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Abstract. Real-time video deblurring still remains a challenging task
due to the complexity of spatially and temporally varying blur itself
and the requirement of low computational cost. To improve the network
efficiency, we adopt residual dense blocks into RNN cells, so as to effi-
ciently extract the spatial features of the current frame. Furthermore, a
global spatio-temporal attention module is proposed to fuse the effective
hierarchical features from past and future frames to help better deblur
the current frame. For evaluation, we also collect a novel dataset with
paired blurry/sharp video clips by using a co-axis beam splitter system.
Through experiments on synthetic and realistic datasets, we show that
our proposed method can achieve better deblurring performance both
quantitatively and qualitatively with less computational cost against
state-of-the-art video deblurring methods.
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1 Introduction

Nowadays, video recording usually suffers from the quality issues caused by mo-
tion blur. This is especially true in poorly illuminated environment, where one
has to lengthen the exposure time for sufficient brightness. A great variety of
video deblurring methods have been proposed, which have to deal with two
competing goals, i.e., to improve the deblurring quality and to reduce the com-
putational cost. The latter is of critical importance for low-power mobile devices,
like smartphones.

To properly make use of the spatio-temporal correlation of the video signal
is the key to achieve better performance on video deblurring. The CNN-based
methods [30][34] make an inference of the deblurred frame by stacking neighbor-
ing frames with current frame as input to the CNN framework. The RNN-based
methods, like [35][13][43][23], employ recurrent neural network architecture to
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(a) (b)

Fig. 1: A comparison of network efficiency on video deblurring. SRN[32],
DMSCNN[22] are state-of-the-art (SoTA) methods for image deblurring, and
STRCNN[30], DBN[13], IFIRNN[23] are SoTA methods for video deblurring. (a)
shows the computational cost required for processing a frame of 720P(1280×720)
video and the corresponding performance of each model on GOPRO[22] dataset
in terms of GMACs and PSNR, respectively. (b) shows the deblurred image
generated by SoTA video deblurring methods and ours.

transfer the effective information frame by frame for deblurring. However, how
to utilize spatio-temporal dependency of video for deblurring more efficiently still
needs to be explored. The CNN-based methods are usually cumbersome in deal-
ing with spatio-temporal dependency of concatenated neighboring frames, and
the existing RNN-based methods have limited capacity to transfer the effective
information temporally. Thus, they suffer from either the huge computational
cost, or the ineffectiveness of deblurring.

In this work, we propose an efficient spatio-temporal recurrent neural net-
work (denoted as ESTRNN) to solve the above issues. We mainly focus on the
network efficiency of video deblurring methods, which directly reflects on the de-
blurring performance of the method under the limited computational resources,
as Fig. 1a. It shows that our method can achieve much better performance with
less computational cost against SoTA deblurring methods. Due to making full
use of spatio-temporal dependency of the video signal, our method is exception-
ally good at restoring the details of the blurry frame compared with SoTA video
deblurring methods, as shown in Fig 1b.

To make a more computational efficient video deblurring method, we develop
our method through amelioration of basic RNN architecture from three aspects:
1) In temporal domain, the high-level features generated by RNN cell are more
informative, which are more suitable for temporal feature fusion (see Fig.2) than
using channel-concatenated neighboring frames as input. Another advantage of
using neighboring high-level features for temporal fusion is that it reuses the
intermediate results of deblurring process of other frames, which helps to improve
the overall network efficiency; 2) it is obvious that not all high-level features
from neighboring frames are beneficial to deblurring of the current frame. Thus,
it is worth designing an attention mechanism [1] that allows the method to
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focus on more informative part of high-level features from other frames. To this
end, we propose a novel global spatio-temporal attention module (see Sec.3.3)
for efficiently temporal feature fusion; 3) Regarding the spatial domain, how
to extract the spatial features from the current frame will affect the quality
of information transmitted in temporal domain. In other words, well generated
spatial features of each frame are a prerequisite for ensuring good temporal
feature fusion. Therefore, we integrate the residual dense blocks (RDB [41]) as
backbone into RNN cell to construct our RDB cell (see Sec.3.2). The high-level
hierarchical features generated by RDB cell is more computationally efficient
with richer spatial information.

Our contributions in this work are summarized as follows:

– To the best of our knowledge, this is the first work making use of the high-
level features of RNN cell from future and past frames for deblurring the
current frame in the video.

