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Abstract. Most real-world 3D sensors such as LiDARs perform fixed
scans of the entire environment, while being decoupled from the recogni-
tion system that processes the sensor data. In this work, we propose a
method for 3D object recognition using light curtains, a resource-efficient
controllable sensor that measures depth at user-specified locations in the
environment. Crucially, we propose using prediction uncertainty of a
deep learning based 3D point cloud detector to guide active perception.
Given a neural network’s uncertainty, we develop a novel optimization
algorithm to optimally place light curtains to maximize coverage of uncer-
tain regions. Efficient optimization is achieved by encoding the physical
constraints of the device into a constraint graph, which is optimized with
dynamic programming. We show how a 3D detector can be trained to
detect objects in a scene by sequentially placing uncertainty-guided light
curtains to successively improve detection accuracy. Links to code can be
found on the project webpage.

Keywords: Active Vision, Robotics, Autonomous Driving, 3D Vision

1 Introduction

3D sensors, such as LiDAR, have become ubiquitous for perception in autonomous
systems operating in the real world, such as self-driving vehicles and field robots.
Combined with recent advances in deep-learning based visual recognition systems,
they have lead to significant breakthroughs in perception for autonomous driving,
enabling the recent surge of commercial interest in self-driving technology.

However, most 3D sensors in use today perform passive perception, i.e. they
continuously sense the entire environment while being completely decoupled from
the recognition system that will eventually process the sensor data. In such a
case, sensing the entire scene can be potentially inefficient. For example, consider
an object detector running on a self-driving car that is trying to recognize objects
in its environment. Suppose that it is confident that a tree-like structure on the
side of the street is not a vehicle, but it is unsure whether an object turning
around the curb is a vehicle or a pedestrian. In such a scenario, it might be
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Fig. 1: Object detection using light curtains. (a) Scene with 4 cars; ground-truth
boxes shown in green. (b) Sparse green points are from a single-beam LiDAR;
it can detect only two cars (red boxes). Numbers above detections boxes are
confidence scores. Uncertainty map in greyscale is displayed underneath: whiter
means higher uncertainty. (c) First light curtain (blue) is placed to optimally
cover the most uncertain regions. Dense points (green) from light curtain results
in detecting 2 more cars. (d) Second light curtain senses even more points and
fixes the misalignment error in the leftmost detection.

beneficial if the 3D sensor focuses on collecting more data from the latter object,
rather than distributing its sensing capacity uniformly throughout the scene.

In this work, we propose a method for 3D object detection using active
perception, i.e. using sensors that can be purposefully controlled to sense specific
regions in the environment. Programmable light curtains [22,2] were recently
proposed as controllable, light-weight, and resource efficient sensors that measure
the presence of objects intersecting any vertical ruled surface whose shape can
be specified by the user (see Fig. 2). There are two main advantages of using
programmable light curtains over LiDARs. First, they can be cheaply constructed,
since light curtains use ordinary CMOS sensors (a current lab-built prototype
costs $1000, and the price is expected to go down significantly in production). In
contrast, a 64-beam Velodyne LiDAR that is commonly used in 3D self-driving
datasets like KITTI [10] costs upwards of $80,000. Second, light curtains generate
data with much higher resolution in regions where they actively focus [2] while
LiDARs sense the entire environment and have low spatial and angular resolution.

One weakness of light curtains is that they are able to sense only a subset of
the environment – a vertical ruled surface (see Fig. 1(c,d), Fig 2). In contrast, a
LiDAR senses the entire scene. To mitigate this weakness, we can take advantage
of the fact that the light curtain is a controllable sensor – we can choose where
to place the light curtains. Thus, we must intelligently place light curtains in the
appropriate locations, so that they sense the most important parts of the scene.
In this work, we develop an algorithm for determining how to best place the light
curtains for maximal detection performance.
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We propose to use a deep neural network’s prediction uncertainty as a guide
for determining how to actively sense an environment. Our insight is that if an
active sensor images the regions which the network is most uncertain about, the
data obtained from those regions can help resolve the network’s uncertainty and
improve recognition. Conveniently, most deep learning based recognition systems
output confidence maps, which can be used for this purpose when converted to
an appropriate notion of uncertainty.

