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Abstract. Photon-efficient imaging has enabled a number of applica-
tions relying on single-photon sensors that can capture a 3D image with
as few as one photon per pixel. In practice, however, measurements of
low photon counts are often mixed with heavy background noise, which
poses a great challenge for existing computational reconstruction algo-
rithms. In this paper, we first analyze the long-range correlations in both
spatial and temporal dimensions of the measurements. Then we propose
a non-local neural network for depth reconstruction by exploiting the
long-range correlations. The proposed network achieves decent recon-
struction fidelity even under photon counts (and signal-to-background
ratio, SBR) as low as 1 photon/pixel (and 0.01 SBR), which significantly
surpasses the state-of-the-art. Moreover, our non-local network trained
on simulated data can be well generalized to different real-world imag-
ing systems, which could extend the application scope of photon-efficient
imaging in challenging scenarios with a strict limit on optical flux. Code
is available at https://github.com/JiayongO-O/PENonLocal.

Keywords: Photon-efficient imaging, long-range correlation, non-local
network, depth reconstruction.

1 Introduction

Active 3D imaging systems have broad applications including biology, robotics,
vehicle navigation and remote sensing. Typically, a large number of photons per
pixel (ppp), e.g., 103 ppp in a 1 megapixel image, is required to suppress the back-
ground noise inherent in the optical detection process [18]. Important progress
has been made for image sensors, where single-photon detectors [17] and ar-
rays [38, 46] can provide extraordinary optical sensitivity and timing resolution.
Together with the advanced computational algorithms, new photon-counting
light detection and ranging (LiDAR) systems, which detect only a single photon
per pixel on average [21], have demonstrated dramatic improvements in photon
efficiency [3]. However, in certain scenarios, such as remote sensing of a dynamic
scene at a long standoff distance [31, 24], non-line-of-sight imaging [30, 39, 28],
as well as microscope imaging of delicate biological samples [22, 41], limitations
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on the optical flux and integration time preclude the collection of the effective
signal photons. Consequently, the raw measurements with extremely low photon
counts and low signal-to-background ratio (SBR) pose great challenges on the
reconstruction algorithms.

Recently, a number of algorithms have been proposed for 3D imaging with a
small number of photons [21, 3, 43, 2, 44, 35, 26]. One of the earliest attempts is
first-photon imaging [21], in which 3D structures and reflectivity can be recov-
ered from the first detected photon at each pixel. Afterwards, there emerge other
approaches dealing with the measurements captured with array detectors [44,
36, 7]. By exploiting scene structures, recent algorithms [43, 2, 44, 35] build prob-
abilistic models for individual photon detections and use photon-by-photon pro-
cessing to remove the detections that are likely to be background noise. These
algorithms are more effective in low-light scenarios where conventional histogram
techniques [6, 1] perform poorly. Still, their performance degrades significantly
with the decrease of photon counts and SBR [35].

As in various computer vision tasks [23, 14, 13, 34], deep learning has boosted
computational imaging [5, 10, 49, 48, 42, 33], encouraging remarkable progress in
this field. Lindell et al. [26] first introduce deep learning to single photon 3D
imaging under a sensor fusion configuration, which utilizes an additional high-
resolution intensity measurement. However, the intensity image of the target
scene is usually not available in practice, which restricts the application scope of
this method. On the other hand, the deep neural network lacks specific designs
to cope with the large-volume yet sparse photon-efficient measurements, making
it less competitive to the state-of-the-art non-learning-based method [35].