– To efficiently utilize the high-level features from neighboring frames, we pro-
pose a global spatio-temporal attention module for temporal feature fusion.

– To improve the efficiency of extracting spatial features from the current
frame, we adopt residual dense blocks into our RNN cell to generate more
informative hierarchical features.

– Besides the conventional synthetic video deblurring dataset, such as REDS
[21] and GOPRO [22], we also use a beam splitter system [14] to capture
realistic blurry/sharp video pairs for evaluation. Our realistic dataset will be
released to facilitate further researches.

– The experimental results demonstrate that our method achieves better de-
blurring performance both quantitatively and qualitatively than SoTA video
deblurring methods with less computational cost.

2 Related Works

2.1 Video Deblurring

In recent years, video deblurring technologies become significant for daily life
media editing and for advanced processing such as SLAM [17], 3D reconstruc-
tion [29] and visual tracking [36]. Research focus starts to shift from early sin-
gle non-blind image deblurring [44][28][31] and single blind image deblurring
[38][6][20][3][25] to the more challenging video deblurring task.

Typically, the blur in a video has different sizes and intensities in different
position of each frame. In the early work of video deblurring, [18] and [2] attempt
to automatically segment a moving blurred object from the background and
assume a uniform blur model for them. Then, in view of the different kinds of
blur in different regions of an image, [37] tries to segment an image into various
layers and generate segment-wise blur kernels for deblurring. More recently, there
are some researches that estimate pixel-wise blur kernel with segmentation [27],
or without segmentation [11][12]. However, these kernel based methods are quite
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expensive in computation and usually rely on human knowledge. An inaccurate
blur kernel will result in severe artifacts in deblurred image.

To overcome the above issues, recently researchers start to work on deep
learning methods for video deblurring. CNN-based methods are used to handle
the inter-frame relationship of video signal, such as [30], which makes the esti-
mation of deblurred frame by using channel-concatenated neighboring frames.
Usually, alignment of neighboring frames is required for these methods, which is
quite computationally expensive. They realize it by traditional way like optical
flow [26] or the network itself such as using deformable convolutional operation
[4] in [34]. Some researchers tend to focus on RNN-based methods because of
their excellent performance for time-series signal. RNN-based methods do not
need to perform the explicit alignment and the model could manage it implicitly
through hidden states. For example, [35] employs RNN architecture to reuse the
features extracted from the past frame, and [13] improves the performance of
deblurring by blending the hidden states in temporal domain. Then, [23] itera-
tively updates the hidden state via reusing RNN cell parameters and achieves
SoTA video deblurring performance while operating in real time.

In this paper, we adopt a RNN framework similar to [23]. Our method is
different from [23] in that we integrate RDB into the RNN cell in order to
exploit the potential of the RNN cell through feature reusing and generating
hierarchical features for the current frame. Furthermore, we propose a GSA
module to selectively merge effective hierarchical features from both past and
future frames, which enables our model to utilize the spatio-temporal information
more efficiently.

2.2 Attention Mechanism

Allocating more computational resources towards the most informative com-
ponents of a signal is a wise strategy to enhance system performance under
the situation of limited resources. Such a selectively focusing mechanism origi-
nated from natural language processing (NLP) is named as attention mechanism
[1][39][33], which has demonstrated to be very effective in many areas including
image restoration task [40][34]. Inspired by the success of attention mechanism
in image restoration task, [34] proposed their attention module to assign pixel-
level aggregation weights on each neighboring frame for video deblurring. The
principle of their attention module is the same as the original idea from NLP
that a neighboring frame that is more similar to the reference one in an embed-
ding space should be paid more attention. However, we believe that considering
the situation of video deblurring, the method should pay attention to the useful
features (the lost information), rather than the similar features from neighbor-
ing features. Therefore, we propose a global spatio-temporal attention module,
which allows our method to efficiently fuse the effective features from both past
and future frames for deblurring the current frame.
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Fig. 2: Framework of proposed efficient spatio-temporal recurrent neural network.
It refers to the tth input blurry frame; ht and ft refer to the extracted hidden
state and hierarchical features of RDB-based RNN cell (see Sec. 3.2) from tth

frame; Ft refers to the fused features generated by GSA module (see Sec. 3.3)
for tth frame; Ot refers to the tth deblurred frame by the proposed method.

3 Proposed Method

In this section, we will first give an overview of the proposed method first in
Sec. 3.1. Then we will go into details of RDB cell and GSA module in Sec. 3.2
and Sec. 3.3, respectively.

