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1 Overview

In this supplementary material, we present six sets of additional results.

1. We analyze the effect of hyper-parameter T in the anchor-free enhancement
module.

2. We discuss the effect of uncertainty estimation in the different stages of
progressive training.

3. We compare the inference time between our method with the state-of-the-art
approaches.

4. We describe the differences between our anchor-free module and SFace [3].

5. We show discrete and continuous ROC curves on the FDDB dataset and
detailed precision-recall curves on the WIDER FACE test sets.

6. We show additional qualitative results of our method on the FDDB and
WIDER FACE datasets.

2 Parameter Analysis for Anchor-Free Module

We evaluate the effect of hyper-parameter T in the anchor-free enhancement
module. Table 1 shows the results on the WIDER FACE validation set with
different thresholds. We find that T = 0.7 works best and hence we choose this
value for all of our experiments.

3 Effect of Uncertainty Estimation

We analyze the effect of uncertainty estimation with KL loss during different
stages of progressive training. As shown in Table 2, applying KL loss in the
entire training process can achieve the best AP performance. The results show
uncertainty estimation works for faces with different scales. Such scheme im-
proves bounding box regression and helps learn more accurate face detectors in
our method.
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4 Inference Time

We measure the inference time of our ProgressFace and the state-of-the-art face
detectors in Table 3. Compared to the RetinaFace with DCNv2, our ProgressFace-
Light costs similar inference time (6.92 ms vs. 6.80 ms) but achieves better per-
formance on WIDER FACE validation set (e.g., 87.9% vs. 79.5% for the hard
set).

5 Differences between our anchor-free module and SFace

The main differences between our anchor-free branch and SFace [3] are three-fold.
(1) The strategies of integrating anchor-free branches are different. SFace needs a
re-scoring strategy to merge the anchor-based and anchor-free branches to unify
the confidence scores of these two branches. Differently, we take the output
of the anchor-free branch as complementary positive anchors for the anchor-
based branch and thus bypass the discrepancy of confidence scores generated by
these two branches. (2) The inference procedures are different. SFace needs the
anchor-free branch for inference as it is coupled with the anchor-based branch.
In contrast, our anchor-free enhancement module will be removed for inference
and no extra computation cost will be introduced. (3) The optimization targets
are different. SFace relies on UnitBox [4] to infer a pixel that falls in a target
face or not with cross-entropy loss and regress four bounding box offsets by IoU
loss for each positive pixel. Our anchor-free branch is inspired by CenterNet [5],
which predicts centers of faces with focal loss and regresses size and offset with
L1 Loss for each center.

6 Detailed Performance Curves

We present the detailed ROC curves on the FDDB benchmark with discrete and
continuous metrics in Fig. 1. The results of previous methods are provided by the
official website of the FDDB benchmark. Our ProgressFace achieves 98.7% and
85.6% TPR with respect to discrete and continuous metrics, which is competitive
with state-of-the-art methods. It is notable that our ProgressFace-Light still
can achieve comparable performance with much less computation cost. We also
present detailed precision-recall curves on the WIDER FACE test sets in Fig. 2

7 Additional Qualitative Results

For qualitative evaluations, we show in Fig. 3 that our method can detect
1037 faces in the image containing dense faces with extremely small scales. We
also present additional face detection results on the FDDB and WIDER FACE
datasets in Fig. 4, 5, 6. These results show that our method can detect faces
accurately in a wide variety of scale, pose, blur, expression, occlusion and illu-
mination.
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(a) Discrete ROC curves (b) Continuous ROC curves

Fig. 1. Detailed ROC curves of previous methods and ours on the FDDB benchmark
with discrete and continuous metrics. The numbers indicate the true positive rate when
the amount of false positives is equal to 1,000.

Table 1. Effect of different thresholds T in the anchor-free enhancement module on
the WIDER FACE validation set.

T Easy Medium Hard

0.5 0.946 0.931 0.871
0.6 0.949 0.932 0.874
0.7 0.949 0.935 0.879
0.8 0.949 0.933 0.877

Table 2. Effect of uncertainty estimation with KL loss. We compare the performance
when the KL loss is applied on the different training stages.

When to apply KL loss Easy Medium Hard

1st stage 0.949 0.935 0.879
2nd stage 0.949 0.934 0.878
3rd stage 0.948 0.934 0.877
4th stage 0.947 0.933 0.877

(d) Test:Easy (e) Test:Medium (f) Test:Hard

Fig. 2. Precision-recall curves on the WIDER FACE test sets. ∗ indicates the work
which is under review or not formally published.



4 J. Zhu, D. Li, et al.

Table 3. Inference time of our ProgressFace and the state-of-the-art face detectors.
For fair comparisons, inference time are computed with the same 640× 480 input size
for all methods. Platform info: NVIDIA Tesla P100, CUDA 9.0, CUDNN 7.0.5, MXNet
1.3.0.

Methods Easy Medium Hard Inference time (ms)

LFFD v2 [2] 0.837 0.835 0.729 7.11
LFFD v1 [2] 0.910 0.881 0.780 9.64
RetinaFace (MobileNet-0.25) [1] 0.914 0.901 0.782 5.21
RetinaFace (MobileNet-0.25) [1] + DCNv2 [6] 0.922 0.910 0.795 6.80
ProgressFace-Light (MobileNet-0.25) 0.949 0.935 0.879 6.92

RetinaFace (ResNet-152) [1] 0.969 0.961 0.918 72.65
ProgressFace (ResNet-152) 0.968 0.962 0.918 72.75

Fig. 3. Our method can detect 1037 faces out of the reported 1151 faces in the image
containing dense faces with extremely small scales. We also list the amount of detected
faces by previous methods.
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Fig. 4. Sample detection results of our mehtod on the FDDB dataset.
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(a) Scale

(b) Pose

(c) Blur

(d) Expression

(e) Occlusion

(f) Illumination

Fig. 5. Sample detection results on the WIDER FACE validation set. Our method can
detect faces accurately with large variations in scale, pose, blur, expression, occlusion
and illumination.
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Fig. 6. Sample detection results on the WIDER FACE validation set. Our method can
detect faces accurately with large variations in scale, pose, blur, expression, occlusion
and illumination.
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