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1 Datasets

a)

b)

c)

Fig. 1: a) shows samples of COMPAQ dataset [3] images with only Red-channel
present b) contains samples from SNV dataset c) contains samples from Hand
Gesture dataset.

Each row of Fig. 1 shows few images with the corresponding skin-mask pairs
from COMPAQ, SNV and Hand Gesture datasets respectively.

2 Implementation details

2.1 GLSS on NIR images

Sψ is the segmentation model (as shown in Fig. 2 in the paper) implemented
using DeepLabv3+ (XceptionNet) and UNet (EfficientNet). Sψ is trained for

? equal contribution
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Algorithm 1 Generative Latent Search for Segmentation (GLSS)

Training VAE on source samples

Input: Source dataset Sn = {x1, ...,xn}, Number of source samples n, En-
coder gφ, Decoder hθ, Trained Perceptual Model Pψ, Learning rate η, Batch-
size B. Output: Optimal parameters φ∗, θ∗.

1: Initialize parameters φ, θ
2: repeat
3: sample batch {xi} from dataset Sn, for i = 1, ..., B

4: µ
(i)
z , σ

(i)
z ← gφ(xi)

5: sample zi ∼ N(µ
(i)
z , σ

(i)
z

2
)

6: Lr ←
∑B
i=1 ‖xi − hθ(zi)‖

2
2

7: Lp ←
∑B
i=1 ‖Pψ(xi)− Pψ(hθ(zi))‖22

8: Lg ← Lr + Lp +
∑B
i=1DKL

[
N(µ

(i)
z , σ

(i)
z

2
) ||N(0, 1)

]
9: Lh ← Lr + Lp

10: φ← φ+ η∇φLg
11: θ ← θ + η∇θLh
12: until convergence of φ, θ

Inference - Latent Search during testing with Target

Input: Target sample x̃T, Trained decoder hθ∗ , Learning rate η. Output:
‘nearest-clone’ x̃S for the target sample x̃T.

13: sample z from N(0, 1)
14: repeat
15: Lssim ← 1− SSIM(x̃T, hθ∗(z))
16: z← z + η∇zLssim
17: until convergence of Lssim
18: z̃S ← z
19: x̃S ← hθ∗(z̃S)

100-150 epochs with losses (Ls) as shown in Eq. 1 and Eq. 2 for UNet and
DeepLabv3+ respectively.

Ls = Ldice + Lbce (1)

Ls = Lfocal (2)

Ldice is the dice coefficient loss which calculates the overlap between the
predicted and the ground truth mask whereas Lbce is the binary cross-entropy
loss. Binary focal loss (Lfocal) tries to down-weight the contribution of examples
that can be easily segmented so that the segmentation model focuses more on
learning hard examples.
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Pψ is a perceptual model (as shown in Fig. 1 in the paper) that uses percep-
tual loss Lp. The perceptual features are taken from the 6th layer of UNet and
the last concatenation layer of DeepLabv3+. VAE along with perceptual loss Lp
is trained for 150-200 epochs. Lp is weighted with a factor β (a hyper-parameter)
as shown:

Ltotal = Lvae + βLp (3)

In order to improve the quality of VAE reconstructed images, we weighted the
perceptual loss (Lp) with different values of β. For UNet, we have used β = 2
whereas β = 3 is used for DeepLabv3+. The first part of Algorithm 1 shows
the steps involved in training VAE and second part shows the steps involved in
inference procedure.

Using an Intel Xeon processor (6 Cores) with a base frequency of 2.0 GHz,
32GB RAM and NVIDIA® Tesla® K40 (12 GB Memory) GPU, Latent Search
for one sample on SNV dataset takes 450 ms and 120 ms on Hand Gesture
dataset. The time required is in the order of milliseconds on a basic GPU like
K40 which is not very significant. However, this is the cost that is to be paid for
being target independent which is a very significant advantage.