3.1 Overview

According to the characteristics of blur in the video, it may keep varying tem-
porally and spatially, which makes deblurring problem intractable. In turn, it
is possible that the blurred information in the current frame is relatively clear
and complete in the past frames and future frames. When using RNN-based
method to implement video deblurring, high-level features of the current frame
will be generated to make the inference of deblurred image. Actually, some parts
of the high-level features are worth saving and reusing for making up the loss
information for other frames. Therefore, distributing part of computational re-
sources to fuse informative features in past and future frames could be a method
to effectively improve the efficiency of the neural network. Furthermore, how to
improve RNN cell itself to extract high-level features with better spatial struc-
ture is critical to enhancing the efficiency of the neural network. Starting from
the above viewpoints, we integrate multiple residual dense blocks into RNN cell
to generate hierarchical features and propose a global spatio-temporal attention
module for feature fusion of neighboring frames.

The whole video deblurring process of our method is shown as Fig. 2. We
denote the input frames of blurry video and corresponding output frames as {It}
and {Ot} respectively, where t ∈ {1 · · ·T}. Through RDB-based RNN cell, the
model could get hierarchical features for each frame as {ft}. To get the inference
of latent frame Ot, the global spatio-temporal attention module takes current hi-
erarchical feature ft with two past and two future features (ft−2, ft−1, ft+1, ft+2)
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Fig. 3: The structure of RDB-based RNN cell. ht and ht−1 refer to the hidden
state of past frame and current frame, respectively; It refers to the input blurry
frame; fDt refers to the features after downsampling module; fRt refers to the fea-
ture set generated by series of RDB modules; ft refers to the hierarchical features
generated by the RDB cell; As for the details of each layer and RDB module, k,
s, c and g denote kernel size, stride, channels and growth rate, respectively.

as input to perform feature fusion and generate Ft as output. Finally, through
re-constructor module, the model can get the latent frame Ot.

3.2 RDB Cell: RDB-based RNN Cell

We adopt residual dense block (RDB) [41][42] into the RNN cell, which is named
as RDB cell. The dense connections of RDB inherited from dense block (DB)
[10] let each layer receive feature maps from all the previous layers by concate-
nating them together in channels. The output channels of each layer in RDB
will keep the same size, which allows collective features to be reused and save
the computational resources. Moreover, through local feature fusion, RDB could
generate hierarchical features from convolutional layers in different depth with
different size of receptive fields, which could provide better information for image
reconstruction.

The structure of RDB-based RNN cell is shown as Fig. 3. First, the current
input frame It will be downsampled and concatenated with last hidden state
ht−1 to get shallow feature maps fDt as

fDt = CAT (DS (It), ht−1) (1)

where CAT (·) refers to concatenation operation; DS (·) refers to downsampling
operation in the cell which consists of 5×5 convolutional layers and RDB module.
Then, fDt will be fed into a series of RDB modules. For each RDB module, the
output is represented as fRt = {fR1

t , · · · , fRN
t }, where N refers to the number of

RDB modules. RDB cell could get the global hierarchical features ft by fusing
the concatenation of local hierarchical features fRt with 1×1 convolutional layer
as follows:

ft = Conv(CAT (f Rt )) (2)

where Conv(·) refers to convolutional operation. Then, the hidden state ht could
be updated as follows:

ht = H(ft) (3)
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Fig. 4: The structure of global spatio-temporal attention module. ft−2, ft−1, ft+1,
ft+2 and ft refer to the hierarchical features of corresponding neighboring frames
in the past or future and the current frame, respectively; linear refers to fully
convolutional layer; GAP refers to global average pooling layer; Ft refers to the
output of the GSA module, integrating the effective components of hierarchical
features from each past and future frame by GAP Fusion module

where H refers to the hidden state generation function, consisting of 3× 3 con-
volutional layer and RDB module. In short, while processing each frame in the
video, the inputs of RDB cell are current blur frame and previous hidden state.
Then, RDB cell will generate the hierarchical features of this frame and update
the hidden state as well.

