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1 Ablation Study

The results of the ablation study that examines the contributions of each unit in
GDD are shown in Table 1. The results showed that DD that did not incorporate
URU and FRU performed poorly. This shows that it is difficult to generate high
resolution images from random noise without the help of guidance images. The
features of the guidance images are important to reconstruct high quality images
in the unsupervised image fusion problems. The results also showed that the
incorporation of URU or FRU significantly reduced RMSE. In addition, GDD
that incorporated both URU and FRU led to further performance boost.

We have also evaluated the effect of guidance feature augmentation at differ-
ent levels of the deep decoder. The level of the deep decoder used in this study
is 5. The results are shown in Table 2. The maximum gains are coming from
the layer 5. The result shows that the upsampling refinement at the final layer
is more important than other layers. It also shows that the lower-level features
from a guidance image can be more effective in the upsampling refinement unit
as a regularizer than the higher-level features.

Table 1: Ablation study using the RMSE metric. PAN represents the results of
panchromatic and multispectral image fusion. HS represents the results of hy-
perspectral and RGB image fusion. The average results of RMSE for all datasets
are shown.

Method URU FRU PAN HS

DD 12.4157 6.7016
GDD X 5.2035 2.3017
GDD X 5.2332 2.2554
GDD X X 4.7475 2.0213
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Table 2: Ablation study: effect of guidance feature augmentation at various lev-
els. PAN represents the results of panchromatic and multispectral image fusion.
HS represents the results of hyperspectral and RGB image fusion. The average
results of RMSE for all datasets are shown.

layer 1 layer 2 layer 3 layer 4 layer 5

PAN 11.8 10.62 9.97 8.49 4.91
HS 6.43 5.54 4.41 3.04 2.37

2 Runtime analysis

We have calculated the computational time of the compared methods as shown
in the Table 3. The computational time of the hyperspectral super-resolution
task is shown because the task is the most computationally expensive and the
unsupervised deep learning method (uSDN) can be compared in this task. GDD
and DIP are slower than classical matrix factorization methods, but are compa-
rable to the unsupervised deep learning method (uSDN) or a Bayesian approach
(BSR). Although supervised deep learning method is much faster for the infer-
ence, the training takes more than 12 hours, which may be required for each
task.

Table 3: Computational time to compute one high resolution image.

CNMF BSR NSSR NLSTF uSDN MHF DIP GDD

Time (s) 21 1325 138 64 1773 22 1483 1605

3 GDD and existing network architectures

GDD is closely related to existing network architectures. URU and FRU in GDD
generate multiplicative transformation parameters from the guidance image for
the spatial and channel-wise feature modulation. A similar feature modulation
has been also used in [8, 2, 1, 6, 4]. In [8], affine transformation parameters have
been generated from segmentation probability maps for the feature modulation
to achieve more realistic textures in image super-resolution. The affine trans-
formation has been also considered in the style transfer [3]. Although the affine
transformation considers the scaling and bias values, URU and FRU consider
only the scaling values because we find that similar results can be obtained at
lower computational cost for unsupervised optimization problems.

The conditional weights can be also interpreted as attention layers across all
channels. In [2, 5, 1], attention gates are incorporated to refine the spatial details
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and highlight salient features. The conditional attention weights are generated
from a label map for semantic image synthesis [4]. GDD is closely related to
the conditional attention weights in that it uses the multi-scale features from
a guidance image to generate the conditional attention weights. However, all of
the aforementioned studies consider and require a large size of training data.
The network architectures have not been fully explored as a regularizer for the
unsupervised optimization problems. Our study is different from previous studies
in that it uses the network architecture as a regularizer to solve a variety of
unsupervised image fusion problems.

4 Early stopping

The early stopping is required, depending on a task. For the super-resolution
task, the early stopping is not required because the value of the loss function
converges. We stopped the iteration by empirically validating the changes of
MSE derived by the loss function. The number of iterations is fixed for all data
within each task and is large enough to converge. For the denoising task, the
early stopping is required as the reviewer pointed out. We stopped the iteration
so that we obtained the most qualitative results as done in [7].

5 Additional Results

In Fig. 1 and 2, the additional results of the hyperspectral and RGB image fusion
on the CAVE dataset are shown. In Fig. 3, 4 and 5, we show the additional results
of the panchromatic and multispectral image fusion.
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Reference CNMF BSR NSSR NLSTF UDL uSDN MHF DIP GDD

Fig. 1: Additional results of HS and RGB image fusion from the CAVE dataset.
RGB images of the enhanced HS images and the corresponding error maps are
shown.
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Reference CNMF BSR NSSR NLSTF UDL uSDN MHF DIP GDD

Fig. 2: Additional results of HS and RGB image fusion from the CAVE dataset.
RGB images of the enhanced HS images and the corresponding error maps are
shown.

Reference BDSD MTF-GLP SIRF DRPNN PanNet PNN PNN+ DIP GDD

Fig. 3: Additional results of panchromatic and multispectral image fusion. First
row: RGB images of the pansharpened MS images. Second row: The enlarged
RGB images. Third row: The corresponding error maps.
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Reference BDSD MTF-GLP SIRF DRPNN PanNet PNN PNN+ DIP GDD

Fig. 4: Additional results of panchromatic and multispectral image fusion. First
row: RGB images of the pansharpened MS images. Second row: The enlarged
RGB images. Third row: The corresponding error maps.

Reference BDSD MTF-GLP SIRF DRPNN PanNet PNN PNN+ DIP GDD

Fig. 5: Additional results of panchromatic and multispectral image fusion. First
row: RGB images of the pansharpened MS images. Second row: The enlarged
RGB images. Third row: The corresponding error maps.
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