In this paper, we first analyze that the photon-efficient measurements con-
tain long-range correlations in both spatial and temporal dimensions. Then we
propose an end-to-end deep learning method for depth reconstruction from the
measurements with utilization of the long-range correlations. Since the mea-
sured raw photon counts are contaminated with background noise, we build
our network from a denoising backbone [8, 9]. Most importantly, we integrate
the non-local operator to exploit the correlations within the measurements. To
make it sufficiently effective for large-volume 3D measurements, we deploy a
subsequent downsampling operation along the temporal dimension in the fea-
ture space, which promotes the reconstruction performance by further enlarging
the receptive field for the backbone network. As a general assumption in previ-
ous literature [26, 35, 44, 43], we focus on low photon flux regimes, which copes
with our long-distance imaging system where the returning photons are weak.
Comprehensive simulations demonstrate the significantly improved accuracy of
our non-local network over state-of-the-art methods, and this advantage is even
larger under extremely low photon counts (e.g., 1 ppp) and low SBR (e.g., 0.01).
In addition, the network trained on simulated data achieves superior performance
for outdoor scenes (over ranges up to 21 km, with about 1 ppp and 0.1 SBR)
captured by our long-distance imaging system. This advantage is demonstrated
again on real-world measurements from another indoor imaging system.

The main contributions of this work can be summarized into three aspects:
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1) An end-to-end network for depth reconstruction from photon-efficient mea-
surements, especially those with extremely low photon counts and low SBR;

2) Analysis of long-range correlations in the measurements and exploitation
of the correlations with our specifically designed non-local neural network;

3) Superior reconstruction performance on both simulated and real-world
measurements and improved generalization capability to unseen noise levels as
well as across different imaging systems.

2 Related Work

Single-photon sensors. Photon-efficient imaging has attracted increasing at-
tention recently. To name a few, O’Toole et al. [29] design an imaging system
which builds on single-photon avalanche diode (SPAD) sensors to capture multi-
path responses with active illuminations. Instead of capturing the distance, In-
gle et al. [19] propose the passive free-running SPAD imaging, which uses SPADs
to acquire 2D intensity images without any active light source. The captured in-
tensity images are with unprecedented dynamic range under ambient lighting.
Gupta et al. [16] study the correlations between photon flux and the distortion of
captured temporal waveform. They then derive a closed form expression for the
optimal flux of a SPAD-based LiDAR system, and propose a simple adaptive
approach to achieve the optimal flux. Furthermore, Gupta et al. [15] propose
an asynchronous single-photon 3D imaging system to mitigate the distortions
caused by the ambient light.

Computational reconstruction algorithms. Depth reconstruction from
photon-efficient measurements is an active research topic. As an embodiment of
maximum likelihood estimation, conventional log-matched filter [4] can be ef-
fective for high-light scenarios with a large number of data samples. To tackle
with decreased photon counts and SBR, Shin et al. [43] develop a robust method
for estimating depth and reflectivity using fixed dwell time per pixel. They [44]
also develop an array-specific algorithm to recover depth and reflectivity by ex-
ploiting both the transverse smoothness and longitudinal sparsity of the natural
scenes. Rapp et al. [35] introduce a novel method that emphasizes the unmixing
of contributions from signal and noise sources, which achieves promising results.
With exploitation of high-resolution intensity images, Lindell et al. [26] propose
a deep learning-based method for photon-efficient 3D imaging under a sensor fu-
sion configuration. These advanced algorithms can promote the reconstruction
performance in low-light scenarios. Still, their performance degrades significantly
under extremely low photon counts and low SBR due to a lack of specifically
designed mechanism, which hinders the application of photon-efficient imaging
in challenging scenarios.

Image denoising and non-local mechanism. As a representative im-
age denoising method, BM3D [11] searches similar patches in a global manner
to exploit the non-local correlations in the whole image. Our work is inspired
by this simple yet effective idea, together with the observation that the raw
photon-efficient measurements have long-range correlations across both spatial
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and temporal dimensions. To accomplish the depth reconstruction task with an
advanced architecture, we build our network on the basis of the deep boost-
ing denoising model [8, 9] as well as the non-local operator [47, 50]. The latter
has been demonstrated effective in various tasks, such as super-resolution [12]
and sequence learning [27]. However, different from ordinary images and videos,
the photon-efficient measurements are in large 3D volume, sparse in temporal
dimension and contaminated with heavy noise. To the best of our knowledge,
this is the first time that the non-local mechanism is adopted to deal with such
high dimensional and sparse measurements. Our specifically designed non-local
neural network excavates the long-range correlations in both spatial and tempo-
ral dimensions and significantly improves the depth reconstruction performance
especially in the challenging low photon counts and low SBR scenarios.