3.3 GSA: Global Spatio-temporal Attention Module

The structure of GSA module is shown as Fig. 4. This module aims to extract
and fuse the effective components of hierarchical features from future and past
frames. Intuitively, the frames which are closer to the current frame in time do-
main are more likely to have useful information for deblurring of current frame.
In the situation of real-time video deblurring, considering that the requirement
of low computational cost for each output frame, the number of neighboring hier-
archical features that will be fused into current frame should be limited. Further-
more, considering that delaying output by only several frames is usually accept-
able, the hierarchical features from the future frames are available for the feature
fusion. Therefore, the input of GSA will be hierarchical features of two frames
before and two frames after the current frame as {ft−2, ft−1, ft, ft+1, ft+2}. In-
spired by Squeeze-and-Excitation (SE) block in [9], a submodule named global
averaging pooling fusion is proposed, which takes features of current frame and
a neighboring frame as input to filter out effective hierarchical features fet+i from
the neighboring frame as follows:

f ct+i = CAT (ft, ft+i) (4)

fet+i = L(GAP(f ct+i))⊗ P(f ct+i) (5)

where i ∈ {−2,−1, 1, 2}; GAP(·) refers to global averaging pooling [19]; L refers
to a series of linear transformation with activation function as ReLU [24] and
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Sigmoid for channel weight generation; P refers to a series of 1 × 1 convolu-
tional operations for feature fusion. Finally, GSA module will fuse the ft with
all effective hierarchical features from neighboring frames to get the output Ft

as follows:

Ft = Conv(CAT (fet−2, f
e
t−1, f

e
t+1, f

e
t+2, ft)) (6)

The output Ft of GSA module will be upsampled by deconvolutional layers [5]
in re-constructor module for generating latent image for the current frame.

4 Experiment Results

4.1 Implementation Details

Synthesized Dataset We test our model ESTRNN on two public datasets that
made by averaging high-FPS video as GOPRO[22] and REDS[21]. We choose the
same GOPRO version as [23]. There are 22 training sequences and 11 evaluation
sequences in GOPRO with 2103 training samples and 1111 evaluation samples
respectively. As for REDS, there are 240 training sequences and 30 evaluation se-
quences with 100 frames for each sequence. Due to the huge size of REDS dataset
and limited computational resources, we train our model and other SoTA models
only on first-half training sequences of REDS (120 sequences) for comparison.

Beam-Splitter Dataset (BSD) At present, there are still very limited meth-
ods for building a video deblurring dataset. The mainstream way is to average
several consecutive short-exposure images in order to mimic the phenomenon of
blur caused by relatively long exposure time [15]. This kind of method requires
a high-speed camera to capture high-FPS video and then synthesizes pairs of
sharp and blurry videos based on the high-FPS video. Video deblurring datasets
such as DVD [30], GOPRO [22] and REDS [21] were born by the above method.
However, it is questionable whether such a synthetic way truly reflects the blur
in real scenarios. In here, we provide a new solution for building video deblur-
ring dataset by using a beam splitter system with two synchronized cameras, as
shown in Fig. 5. In our solution, by controlling the length of exposure time and
strength of exposure intensity during video shooting as shown in Fig. 5b, the
system could obtain a pair of sharp and blurry video samples by shooting video
one time.

In this work, we captured beam-splitter datasets (BSD) with two different
recording frequency as 15fps and 30fps, respectively. For each frequency, there
are 24 sequences of short video with 50 frames for each. We let the exposure
time of camera C1 and camera C2 as 16ms and 2ms to capture blurry and sharp
videos, respectively. The intensity of irradiance of C1 is 1

8 of C2, in order to
keep the total irradiance intensity equalized. This is physically implemented by
inserting a 12.5% neutral density filter in the front of C1. The video resolution
is 720P (1280×720). 75% sequences (18) will be randomly selected for training,
and the rest sequences (6) will be used for testing.



ESTRNN for Video Deblurring 9

(a) (b)

Fig. 5: A beam splitter system for building video deblurring dataset. (a) is the
profile of our beam splitter system. C1 and C2 refer to two cameras with same
configurations for generating blur and sharp videos, respectively; (b) shows the
exposure scheme of C1 and C2 to generate blurry/sharp video pairs.