Given neural network uncertainty estimates, we show how a light curtain
can be placed to optimally cover the regions of maximum uncertainty. First, we
use an information-gain based framework to propose placing light curtains that
maximize the sum of uncertainties of the covered region (Sec. 4.3, Appendix A).
However, the structure of the light curtain and physical constraints of the device
impose restrictions on how the light curtain can be placed. Our novel solution is
to precompute a “constraint graph”, which describes all possible light curtain
placements that respect these physical constraints. We then use an optimization
approach based on dynamic programming to efficiently search over all possible
feasible paths in the constraint graph and maximize this objective (Sec. 4.4).
This is a novel approach to constrained optimization of a controllable sensor’s
trajectory which takes advantage of the properties of the problem we are solving.

Our proposed active perception pipeline for 3D detection proceeds as follows.
We initially record sparse data with an inexpensive single beam LIDAR sensor
that performs fixed 3D scans. This data is input to a 3D point cloud object
detector, which outputs an initial set of detections and confidence estimates.
These confidence estimates are converted into uncertainty estimates, which are
used by our dynamic programming algorithm to determine where to place the
first light curtain. The output of the light curtain readings are again input to
the 3D object detector to obtain refined detections and an updated uncertainty
map. This process of estimating detections and placing new light curtains can be
repeated multiple times (Fig. 3). Hence, we are able to sense the environment
progressively, intelligently, and efficiently.

We evaluate our algorithm using two synthetic datasets of urban driving
scenes [9,29]. Our experiments demonstrate that our algorithm leads to a mono-
tonic improvement in performance with successive light curtain placements. We
compare our proposed optimal light curtain placement strategy to multiple base-
line strategies and find that they are significantly outperformed by our method.
To summarize, our contributions are the following:

• We propose a method for using a deep learning based 3D object detector’s
prediction uncertainty as a guide for active sensing (Sec. 4.2).

• Given a network’s uncertainty, we show how to compute a feasible light
curtain that maximizes the coverage of uncertainty. Our novel contribution
is to encode the physical constraints of the device into a graph and use
dynamic-programming based graph optimization to efficiently maximize the
objective while satisfying the physical constraints (Sec. 4.3, 4.4).

• We show how to train such an active detector using online light curtain data
generation (Sec. 4.5).
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• We empirically demonstrate that our approach leads to significantly improved
detection performance compared to a number of baseline approaches (Sec. 5).

2 Related Work

2.1 Active Perception and Next-Best View Planning

Active Perception encompasses a variety of problems and techniques that involve
actively controlling the sensor for improved perception [1,23]. Examples include
actively modifying camera parameters [1], moving a camera to look around
occluding objects [4], and next-best view (NBV) planning [5]. NBV refers to a
broad set of problems in which the objective is to select the next best sensing
action in order to solve a specific task. Typical problems include object instance
classification [24,8,7,18] and 3D reconstruction [12,13,21,6,11]. Many works on
next-best view formulate the objective as maximizing information gain (also
known as mutual information) [24,7,12,13,21,6], using models such as probabilistic
occupancy grids for beliefs over states [24,12,13,21,6]. Our method is similar in
spirit to next-best view. One could consider each light curtain placement as
obtaining a new “view” of the environment; we try to find the next best light
curtain that aids object detection. In Sec. 4.3 and Appendix A, we derive an
information-gain based objective to find the next best light curtain placement.

2.2 Object Detection from Point Clouds

There have been many recent advances in deep learning for 3D object detection.
Approaches include representing LiDAR data as range images in LaserNet[16],
using raw point clouds [19], and using point clouds in the bird’s eye view such
as AVOD [14], HDNet [26] and Complex-YOLO [20]. Most state-of-the-art ap-
proaches use voxelized point clouds, such as VoxelNet [27], PointPillars [15],
SECOND [25], and CBGS [28]. These methods process an input point cloud by
dividing the space into 3D regions (voxels or pillars) and extracting features from
each of region using a PointNet [17] based architecture. Then, the volumetric
feature map is converted to 2D features via convolutions, followed by a detection
head that produces bounding boxes. We demonstrate that we can use such
detectors, along with our novel light curtain placement algorithm, to process
data from a single beam LiDAR combined with light curtains.