3 The Proposed Method

3.1 Forward Model

We depict an image formation model for SPAD-based pulsed LiDAR imaging
system, which is then used to generate simulated data for training our network.
Such a system generally contains a pulsed laser source and a SPAD detector,
as shown in Fig. 1 (a). The pulsed laser source transmits periodic short light
pulses s(t) with repetition period Tr to illuminate the scene in a raster-scanned
manner. To avoid distance aliasing, we assume Tr > 2zmax/c, where zmax is the
maximum scene depth and c is the speed of light. The SPAD detector observes
the reflected light pulses by detecting at most one photon per pulse repetition
period, and builds a temporal histogram with recorded photons.

Note that the system operates in low photon flux regimes, which is a general
assumption in previous literature [26, 35, 44, 43]. This means that the returning
photons are very weak (far less than 1 photon) within each repetition period
Tr and the pile-up effect [16, 32] can be negligible. Thus for each illumination
position (i, j), the photon flux arrived at the detector at time interval n can be
described as

ri,j [n] =

∫ (n+1)∆t

n∆t

Φi,j · s(t−
2zi,j
c

)dt+ bγ , (1)

where ri,j [n] denotes the photon flux arrived at the detector at time interval
n, ∆t is the bins of duration, and Φi,j encapsulates the distance fall-off, scene
reflectance and BRDF. s(t) denotes the transmitted light pulses and zi,j is the
scene depth of illumination position (i, j). bγ denotes the photon flux caused by
the ambient light with optical frequency γ.

For a SPAD detector, the arrived photon flux is attenuated by the detector’s
quantum efficiency η ∈ [0, 1), which describes the probability that an incident
photon can be detected by the device [37]. Besides, the detector has a non-zero
dark count bd (numbers of false detections) as well. Therefore, the number of
photons measured by the SPAD detector in response to N illumination periods
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Fig. 1. (a) SPAD-based pulsed LiDAR imaging system, which contains a pulsed laser
source and a SPAD detector. (b) In low photon flux regimes, the photon detections
within N illumination periods can be described as the sum of signal photon detections
(red) and background photon detections (blue). The signal photon detections are from
the light pulses with the same distribution and they are correlated with each other,
while the background photon detections are randomly distributed and not correlated

of light pulses can be represented by a temporal histogram

hi,j [n] ∼ P{N [ηri,j [n] + bd]}, (2)

where hi,j [n] represents the temporal histogram at time interval n for position
(i, j) within N illumination periods of light pulses. The measurements are mod-
eled as a Poisson process P with a time-varying arrival function.

3.2 Long-range Correlations

As shown in Fig. 1 (b), in temporal dimension, the photon detections within N il-
lumination periods can be described as the sum of signal photon detections (red)
and background photon detections (blue) under low photon flux regimes. The
signal photon detections are from the light pulses with the same distributions
and thus they are correlated with each other. However, the background photon
detections are randomly distributed in time, which have no correlations with
each other or the signal photon detections. Since the signal photons will reach the
SPAD at any timestamps, the correlations should be considered across the whole
temporal dimension. In spatial dimension, for most natural scenes, the neighbor-
hoods that have similar geometry have correlations with each other. Since these
neighborhoods may appear at any spatial positions, the correlations should be
considered across the whole spatial dimension. Thus, the photon-efficient mea-
surements have correlations in both spatial and temporal dimensions.