Training setting To be fair, we try our best to keep the hyper-parameters as
same for each model. We train each model for 500 epochs by ADAM optimizer
[16] (β1 = 0.9, β2 = 0.999) with initial learning rate as 10−4 (decay rate as 0.5,
decay step as 200 epochs). We use RGB patches of size 256 × 256 in subse-
quence of 10 frames as input to train the models. Also, same data augmentation
processes are taken for each model, including 90◦, horizontal and vertical flips.
Mini-batch size is set to 4 for single GPU (V100) training. For synthentic dataset
GOPRO and REDS, the loss function is uniformly defined as L2 loss; while for
the proposed dataset BSD, we use L1 for each model as follows:

L2 =
1

TCHW

T∑
t

‖Ot −OGT
t ‖22, (7)

L1 =
1

TCHW

T∑
t

‖Ot −OGT
t ‖1 (8)

where T , C, H, W denote the number of frames and the number of channel,
height, width for each frame; OGT

t refers to the ground truth of the tth frame.
Source code and dataset will be released on https://github.com/zzh-tech/

ESTRNN.

4.2 Results

GOPRO First, we compare our method with the SoTA video deblurring meth-
ods on GOPRO dataset. We implement 7 variants of our model with different
computational cost by modifying the number of channels (C#) of base model
and keeping the number of RDB blocks (B#) as 9. The larger C# is, the higher
computational cost it needs. We report the deblurring performance and the
corresponding computational cost for processing one frame in the video of all
compared models in terms of PSNR [8], SSIM and GMACs, respectively, in Ta-
ble 1. From the perspective of quantitative analysis, it is clear that our model

https://github.com/zzh-tech/ESTRNN
https://github.com/zzh-tech/ESTRNN
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Table 1: Quantitative results on both GOPRO and REDS datasets. Cost refers
to the computational cost of the model for deblurring one frame of HD(720P)
video in terms of GMACs. The meaning of cost is same for other tables and
figures in this paper. For our model, B# and C# denote the # of RDB blocks
in RDB cell and the # of channels for each RDB block, respectively

Model
GOPRO REDS

Cost
PSNR SSIM PSNR SSIM

STRCNN[13] 28.74 0.8465 30.23 0.8708 276.20
DBN[30] 29.91 0.8823 31.55 0.8960 784.75

IFIRNN (c2h1)[23] 29.79 0.8817 31.29 0.8913 116.29
IFIRNN (c2h2)[23] 29.92 0.8838 31.35 0.8929 167.09
IFIRNN (c2h3)[23] 29.97 0.8859 31.36 0.8942 217.89
ESTRNN (B9C60) 30.12 0.8837 31.64 0.8930 92.57
ESTRNN (B9C65) 30.30 0.8892 31.63 0.8965 108.20
ESTRNN (B9C70) 30.45 0.8909 31.94 0.8968 125.55
ESTRNN (B9C75) 30.58 0.8923 32.06 0.9022 143.71
ESTRNN (B9C80) 30.79 0.9016 32.33 0.9060 163.61
ESTRNN (B9C85) 31.01 0.9013 32.34 0.9074 184.25
ESTRNN (B9C90) 31.07 0.9023 32.63 0.9110 206.70

Table 2: Quantitative results on BSD dataset

Model BSD PSNR SSIM Cost

IFIRNN (c2h3) 15fps 34.50 0.8703 217.89
ESTRNN (B9C80) 15fps 35.06 0.8739 206.70
IFIRNN (c2h3) 30fps 34.28 0.8796 217.89
ESTRNN (B9C80) 30fps 34.80 0.8835 206.70

can achieve higher PSNR and SSIM value with less computational cost, which
means our model has higher network efficiency. To further validate the deblurring
performance of proposed model, we also show the deblurred image generated by
each model, as illustrated in Fig. 6. We can see the proposed model can restore
sharper image with more details, such as the textures of tiles on the path and
the characters on the poster.

REDS We also do the comparison on REDS, which has more diverse scenes
from different places. From Table 1, we can see our model B9C90 achieves best
results as 32.63 PSNR with only around 200 GMACs computational cost for one
720P frame. Even our small model B9C60 with cost less than 100 GMACs can
achieve same level performance as c2h3 of IFIRNN, the computational cost of
which is as twise as the former. On the qualitative results as Fig. 7, the proposed
model can significantly reduce ambiguous parts for the deblurred frame and the
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(a) Blur (b) Deblur (Ours)

(c) Blur (d) STRCNN (e) DBN (f) IFIRNN (g) Ours (h) GT

Fig. 6: Visual comparisons on testing dataset of GOPRO [22].

restored details such as the texture of the wall, characters and human body are
closer to the ground truth.

BSD We further compare our model B9C80 with IFIRNN c2h3 on our beam
splitter video deblurring dataset, shown as Table. 2. The proposed model is
superior to the SoTA with around 0.5dB more gain under same level of compu-
tational cost, on both 15fps and 30fps BSD dataset. The deblurring results are
shown in Fig.8, which proves the effectiveness of our method on realistic video
deblurring dataset.