3 Background on Light Curtains

Programmable light curtains [22,2] are a sensor for adaptive depth sensing. “Light
curtains” can be thought of as virtual surfaces placed in the environment. They
can detect points on objects that intersect this surface. Before explaining how
the curtain is created, we briefly describe our coordinate system and the basics
of a rolling shutter camera.
Coordinate system: Throughout the paper, we will use the standard camera
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(a) Working principle (b) Optical schematic (top view)

Fig. 2: Illustration of programmable light curtains adapted from [2,22]. a) The light
curtain is placed at the intersection of the illumination plane (from the projector)
and the imaging plane (from the camera). b) A programmable galvanometer and
a rolling shutter camera create multiple points of intersection, Xt.

coordinate system centered at the sensor. We assume that the z axis corresponds
to depth from the sensor pointing forward, and that the y vector points vertically
downwards. Hence the xz-plane is parallel to the ground and corresponds to a
top-down view, also referred to as the bird’s eye view.
Rolling shutter camera: A rolling shutter camera contains pixels arranged
in T number of vertical columns. Each pixel column corresponds to a vertical
imaging plane. Readings from only those visible 3D points that lie on the imaging
plane get recorded onto its pixel column. We will denote the xz-projection of
the imaging plane corresponding to the t-th pixel column by ray Rt, shown in
the top-down view in Fig. 2(b). We will refer to these as “camera rays”. The
camera has a rolling shutter that successively activates each pixel column and its
imaging plane one at a time from left to right. The time interval between the
activation of two adjacent pixel columns is determined by the pixel clock.
Working principle of light curtains: The latest version of light curtains [2]
works by rapidly rotating a light sheet laser in synchrony with the motion of a
camera’s rolling shutter. A laser beam is collimated and shaped into a line sheet
using appropriate lenses and is reflected at a desired angle using a controllable
galvanometer mirror (see Fig. 2(b)). The illumination plane created by the laser
intersects the active imaging plane of the camera in a vertical line along the
curtain profile (Fig. 2(a)). The xz-projection of this vertical line intersecting the
t-th imaging plane lies on Rt, and we call this the t-th “control point”, denoted
by Xt (Fig. 2(b)).
Light curtain input: The shape of a light curtain is uniquely defined by where
it intersects each camera ray in the xz-plane, i.e. the control points {X1, . . . ,XT }.
These will act as inputs to the light curtain device. In order to produce the light
curtain defined by {Xt}Tt=1, the galvanometer is programmed to compute and
rotate at, for each camera ray Rt, the reflection angle θt(Xt) of the laser beam
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Fig. 3: Our method for detecting objects using light curtains. An inexpensive
single-beam lidar input is used by a 3D detection network to obtain rough initial
estimates of object locations. The uncertainty of the detector is used to optimally
place a light curtain that covers the most uncertain regions. The points detected
by the light curtain (shown in green in the bottom figure) are input back into
the detector so that it can update its predictions as well as uncertainty. The
new uncertainty maps can again be used to place successive light curtains in an
iterative manner, closing the loop.

such that the laser sheet intersects Rt at Xt. By selecting a control point on
each camera ray, the light curtain device can be made to image any vertical ruled
surface [2,22].
Light curtain output: The light curtain outputs a point cloud of all 3D visible
points in the scene that intersect the light curtain surface. The density of light
curtain points on the surface is usually much higher than LiDAR points.
Light curtain constraints: The rotating galvanometer can only operate at
a maximum angular velocity ωmax. Let Xt and Xt+1 be the control points on
two consecutive camera rays Rt and Rt+1. These induce laser angles θ(Xt) and
θ(Xt+1) respectively. If ∆t is the time difference between when the t-th and
(t+ 1)-th pixel columns are active, the galvanometer needs to rotate by an angle
of ∆θ(Xt) = θ(Xt+1)− θ(Xt) within ∆t time. Denote ∆θmax = ωmax ·∆t. Then
the light curtain can only image control points subject to |θ(Xt+1)− θ(Xt)| ≤
∆θmax, ∀1 ≤ t < T .

4 Approach

4.1 Overview

Our aim is to use light curtains for detecting objects in a 3D scene. The overall
approach is illustrated in Fig. 3. We use a voxel-based point cloud detector [25]
and train it to use light curtain data without any architectural changes. The
pipeline illustrated in Fig. 3 proceeds as follows.

To obtain an initial set of object detections, we use data from an inexpensive
single-beam LiDAR as input to the detector. This produces rough estimates
of object locations in the scene. Single-beam LiDAR is inexpensive because it
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consists of only one laser beam as opposed to 64 or 128 beams that are common in
autonomous driving. The downside is that the data from the single beam contains
very few points; this results in inaccurate detections and high uncertainty about
object locations in the scene (see Fig. 1b).