3.3 Network Architecture

Aiming at high fidelity depth reconstruction from photon-efficient measurements
especially those with extremely low photon counts and low SBR, we propose
an end-to-end deep neural network with dedicated components to exploit the
long-range correlations within the measurements. The flowchart of our proposed
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Fig. 2. The flowchart of our proposed network for depth reconstruction from the input
raw photon-efficient measurements. The cuboids denote features which are in 3D vol-
ume (spatial and temporal). The temporal dimension of features is 1024 originally, and
64 after downsampling. Note that we only show one channel of features for simplifica-
tion. The red, blue, and green colors denote the 3D convolution, dilated convolution
and deconvolution with kernel size of 3×3×3, respectively. The gray color denotes the
3D convolution with kernel size of 1×1×1. “+” and “×” with circular blocks denote the
concatenation and matrix multiplication, respectively. Each layer (except for the last
one) adopts ReLU as the activation function, which is omitted here for simplification.
For more details about our network, please refer to the supplementary material

network is shown in Fig. 2, the backbone of which is an advanced denoising
model called dense dilated fusion network [8, 9].

Given a photon-efficient measurement for depth reconstruction, the first step
is to extract features with a feature extraction block. After that, a non-local
block is adopted to capture long-range spatial-temporal correlations within the
measurement. Then, a feature integration block, that contains a downsampling
operator and several 3D dilated dense fusion sub-blocks, is performed to down-
sample features in temporal dimensions and integrate them across channels. The
last reconstruction block first estimates the denoised histogram ĥ, then generates
the 2D depth map by reporting the bin index of the maximum value of ĥ.

In order to make our network training more efficient, we adopt two loss terms
to constrain the network. One is the Kullback-Leibler (KL) divergence at each

spatial position (i, j) between the denoised histogram ĥ and the normalized
groundtruth histogram h, which can be written as

DKL(hi,j , ĥi,j) =
∑
n

hi,j [n] log
hi,j [n]

ĥi,j [n]
. (3)

The other is a total variation (TV) term for regularization on the output
2D depth map, which is to improve the robustness of the network. We apply
a differentiable argmax operator S to ĥ to find the bin index of the maximum
value through a simple weighted sum calculation for each spatial location (i, j)

S(ĥi,j) =
∑
n

n · ĥi,j [n]. (4)

Thus the final loss function to train our depth reconstruction network is

L(h, ĥ) =
∑
i,j

DKL(hi,j , ĥi,j) + λTV (S(ĥ)), (5)

where λ is a hyper-parameter giving the ratio of the two loss terms.
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Fig. 3. (a) Performance comparisons of different network configurations against noise
levels. (b) Reconstruction performance against temporal dimension of features after
downsampling. (c) Improvements of NLB over BAS against noise levels. (d) Quantita-
tive comparisons of NLB and BAS in generalization to unseen noise levels

3.4 Non-local Block

Since the photon-efficient measurements contain long-range correlations in both
spatial and temporal dimensions, we propose our non-local block to exploit the
correlations. Due to the high dimensionality and sparsity of the measurements,
integrating the non-local block and making it sufficiently effective is non-trivial.
Thus, we deploy a downsampling operation along the temporal dimension in the
feature space after the non-local block to make the training efficient for such
high dimensional and sparse 3D measurements.

Global information exploration. The global information across both spa-
tial and temporal dimensions explored by our non-local block remarkably im-
proves the reconstruction performance, especially in low photon counts and low
SBR scenarios. To verify this, we conduct an ablation between two networks:
“Plain” denotes the backbone network [8, 9], “NLB” denotes our non-local neu-
ral network exploiting both spatial and temporal correlations. Here we report
some intermediate results. As shown in Fig. 3 (a), our non-local neural network
achieves performance improvements on each noise level, and the improvements
are more prominent in low photon counts and low SBR (e.g., 49% on 2:50)
compared with that in higher ones (e.g., 42% on 10:2), which demonstrates the
effectiveness of our non-local network. Note that the less the photon counts are,
the more difficult the reconstruction is. For example, it is much more challenging
to reconstruct on 2:2 than 10:10, although they are with the same SBR.