2.2 Implementation details of UDA baseline methods for skin
segmentation

DeepLabv3+ was used as the segmentation model for all the baselines with im-
ages and corresponding masks of size 128× 128. AdaptsegNet [6] uses discrimi-
native approach to predict the domain of the images. For discriminator, we used
a model with 5 convolutional layers (default implementation). We performed a
grid search over λadvtarget1 and λadvtarget2 and reported the best IoU score for
AdaptsegNet. DISE [2] uses image-to-image translation approach to translate
one domain to another. It employs label transfer loss to optimize the segmenta-
tion model. Image-to-image translation based methods work well in cases where
the structural similarity is more. We used 0.1, 0.25 and 0.5 for λseg and reported
the best IoU using λseg = 0.1 while the learning rate was set to 2.5e-4. Advent
[7] proposes to leverage an entropy loss to directly penalize low-confident predic-
tions on target domain. If λent is large then the entropy drops too quickly and
the model is strongly biased towards a few classes. We used 0.001 for λent as
suggested by the authors regardless of the network and dataset. Also, for adver-
sarial training, 0.001 was used for λadv. We trained with AdvEnt as it performed
better that minEnt as stated in the paper. SGD and Adam were used as opti-
mizers for segmentation and discriminator networks respectively. In DADA [8],
authors make use of an additional depth information in the source domain. We
performed a grid search over λseg using values 0.25, 0.5, 1. The learning rate was
varied with values 2.5e-4, 1e-4 and 3e-4 and finally best IoU was reported with
λseg = 0.5 and learning rate = 2.5e-4. CLAN [5] makes use of a category-level
joint distribution and align each class with an adaptive adversarial loss, thus
ensuring correct mapping of source and target. Compared to traditional adver-
sarial training, CLAN introduces the discrepancy loss and the category-level
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adversarial loss. Hyperparameters like learning rate, weight decay, λweight and
λadv were used with values 2.5e-4, 5e-4, 0.01 and 0.001 respectively during train-
ing. For training BDL [4], we set the learning rate to 2.5e-4 for the segmentation
network and 1e-4 for the discriminator. Grid search was performed for λadvtarget
with values 1e-3, 2e-3, 5e-3 and best IoU was reported with λadvtarget = 1e-3.

2.3 SSIM Loss

SSIM loss compares pixels and their corresponding neighbourhoods between two
images, preserving the luminance, contrast and structural information. To per-
form Latent Search, we used distance metric as SSIM loss, that helps to sample
the ‘nearest-clone’ in the source distribution for the target image from the gen-
erative latent space of VAE. Unlike norm-based losses, SSIM loss helps in the
preservation of structural information as compared to discrete pixel-level infor-
mation. We used 11x11 Gaussian filter in our experiments.

SSIM is defined using the three aspects of similarities, luminance
(
l(x, x̂)

)
,

contrast
(
c(x, x̂)

)
and structure

(
s(x, x̂)

)
that are measured for a pair of images

{x, x̂} as follows:

l(x, x̂) =
2µxµx̂ + C1

µ2
x + µ2

x̂ + C1
(4)

c(x, x̂) =
2σxσx̂ + C2

σx2 + σx̂2 + C2
(5)

s(x, x̂) =
σxx̂ + C3

σxσx̂ + C3
(6)

where µ’s denote sample means and σ’s denote variances. C1, C2 and C3 are
constants. With these, SSIM and the corresponding loss function Lssim, for a
pair of images {x, x̂} are defined as:

SSIM(x, x̂) = l(x, x̂)α · c(x, x̂)β · s(x, x̂)γ (7)

where α > 0, β > 0 and γ > 0 are parameters used to adjust the relative
importance of the three components.

Lssim(x, x̂) = 1− SSIM(x, x̂) (8)

2.4 Target-Independence of GLSS

GLSS is a general-purpose target-independent UDA method. For UDA, target
independence is a merit since a SINGLE source model can be used across multiple
targets. However, even with target data (for VAE training) GLSS doesn’t degrade
while SOTA methods do, for skin segmentation on NIR images (Table below
compares IoU).
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Table 1: IoU comparison for Target-Independence of GLSS with change in the
amount of target data. GLSS performance is not affected by change in the
amount of target data during training while other SOTA methods degrade.

% of Target data Adaptsegnet BDL CLAN Advent DADA GLSS

60 0.23 0.30 0.22 0.33 0.31 0.37
40 0.22 0.26 0.22 0.29 0.28 0.37
20 0.21 0.22 0.21 0.24 0.23 0.38

2.5 GAN vs. VAE

GLSS demands a generative model that has both generation and inference capa-
bilities (mapping from latent to data space and vice versa), which is not the case
with GANs. This leads to non-convergence of latent search. To validate this, we
trained a SOTA BigGAN [1] on COMPAQ Dataset [21] and performed GLSS.
Although GAN had better generation quality (FID of 29.7 with BigGAN vs. 44
with VAE), the final IoU was worse as shown in Table 2.