Alongside bounding box detections, we can also extract from the detector an
“uncertainty map” (explained in Sec. 4.2). We then use light curtains, placed in
regions guided by the detector’s uncertainty, to collect more data and iteratively
refine the object detections. In order to get more data from the regions the
detector is most uncertain about, we derive an information-gain based objective
function that sums the uncertainties along the light curtain control points (Sec. 4.3
and Appendix A), and we develop a constrained optimization algorithm that
places the light curtain to maximize this objective (Sec. 4.4).

Once the light curtain is placed, it returns a dense set of points where the
curtain intersects with visible objects in the scene. We maintain a unified point
cloud, which we define as the union of all points observed so far. The unified point
cloud is initialized with the points from the single-beam LiDAR. Points from the
light curtain are added to the unified point cloud and this data is input back
into the detector. Note that the input representation for the detector remains
the same (point clouds), enabling the use of existing state-of-the-art point cloud
detection methods without any architectural modifications.

As new data from the light curtains are added to the unified point cloud
and input to the detector, the detector refines its predictions and improves its
accuracy. Furthermore, the additional inputs cause the network to update its
uncertainty map; the network may no longer be uncertain about the areas that
were sensed by the light curtain. Our algorithm uses the new uncertainty map to
generate a new light curtain placement. We can iteratively place light curtains to
cover the current uncertain regions and input the sensed points back into the
network, closing the loop and iteratively improving detection performance.

4.2 Extracting uncertainty from the detector

The standard pipeline for 3D object detection [27,25,15] proceeds as follows. First,
the ground plane (parallel to the xz-plane) is uniformly tiled with “anchor boxes”;
these are reference boxes used by a 3D detector to produce detections. They are
located on points in a uniformly discretized grid G = [xmin, xmax]× [zmin, zmax].
For example, a [−40m, 40m] × [0m, 70.4m] grid is used for detecting cars in
KITTI [10]. A 3D detector, which is usually a binary detector, takes a point cloud
as input, and produces a binary classification score p ∈ [0, 1] and bounding box
regression offsets for every anchor box. The score p is the estimated probability
that the anchor box contains an object of a specific class (such as car/pedestrian).
The detector produces a detection for that anchor box if p exceeds a certain
threshold. If so, the detector combines the fixed dimensions of the anchor box
with its predicted regression offsets to output a detection box.

We can convert the confidence score to binary entropy H(p) ∈ [0, 1] where
H(p) = −p log2 p − (1 − p) log2(1 − p). Entropy is a measure of the detector’s
uncertainty about the presence of an object at the anchor location. Since we
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have an uncertainty score at uniformly spaced anchor locations parallel to the
xz-plane, they form an “uncertainty map” in the top-down view. We use this
uncertainty map to place light curtains.

4.3 Information gain objective

Based on the uncertainty estimates given by Sec. 4.2, our method determines
how to place the light curtain to sense the most uncertain/ambiguous regions.
It seems intuitive that sensing the locations of highest detector uncertainty can
provide the largest amount of information from a single light curtain placement,
towards improving detector accuracy. As discussed in Sec. 3, a single light curtain
placement is defined by a set of T control points {Xt}Tt=1. The light curtain
will be placed to lie vertically on top of these control points. To define an
optimization objective, we use the framework of information gain (commonly
used in next-best view methods; see Sec. 2.1) along with some simplifying
assumptions (see Appendix A). We show that under these assumptions, placing a
light curtain to maximize information gain (a mathematically defined information-
theoretic quantity) is equivalent to maximizing the objective J(X1, . . . ,XT ) =∑T

t=1H(Xt), where H(X) is the binary entropy of the detector’s confidence at
the anchor location of X. When the control point X does not exactly correspond
to an anchor location, we impute H(X) by nearest-neighbor interpolation from
the uncertainty map. Please see Appendix A for a detailed derivation.

4.4 Optimal light curtain placement

In this section, we will describe an exact optimization algorithm to maximize the
objective function J(X1, . . . ,XT ) =

∑T
t=1H(Xt).