Downsampling scale investigation. We also investigate the correlations
between the downsampling scale and the reconstruction performance. Different
downsampling scales result in different temporal dimensions of the features. As
shown in Fig. 3 (b), the reconstruction performance improves with the decrease of
the temporal dimension of features (originally 1024) until it hits a certain value.
After this turning point (64 channels here), the performance begins to degrade
due to the substantial information loss caused by such heavy downsampling. In
the following simulation and experiments, we uniformly set the downsampling
scale to 16 (corresponding to 64 channels) in our network, which guarantees
superior performance as well as training efficiency.
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A closer look at the low end. As demonstrated above, the long-range
spatial-temporal dependencies within the raw measurements can be effectively
captured by our non-local block. Here we take a closer look at the performance
improvement, where the network containing the downsampling operator but not
the non-local block is adopted as the baseline (denoted as “BAS”). In this way, we
can see the role of the non-local block in our network more clearly. Specifically, we
compare the improvements of our non-local neural network (with both non-local
block and downsampling, denoted as “NLB”) over the above baseline on various
noise levels. As shown in Fig. 3 (c), the non-local block itself achieves a notable
improvement on each noise level, and the improvements are more prominent in
low photon counts and low SBR (e.g., 18% on 2:50) compared with those in high
ones (e.g., 6% on 10:2), which demonstrates the effectiveness of the non-local
block itself.

Generalization capability improvement. Due to the exploration of the
global information across both spatial and temporal dimensions, the non-local
block also helps to improve the generalization capability of the network to unseen
noise levels. To verify this, we first train two networks, i.e., BAS and NLB, on a
dataset with a large range of noise levels (9 typical noise levels plus 3 extremely
low SBR cases, see Sec. 4.3 for more details), and the obtained models are
denoted as “Seen”. The two networks are then retrained on a dataset with a
small range of noise levels (the 9 typical noise levels in the previous large range),
and the obtained models are denoted as “Unseen”. We compare the performance
of the above models on the test data in the 3 extremely low SBR cases. As shown
in Fig. 3 (d), the performance of the BAS network degrades 60% when a trained
model generalizes to unseen noise levels, while the NLB network only drops 24%
in the same situation. It thus demonstrates the effectiveness of the non-local
block, once again.

In summary, our non-local block effectively captures the long-range spatial-
temporal dependencies within 3D photon-efficient measurements, which is ben-
eficial for depth reconstruction especially in low photon counts and low SBR
scenarios. Moreover, it helps improve the generalization capability of the net-
work to unseen noise levels.

4 Experiments

4.1 Data Simulation and Evaluation Metric

We simulate SPAD measurements for a variety of scenes and illumination con-
ditions using RGB-D images from the NYU v2 dataset [45] captured with the
Microsoft Kinect sensor, by sampling the corresponding inhomogeneous Pois-
son process in Eq. 2. To vary the signal and background noise levels across the
dataset, we simulate an average of 2, 5, and 10 signal photons detected per pixel,
with 2, 10, and 50 background photons at each signal level. Each measurement
has 1024 bins for every histogram on a certain spatial position with a bin size
of 80 ps, and a detected illumination pulse with a full width at half maximum
(FWHM) of 400 ps. A total of 13800 and 2800 measurements are generated from
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the NYU v2 dataset for training and validation, respectively. The test data is
simulated on a set of 8 scenes from the Middlebury dataset [40] under different
noise levels. The evaluation metric is the generally used root mean square er-
ror (RMSE) between the recovered depth map and the ground truth, which is
averaged over 8 test scenes under a number of selected noise levels.

