09 0.01
mantel 0.56 0.48 0.56 0.27 0.23 0.08 0.01
monitor 0.61 0.48 0.59 0.27 0.30 0.10 0.01

night stand 0.63 0.58 0.56 0.36 0.27 0.11 0.01
person 0.43 0.27 0.42 0.27 0.19 0.07 0.00
piano 0.55 0.58 0.59 0.24 0.15 0.08 0.01
plant 0.51 0.50 0.47 0.27 0.21 0.07 0.01
radio 0.37 0.71 0.43 0.26 0.33 0.09 0.01

range hood 0.56 0.50 0.54 0.31 0.25 0.07 0.01
sink 0.51 0.60 0.54 0.30 0.16 0.09 0.01
sofa 0.43 0.50 0.49 0.35 0.18 0.10 0.01

stairs 0.63 0.53 0.58 0.29 0.46 0.15 0.01
stool 0.76 0.71 0.63 0.20 0.25 0.13 0.01
table 0.59 0.46 0.60 0.34 0.51 0.14 0.01
tent 0.52 0.53 0.51 0.29 0.21 0.10 0.01
toilet 0.53 0.49 0.48 0.23 0.11 0.08 0.01

tv stand 0.47 0.50 0.50 0.29 0.20 0.09 0.01
vase 0.61 0.65 0.64 0.36 0.34 0.12 0.02

wardrobe 0.65 0.63 0.61 0.36 0.43 0.10 0.02
xbox 0.46 0.57 0.47 0.28 0.25 0.06 0.01
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