Constrained optimization: The control points {Xt}Tt=1, where each Xt lies
on the the camera ray Rt, must be chosen to satisfy the physical constraints of
the light curtain device: |θ(Xt+1) − θ(Xt)| ≤ ∆θmax (see Sec. 3: light curtain
constraints). Hence, this is a constrained optimization problem. We discretize
the problem by considering a dense set of N discrete, equally spaced points

Dt = {X(n)
t }Nn=1 on each ray Rt. We will assume that Xt ∈ Dt for all 1 ≤ t ≤ T

henceforth unless stated otherwise. We use N = 80 in all our experiments which
we found to be sufficiently large. Overall, the optimization problem can be
formulated as:

arg max
{Xt}Tt=1

T∑
t=1

H(Xt) (1)

where Xt ∈ Dt ∀1 ≤ t ≤ T (2)

subject to |θ(Xt+1)− θ(Xt)| ≤ ∆θmax, ∀1 ≤ t < T (3)

Light Curtain Constraint Graph: we encode the light curtain constraints
into a graph, as illustrated in Figure 4. Each black ray corresponds to a camera
ray. Each black dot on the ray is a vertex in the constraint graph. It represents a
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(a) (b)

Fig. 4: (a) Light curtain constraint graph. Black dots are nodes and blue arrows
are the edges of the graph. The optimized light curtain profile is depicted as red
arrows. (b) Example uncertainty map from the detector, and optimized light
curtain profile in red. Black is lowest uncertainty and white is highest uncertainty.
The optimized light curtain covers the most uncertain regions.

candidate control point and is associated with an uncertainty score. Exactly one
control point must be chosen per camera ray. The optimization objective is to
choose such points to maximize the total sum of uncertainties. An edge between
two control points indicates that the light curtain is able to transition from one
control point Xt to the next, Xt+1 without violating the maximum velocity light
curtain constraints. Thus, the maximum velocity constraint (Eqn. 3) can be
specified by restricting the set of edges (depicted using blue arrows). We note
that the graph only needs to be constructed once and can be done offline.
Dynamic programming for constrained optimization: The number of
possible light curtain placements, |D1 × · · · × DT | = NT , is exponentially large,
which prevents us from searching for the optimal solution by brute force. However,
we observe that the problem can be decomposed into simpler subproblems. In
particular, let us define J∗t (Xt) as the optimal sum of uncertainties of the tail
subproblem starting from Xt i.e.

J∗t (Xt) = max
Xt+1,...,XT

H(Xt) +

T∑
k=t+1

H(Xk); (4)

subject to |θ(Xk+1)− θ(Xk)| ≤ ∆θmax, ∀ t ≤ k < T (5)

If we were able to compute J∗t (Xt), then this would help in solving a more
complex subproblem using recursion: we observe that J∗t (Xt) has the property
of optimal substructure, i.e. the optimal solution of J∗t−1(Xt−1) can be computed
from the optimal solution of J∗t (Xt) via

J∗t−1(Xt−1) = H(Xt−1)+ max
Xt∈Dt

J∗t (Xt)

subject to |θ(Xt)− θ(Xt−1)| ≤ ∆θmax

(6)



10 S. Ancha et al.

Because of this optimal substructure property, we can solve for J∗t−1(Xt−1) via
dynamic programming. We also note that the solution to maxX1

J∗1 (X1) is the
solution to our original constrained optimization problem (Eqn. 1-3).

We thus perform the dynamic programming optimization as follows: the
recursion from Eqn. 6 can be implemented by first performing a backwards pass,
starting from T and computing J∗t (Xt) for each Xt. Computing each J∗t (Xt) takes
only O(Bavg) time where Bavg is the average degree of a vertex (number of edges
starting from a vertex) in the constraint graph, since we iterate once over all edges
of Xt in Eqn. 6. Then, we do a forward pass, starting with arg maxX1∈D1 J

∗
1 (X1)

and for a given X∗t−1, choosing X∗t according to Eqn. 6. Since there are N vertices
per ray and T rays in the graph, the overall algorithm takes O(NTBavg) time;
this is a significant reduction from the O(NT ) brute-force solution. We describe
a simple extension of this objective that encourages smoothness in Appendix B .

4.5 Training active detector with online training data generation

The same detector is used to process data from the single beam LiDAR and all
light curtain placements. Since the light curtains are placed based on the output
(uncertainty maps) of the detector, the input point cloud for the next iteration
depends on the current weights of the detector. As the weights change during
training, so does the input data distribution. We account for non-stationarity
of the training data by generating it online during the training process. This
prevents the input distribution from diverging from the network weights during
training. See Appendix C for algorithmic details and ablation experiments.