4.2 Implementation Details

We implement our method using PyTorch, and make comparisons with conven-
tional log-matched filter (LM Filter) [4] and several state-of-the-art approaches
including Shin et al. [44], Rapp et al. [35], and Lindell et al. [26] (Lindell I and
Lindell denote the networks trained with and without intensity maps, respec-
tively) on both simulated and real-world measurements. The implementation of
these methods follows their publicly available codes. For our network, we adopt
eight 3D dilated dense fusion sub-blocks in the feature integration block, and
the hyper-parameter λ in the loss function is set to 10−5. We train the networks
in [26] with the same training data as ours, during which we extract patches of
size 32×32×1024, with a batch size of 4. We initialize the network randomly and
use the ADAM [20] solver with β1 = 0.9, β2 = 0.999 and a learning rate of 10−4

with a learning rate decay of 0.9 after each epoch. The training is conducted on
NVIDIA 1080Ti GPU, which takes about 35 hours for the network to converge.
Limited by the large GPU memory required for 3D convolution especially in [26],
we test on the measurements with a relatively low spatial resolution of 72×88
and a uniform temporal resolution of 1024 (unless noted otherwise), yet higher
spatial resolution input can be processed in a patch-by-patch manner.

4.3 Simulation Results

Quantitative evaluation. We first evaluate our method on the 8 test scenes
under 9 typical noise levels generally reported in literature (10:2, 5:2, 2:2, 10:10,
5:10, 2:10, 10:50, 5:50, 2:50) with comparison of LM Filter [4], Shin et al. [44],
Rapp et al. [35], and Lindell et al. [26]. The quantitative results are listed in the
upper part of Table 1. As can be seen, our method achieves the best performance
in terms of all noise levels and significantly surpasses previous approaches. Com-
pared with the two most recent methods Rapp and Lindell, our method improves
the reconstruction performance by a large margin (over 50%), which indicates
the effectiveness of exploiting long-range correlations within the measurements
using the non-local block.

A closer look at the low end. To further evaluate the performance of our
method under extremely low photon counts and low SBR, we conduct simula-
tions with noise levels of 3:100, 2:100, and 1:100, which are seldom investigated
before since they are too challenging1. The results are listed in the lower part of

1 Note that we enlarge the illumination periods N to ensure that the returning photons
in each period are weak enough so that our image formation model in Eq. 2 can still
be valid without suffering from the pile-up effect in simulating these noise levels.
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Table 1. Quantitative comparisons of several depth reconstruction methods under dif-
ferent noise levels (signal photon: noise photon). All results are reported as an average
root mean square error (RMSE) over the test set containing 8 scenes with spatial reso-
lution of 72×88. Lindell I and Lindell denote that the networks in [26] are trained with
and without intensity maps, respectively

Noise Levels LM Filter Shin Rapp Lindell Lindell I Ours

10:2 0.8023 0.0274 0.0226 0.0296 0.0278 0.0147
5:2 1.8994 0.0380 0.0268 0.0346 0.0334 0.0160
2:2 3.7632 0.0677 0.0376 0.0470 0.0454 0.0216

10:10 1.2328 0.0385 0.0232 0.0303 0.0286 0.0150
5:10 2.5967 0.0532 0.0282 0.0354 0.0342 0.0165
2:10 4.8231 0.0892 0.0570 0.0485 0.0479 0.0218

10:50 1.7839 0.0764 0.0267 0.0317 0.0295 0.0153
5:50 3.4985 0.1060 0.0359 0.0380 0.0345 0.0185
2:50 5.7514 0.1514 0.0890 0.0748 0.0681 0.0266

Ave. 2.9057 0.0720 0.0385 0.0411 0.0388 0.0184

3:100 5.4568 1.2593 0.0614 0.0655 0.0487 0.0250
2:100 6.2437 1.3648 0.1163 0.2435 0.1311 0.0328
1:100 6.9180 2.1753 0.6605 1.3650 1.2702 0.0893

Ave. 6.2062 1.5998 0.2794 0.5580 0.4833 0.0490

Table 1. Quantitatively, our method achieves 82% and 89% improvements over
the second and third best, respectively. Specifically, the performance of Rapp
and Lindell decrease dramatically from 2:100 to 1:100, while our method be-
haves much better with an elegant degradation. Note that, the three noise levels
are not involved in the training data. It demonstrates the generalization capa-
bility of our network to unseen test data, which is essential to guarantee that
the network trained from simulated data is applicable to real-world scenarios.