Network Efficiency Analysis We collect the computational cost for one frame
as well as the performance (PSNR) of the SoTA lightweight image [32] and
video deblurring models on GOPRO dataset, as shown in Fig. 1. The proposed
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(a) Blur (b) Deblur (Ours)

(c) Blur (d) STRCNN (e) DBN (f) IFIRNN (g) Ours (h) GT

Fig. 7: Visual comparisons on testing dataset of REDS [21].

model includes 7 red nodes that represent different variants of our ESTRNN
from B9C60 to B9C90 in Table. 1. Also, the three blue nodes represent different
variants of IFIRNN as c2h1, c2h2 and c2h3. Because the computational cost
of different models varies drastically, we take log10(GMACs) as abscissa unit
to better display the results. An ideal model with high network efficiency will
locate at upper-left corner of the coordinate. The proposed models are closer to
the upper-left corner than the existing image or video deblurring models, which
reflects the high network efficiency of our model.

Ablation Study We conduct an ablation study to demonstrate the effective-
ness of the high-level feature fusion strategy, RDB cell, as well as GSA module,
as shown in Table 3. When ablating the modules, we keep the computational
cost almost unchanged by adjusting the number of channels (C#) for fair com-
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(a) Input (b) Input

(c) Blur (d) IFIRNN (e) Blur (f) IFIRNN

(g) Ours (h) GT (i) Ours (j) GT

Fig. 8: Visual comparisons on testing dataset of our BSD.

Table 3: Ablation study of ESTRNN. Fusion refers to the fusion strategy that
utilizes the high level features from neighboring frames

Model Fusion RDB Cell GSA PSNR Cost

B9C110 × × × 30.29 163.48
B9C100 X × × 30.46 165.59
B9C100 × X × 30.51 168.56
B9C90 X X × 30.55 161.28
B9C85 × X X 30.69 162.69
B9C80 X X X 30.79 163.61

parison. Specifically, without using fusion strategy means that the model directly
reconstructs the result according to high-level features only from current frame;
without RDB cell, the model will use residual block [7] instead, in the same way
as [22] does; without GSA module, high-level features will be directly concate-
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Table 4: Effectiveness of # of RDB blocks

B3C80 B6C80 B9C80 B12C80 B15C80

PSNR 29.74 30.31 30.79 31.03 31.27
Cost 123.03 143.32 163.31 183.90 204.19

Table 5: Effectiveness of # of neighboring frames used by GSA module. F# and
P# refers to the number of future and past frames used by the model. The base
model is B9C80

F0P1 F0P2 F0P3 F1P1 F2P2 F3P3

PSNR 30.54 30.57 30.69 30.58 30.79 30.82
Cost 119.93 133.75 148.31 133.75 163.61 196.42

nated in channel dimension. The results clearly demonstrate that each module or
design can improve the deblurring efficiency, because each module can improve
the overall performance of model when the computational cost keeps unchanged.

We further explore the effectiveness of the number of RDB blocks and the
number of past and future frames used by the model as Table. 4 and Table. 5,
respectively. First, from the perspective of the number of RDB blocks, this is
intuitive that more blocks which means more computational cost will achieve
better performance. If we compare the variant B15C80 with variant B9C90 in
Table. 1 which has almost same computational cost, we can find that it is better
to increase the number of RDB blocks rather than the channels, when the number
of channels is relatively enough. As for the number of neighboring frames, Table 5
shows that, considering the increased computational cost, the benefit of using
more neighboring frames as F3P3 is relatively small. Besides, the results of F0P1,
F0P2 and F0P3 show that the proposed model can still achieve comparative good
results even without high-level features borrowed from future frames.

5 Conclusions

In this paper, we proposed a novel RNN-based method for more computational
efficient video deblurring. Residual dense block was adopted to the RNN cell to
generate hierarchical features from current frame for better restoration. More-
over, to make full use of the spatio-temporal correlation, our model utilized the
global spatio-temporal fusion module for fusing the effective components of hi-
erarchical features from past and future frames. The experimental results show
that our model is more computational efficient for video deblurring, which can
achieve much better performance with less computational cost. Furthermore, we
also propose a new method for generating more realistic video deblurring dataset
by using a beam splitter based capture system.
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