5 Experiments

To evaluate our algorithm, we need dense ground truth depth maps to simulate
an arbitrary placement of a light curtain. However, standard autonomous driving
datasets, such as KITTI [10] and nuScenes [3], contain only sparse LiDAR data,
and hence the data is not suitable to accurately simulate a dense light curtain to
evaluate our method. To circumvent this problem, we demonstrate our method
on two synthetic datasets that provide dense ground truth depth maps, namely
the Virtual KITTI [9] and SYNTHIA [29] datasets. Please find more details of
the datasets and the evaluation metrics in Appendix D.

Our experiments demonstrate the following: First, we show that our method
for successive placement of light curtains improves detection performance; par-
ticularly, there is a significant increase between the performance of single-beam
LiDAR and the performance after placing the first light curtain. We also com-
pare our method to multiple ablations and alternative placement strategies that
demonstrate that each component of our method is crucial to achieve good
performance. Finally, we show that our method can generalize to many more light
curtain placements at test time than the method was trained on. In the appendix,
we perform further experiments that include evaluating the generalization of our
method to noise in the light curtain data, an ablation experiment for training
with online data generation (Sec. 4.5), and efficiency analysis.
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5.1 Comparison with varying number of light curtains

We train our method using online training data generation simultaneously on
data from single-beam LiDAR and one, two, and three light curtain placements.
We perform this experiment for both the Virtual KITTI and SYNTHIA datasets.
The accuracies on their tests sets are reported in Table 1.

Virtual KITTI SYNTHIA

3D mAP BEV mAP 3D mAP BEV mAP

0.5 IoU 0.7 IoU 0.5 IoU 0.7 IoU 0.5 IoU 0.7 IoU 0.5 IoU 0.7 IoU

Single Beam Lidar 39.91 15.49 40.77 36.54 60.49 47.73 60.69 51.22

Single Beam Lidar
(separate model)

42.35 23.66 47.77 40.15 60.69 48.23 60.84 57.98

1 Light Curtain 58.01 35.29 58.51 47.05 68.79 55.99 68.97 59.63

2 Light Curtains 60.86 37.91 61.10 49.84 69.02 57.08 69.17 67.14

3 Light Curtains 68.52 38.47 68.82 50.53 69.16 57.30 69.25 67.25

Table 1: Performance of the detector trained with single-beam LiDAR and up to
three light curtains. Performance improves with more light curtain placements,
with a significant jump at the first light curtain placement.

Note that there is a significant and consistent increase in the accuracy between
single-beam LiDAR performance and the first light curtain placement (row 1 and
row 3). This shows that actively placing light curtains on the most uncertain
regions can improve performance over a single-beam LiDAR that performs fixed
scans. Furthermore, placing more light curtains consistently improves detection
accuracy.

As an ablation experiment, we train a separate model only on single-beam
LiDAR data (row 2), for the same number of training iterations. This is different
from row 1 which was trained with both single beam LiDAR and light curtain
data but evaluated using only data for a single beam LiDAR. Although training
a model with only single-beam LiDAR data (row 2) improves performance over
row 1, it is still significantly outperformed by our method which uses data from
light curtain placements.

Noise simulations: In order to simulate noise in the real-world sensor, we
perform experiments with added noise in the light curtain input. We demonstrate
that the results are comparable to the noiseless case, indicating that our method
is robust to noise and is likely to transfer well to the real world. Please see
Appendix E for more details.

5.2 Comparison with alternative light curtain placement strategies

In our approach, light curtains are placed by maximizing the coverage of uncertain
regions using a dynamic programming optimization. How does this compare to
other strategies for light curtain placement? We experiment with several baselines:
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1. Random: we place frontoparallel light curtains at a random z-distance from
the sensor, ignoring the detector’s uncertainty map.

2. Fixed depth: we place a frontoparallel light curtain at a fixed z-distance (15m,
30m, 45m) from the sensor, ignoring the detector’s uncertainty map.

3. Greedy optimization: this baseline tries to evaluate the benefits of using a
dynamic programming optimization. Here, we use the same light curtain
constraints described in Section 4.4 (Figure 4(a)). We greedily select the next
control point based on local uncertainty instead of optimizing for the future
sum of uncertainties. Ties are broken by (a) choosing smaller laser angle
changes, and (b) randomly.

4. Frontoparallel + Uncertainty : Our optimization process finds light curtains
with flexible shapes. What if the shapes were constrained to make the
optimization problem easier? If we restrict ourselves to frontoparallel curtains,
we can place them at the z-distance of maximum uncertainty by simply
summing the uncertainties for every fixed value of z.