Qualitative evaluation. We provide qualitative comparisons of depth re-
construction for different methods on various noise levels, with two exemplar
scenes shown in Fig. 4 and Fig. 5. As can be seen, existing state-of-the-art meth-
ods recover accurate depth maps under high SBR (e.g., 10:2), but they all fail to
recover decent depth under SBR as low as 1:100 (0.01). Specifically, LM Filter
generates noisy results, Shin loses informative depth information, Rapp, Lindell,
and Lindell I fail to recover structures of the scene. In contrast, our method still
reconstructs decent depth even in this challenging case. The distinct improve-
ment over previous approaches under extremely low photon counts and low SBR
demonstrates the superiority of our method.

Running Time. We further compare the running time of our method with
existing approaches. LM Filter, Shin, and Rapp are tested on Intel Core i7-6700k
@4GHz CPU, while Lindell, Lindell I, and our method are tested on NVIDIA
1080Ti GPU. As shown in Table 2, our method is much faster than others,
achieving nearly 6 and 35 times acceleration compared with Lindell and Rapp.



Photon-Efficient 3D Imaging with A Non-Local Neural Network 11

GT LM Filter Shin Rapp Lindell Lindell_I Ours

ECCV_art

RMSE:0.840 RMSE:0.040 RMSE:0.044RMSE:0.048 RMSE:0.015RMSE:0.042

d
ep

th
 (

m
)

1
0

:2

d
ep

th
 (

m
)

RMSE:0.097RMSE:2.304 RMSE:1.881RMSE:6.761 RMSE:0.674RMSE:0.223

RMSE:0.045RMSE:0.098RMSE:0.104RMSE:5.676 RMSE:0.113RMSE:0.173

RMSE:4.843 RMSE:0.075 RMSE:0.084RMSE:0.086 RMSE:0.034RMSE:0.113

d
ep

th
 (

m
)

d
ep

th
 (

m
)

2
:1

0
2

:5
0

1
:1

0
0

Fig. 4. Comparisons of several depth reconstruction methods for the Art scene on dif-
ferent noise levels: 10:2, 2:10, 2:50, and 1:100. Depth maps are with a spatial resolution
of 72×88. GT denotes the groundtruth depth map provided in the dataset
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Fig. 5. Comparisons of several depth reconstruction methods for the Reindeer scene
on different noise levels: 10:2, 2:10, 2:50, and 1:100. Depth maps are with a spatial
resolution of 72×88. GT denotes the groundtruth depth map provided in the dataset

4.4 Real-world Results

Besides the simulated test set, we also conduct outdoor experiments to verify
the performance of our method in real-world scenarios. Our long-distance coax-



12 J. Peng et al.

Table 2. The running time of different methods averaged on 8 test scenes with a
resolution of 72×88×1024

Methods LM Filter Shin Rapp Lindell Lindell I Ours

Time(s) 8.47 9.90 19.19 2.91 2.95 0.55

(a) (b)

Fig. 6. (a) Imaging optics. (b) Photo of imaging setup

ial single-photon imaging setup is shown in Fig. 6. The laser transmitted from
the collimator, passing through the perforated mirror and the scanning mirror,
comes out from the telescope. The photons reflected by the target are collected
with the same telescope, then delivered through the scanning mirror, perforated
mirror and polarization beam splitter, detected by the single photon detector at
last. This system was initially proposed in [25] yet with a traditional reconstruc-
tion algorithm. For more details about the imaging system, please refer to the
supplementary material.