Table 2: IoU score comparison between BigGAN and VAE when trained on SNV
and Hand Gesture datasets. VAE scores better in terms of IoU.

SNV/BigGAN Hand Gesture/BigGAN SNV/VAE Hand Gesture/VAE

0.09 0.21 0.38 0.69
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3 Additional Results

real target VAE
reconstruction

after 30 after 60 after 90

iterations over the latent space of source

nearest-clones

Fig. 2: Illustration of Latent Search (LS) in GLSS for SNV dataset. Prior to
the LS, VAE reconstructed target samples are obtained. It is evident that the
‘nearest-clones’ (images generated using LS) improve as the LS progresses. Also
the quality (empirically) of ‘nearest-clones’ are better as compared to the VAE
reconstructed images. The ‘nearest-clones’ are shown after every 30 iterations.
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real target VAE
reconstruction

after 30 after 60 after 90

iterations over the latent space of source

nearest-clones

Fig. 3: Illustration of Latent Search (LS) in GLSS for Hand Gesture dataset. Prior
to the LS, VAE reconstructed target samples are obtained. It is evident that the
‘nearest-clones’ (images generated using LS) improve as the LS progresses. Also
the quality (empirically) of ‘nearest-clones’ are better as compared to the VAE
reconstructed images. The ‘nearest-clones’ are shown after every 30 iterations.
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(a) GT (b) w/o edge (c) w/o L? (d) w/o LS (e) GLSS

Fig. 4: (a) the ground truth mask for SNV and Hand Gesture datasets, (b) the
predicted mask of VAE reconstructed image without edge concatenation, (c)
the predicted mask of VAE reconstructed image without Lp, (d) the predicted
mask of VAE reconstructed with edge concatenation and perceptual loss when
no Latent Search (LS) was performed, (e) the predicted mask with GLSS. It is
evident from the predicted masks that with edge concatenation, perceptual loss
and Latent Search (LS), quality of predicted masks improve. Each component
plays a significant role in improving the IoU. Hence, when all the components
are employed (as in GLSS) we get the best IoU.
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(a) (b)

(c)

Fig. 5: (a) an NIR image x̃T from SNV dataset (target), (b) ‘nearest-clone’ x̃S

generated from GLSS, (c) Structural Similarity Index (SSIM) scores calculated
between x̃T and all the samples (having only Red-channel) of COMPAQ dataset
(source) are shown with blue color in the plot. Similary, SSIM scores calculated
between x̃S and all the samples (having only Red-channel) of COMPAQ dataset
are shown with red color. It is evident from the figure that the SSIM scores are
higher for the ‘nearest-clone’ x̃S as compared to the scores with x̃T. It indicates
that x̃S is more closer to the source domain (COMPAQ) as compared to x̃T.
Hence, the ‘nearest-clone’ x̃S generated by GLSS for target x̃T is used as a proxy
in the segmentation network Sψ which is trained only on COMPAQ dataset,
thereby increasing the IoU for x̃T.
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(a) (b)

(c)

Fig. 6: (a) an NIR image x̃T from Hand Gesture dataset (target), (b) ‘nearest-
clone’ x̃S generated from GLSS, (c) Structural Similarity Index (SSIM) scores
calculated between x̃T and all the samples (having only Red-channel) of COM-
PAQ dataset (source) are shown with blue color in the plot. Similary, SSIM
scores calculated between x̃S and all the samples (having only Red-channel) of
COMPAQ dataset are shown with red color. It is evident from the figure that
the SSIM scores are higher for the ‘nearest-clone’ x̃S as compared to the scores
with x̃T. It indicates that x̃S is more closer to the source domain (COMPAQ)
as compared to x̃T. Hence, the ‘nearest-clone’ x̃S generated by GLSS for target
x̃T is used as a proxy in the segmentation network Sψ which is trained only on
COMPAQ dataset, thereby increasing the IoU for x̃T.
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