The results on the Virtual KITTI and SYNTHIA datasets are shown in
Table 2. Our method significantly and consistently outperforms all baselines.
This empirically demonstrates the value of using dynamic programming for light
curtain placement to improve object detection performance.

5.3 Generalization to successive light curtain placements

If we train a detector using our online light curtain data generation approach for
k light curtains, can the performance generalize to more than k light curtains?
Specifically, if we continue to place light curtains beyond the number trained for,

Virtual KITTI SYNTHIA

3D mAP BEV mAP 3D mAP BEV mAP

.5 IoU .7 IoU .5 IoU .7 IoU .5 IoU .7 IoU .5 IoU .7 IoU

Random 41.29 17.49 46.65 38.09 60.43 47.09 60.66 58.14

Fixed depth - 15m 44.99 22.20 46.07 38.05 60.74 48.16 60.89 58.48

Fixed depth - 30m 39.72 19.05 45.21 35.83 60.02 47.88 60.23 57.89

Fixed depth - 45m 39.86 20.02 40.61 36.87 60.23 48.12 60.43 57.77

Greedy Optimization
(Randomly break ties)

37.40 19.93 42.80 35.33 60.62 47.46 60.83 58.22

Greedy Optimization
(Min laser angle change)

39.20 20.19 44.80 36.94 60.61 47.05 60.76 58.07

Frontoparallel +
Uncertainty

39.41 21.25 45.10 37.80 60.36 47.20 60.52 58.00

Ours 58.01 35.29 58.51 47.05 68.79 55.99 68.97 59.63

Table 2: Baselines for alternate light curtain placement strategies, trained and
tested on (a) Virtual KITTI and (b) SYNTHIA datasets. Our dynamic program-
ming optimization approach significantly outperforms all other strategies.
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(a) Generalization in Virtual KITTI (b) Generalization in SYNTHIA

Fig. 5: Generalization to many more light curtains than what the detector was
trained for. We train using online data generation on single-beam lidar and only
3 light curtains. We then test with placing 10 curtains, on (a) Virtual KITTI,
and (b) SYNTHIA. Performance continues to increase monotonically according
to multiple metrics. Takeaway: one can safely place more light curtains at test
time and expect to see sustained improvement in accuracy.

will the accuracy continue improving? We test this hypothesis by evaluating on
10 light curtains, many more than the model was trained for (3 light curtains).
Figure 5 shows the performance as a function of the number of light curtains.
We find that in both Virtual KITTI and SYNTHIA, the accuracy monotonically
improves with the number of curtains.

This result implies that a priori one need not worry about how many light
curtains will be placed at test time. If we train on only 3 light curtains, we
can place many more light curtains at test time; our results indicate that the
performance will keep improving.

5.4 Qualitative analysis

We visualized a successful case of our method in Fig. 1. This is an example where
our method detects false negatives missed by the single-beam LiDAR. We also
show two other types of successful cases where light curtains remove false positive
detections and fix misalignment errors in Figure 6. In Figure 7, we show the
predominant failure case of our method. See captions for more details.

6 Conclusions

In this work, we develop a method to use light curtains, an actively controllable
resource-efficient sensor, for object recognition in static scenes. We propose to
use a 3D object detector’s prediction uncertainty as a guide for deciding where to
sense. By encoding the constraints of the light curtain into a graph, we show how
to optimally and feasibly place a light curtain that maximizes the coverage of
uncertain regions. We are able to train an active detector that interacts with light
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Fig. 6: Successful cases: Other type of successful cases than Fig. 1. In (A), the
single-beam LiDAR incorrectly detects a bus and a piece of lawn as false positives.
They get eliminated successively after placing the first and second light curtains.
In (B), the first light curtain fixes misalignment in the bounding box predicted
by the single beam LiDAR.

curtains to iteratively and efficiently sense parts of scene in an uncertainty-guided
manner, successively improving detection accuracy. We hope this works pushes
towards designing perception algorithms that integrate sensing and recognition,
towards intelligent and adaptive perception.
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Fig. 7: Failure cases: The predominant failure mode is that the single beam
LiDAR detects a false positive which is not removed by light curtains because the
detector is overly confident in its prediction (so the estimated uncertainty is low).
Middle: Falsely detecting a tree to be a car. Right : After three light curtains, the
detection persists because light curtains do not get placed on this false positive.
False positive gets removed eventually only after six light curtain placements.
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