We capture three different scenes over 1 km, 4 km and 21 km away, respec-
tively, and make comparisons among different depth reconstruction methods.
Here the networks of Lindell and ours are both trained on the aforementioned
simulated dataset in Sec. 4.1, which are adopted to process the real-world mea-
surements directly. The qualitative comparisons are shown in Fig. 7. As can be
seen, both LM Filter and Shin fail to reconstruct the main structures of the
scenes, resulting heavy noise or missing components. For Rapp and Lindell, they
fail to reconstruct the fine structures in the scenes. For example, they can hardly
reconstruct the windows in the second and third scenes. In contrast, our network
recovers both main and fine structures in the scenes even under heavy noise. For
a further comparison, we also provide quantitative results in terms of RMSE
computed with the groundtruth depth maps which are captured by our system
with a long acquisition time. The quantitative results clearly demonstrate the
superior performance of our method over previous approaches.

In addition to our long-distance coaxial single-photon imaging system, we
also test on real-world measurements captured by another indoor single-photon
imaging prototype [26], which consists of synchronization electronics, off-the-
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Fig. 7. The reconstruction results for three outdoor scenes. First row: a Hotel, that
locates 1 km away with a spatial resolution of 320×320, SBR=0.1, and about 1 ppp.
Second row: a Castle, that locates 4 km away with a spatial resolution of 256×256,
SBR=0.9, and about 1 ppp. Third row: a tall building named K11, that locates 21 km
away with a spatial resolution of 128×128, SBR=0.1, and about 1 ppp. GT denotes the
groundtruth depth maps captured by our system with a long acquisition time. Limited
by the GPU memory, the input measurements are cropped into 64x64 patches in the
spatial dimensions, and the reconstruction results are stitched together to obtain final
depth maps with the same spatial resolution as the inputs

shelf optical and optomechanical components, a standard vision camera, a pi-
cosecond laser, and a linear array of 256 SPADs. The qualitative comparisons
are shown in Fig. 8, which demonstrate the superiority of the proposed method
over previous approaches again. Specifically, as marked by the red boxes, one
can easily observe grid-like errors in the first scene, a bump-like error below the
elephant’s head in the second scene, and missing structures in the third scene
for different methods in comparison, yet our method gets rid of these errors. In
the last scene, our method makes the lamp circle larger which is an error due to
the extremely high brightness of the lamp (see the intensity image). However,
other methods also encounter errors in this region which are even more severe.
It is worth mentioning that the networks used in the above two single-photon
imaging systems are trained on the same simulated dataset, which demonstrates
the generalization capability of our method across different imaging systems.

5 Conclusion

We analyze the long-range correlations across spatial and temporal dimensions
within the photon-efficient measurements and propose an end-to-end deep neu-
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Fig. 8. The reconstruction results for real-world scenes captured by an indoor
single-photon imaging prototype [26]. The input measurements with a resolution of
256×256×1536 are cropped into 64×64 patches in the spatial dimensions, and the re-
construction results are stitched together to obtain final depth maps with a spatial
resolution of 256×256

ral network for depth reconstruction from the measurements by exploiting the
correlations with the non-local block and the downsampling operator. Com-
prehensive simulations demonstrate the significantly improved accuracy of the
proposed method over existing state-of-the-art approaches, and this advantage is
even larger under extremely low photon counts (e.g., 1 ppp) and low SBR (e.g.,
0.01). In addition to the superior performance on simulated data, our method
also generalizes well in real-world experiments ranging up to 21 km, with about 1
ppp and 0.1 SBR. We believe that the proposed method could extend the appli-
cation scope of photon-efficient imaging especially in challenging scenarios, e.g.,
long-range imaging at a few hundreds of kilometers, non-line-of-sight imaging,
and biological imaging with a strict limit on optical flux.
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