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Abstract. Autonomous assembly is a crucial capability for robots in
many applications. For this task, several problems such as obstacle avoid-
ance, motion planning, and actuator control have been extensively studied
in robotics. However, when it comes to task specification, the space of pos-
sibilities remains underexplored. Towards this end, we introduce a novel
problem, single-image-guided 3D part assembly, along with a learning-
based solution. We study this problem in the setting of furniture assembly
from a given complete set of parts and a single image depicting the entire
assembled object. Multiple challenges exist in this setting, including han-
dling ambiguity among parts (e.g ., slats in a chair back and leg stretchers)
and 3D pose prediction for parts and part subassemblies, whether vis-
ible or occluded. We address these issues by proposing a two-module
pipeline that leverages strong 2D-3D correspondences and assembly-
oriented graph message-passing to infer part relationships. In experiments
with a PartNet-based synthetic benchmark, we demonstrate the effective-
ness of our framework as compared with three baseline approaches (code
and data available at https://github.com/AntheaLi/3DPartAssembly).

Keywords: single-image 3D part assembly, vision for robotic assembly.

1 Introduction

The important and seemingly straightforward task of furniture assembly presents
serious difficulties for autonomous robots. A general robotic assembly task consists
of action sequences incorporating the following stages: (1) picking up a particular
part, (2) moving it to a desired 6D pose, (3) mating it precisely with the other
parts, (4) returning the manipulator to a pose appropriate for the next pick-
up movement. Solving such a complicated high-dimensional motion planning
problem [25,21] requires considerable time and engineering effort. Current robotic
assembly solutions first determine the desired 6D pose of parts [9] and then
hard-code the motion trajectories for each specific object [55]. Such limited
generalizability and painstaking process planning fail to meet demands for fast
and flexible industrial manufacturing and household assembly tasks [31].

To generate smooth and collision-free motion planning and control solutions,
it is required to accurately predict 6D poses of parts in 3D space [55,27]. We
propose a 3D part assembly task whose output can reduce the complexity of
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Fig. 1: Single-Image-Based 3D Part Assembly Task. Given as inputs an
image and a set of part point clouds depicted in (a), the task is to predict 6D
part poses in camera coordinates that assemble the parts to a 3D shape in the
given image as shown in (b).

the high-dimensional motion planning problem. We aim to learn generalizable
skills that allow robots to autonomously assemble unseen objects from parts [16].
Instead of hand-crafting a fixed set of rules to assemble one specific chair, for
example, we explore category-wise structural priors that helps robots to assemble
all kinds of chairs. The shared part relationships across instances in a category
not only suggest potential pose estimation solutions for unseen objects but also
lead to possible generalization ability for robotic control policies [65,54,43,61].

We introduce the task of single-image-guided 3D part assembly : inducing
6D poses of the parts in 3D space [30] from a set of 3D parts and an image
depicting the complete object. Robots can acquire geometry information for
each part using 3D sensing, but the only information provided for the entire
object shape is the instruction image. Different from many structure-aware shape
modeling works [40,72,17,63,71,32,53], we do not assume any specific granularity
or semantics of the input parts, since the given furniture parts may not belong to
any known part semantics and some of the parts may be provided pre-assembled
into bigger units. We also step away from instruction manuals illustrating the step-
by-step assembling process, as teaching machines to read sequential instructions
depicted with natural languages and figures is still a hard problem.

At the core of the task lie several challenges. First, some parts may have
similar geometry. For example, distinguishing the geometric subtlety of chair leg
bars, stretcher bars, and back bars is a difficult problem. Second, 3D geometric
reasoning is essential in finding a joint global solution, where every piece fits
perfectly in the puzzle. Parts follow a more rigid relationship graph which
determines a unique final solution that emerges from the interactions between the
geometries of the parts. Third, the image grounds and selects one single solution
from all possible part combinations that might all be valid for the generative task.
Thus, the problem is at heart a reconstruction task where the final assembly needs
to agree to the input image. Additionally, and different from object localization
tasks, the 3D Part Assembly Task must locate all input parts, not only posing
the parts visible in the image, but also hallucinating poses for the invisible ones
by leveraging learned data priors. One can think of having multiple images to
expose all parts to the robot, but this reduces the generalizability to real-world
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scenarios, and might not be easy to achieve. Thus, we focus on solving the task
of single-image and category-prior-guided pose prediction.

In this paper, we introduce a learning-based method to tackle the proposed
single-image-guided 3D part assemblyproblem. Given the input image and a set of
3D parts, we �rst focus on 2D structural guidance by predicting an part-instance
image segmentation to serve as a 2D-3D grounding for the downstream pose
prediction. To enforce reasoning involving �ne geometric subtleties, we design
a context-aware 3D geometric feature to help the network reason about each
part pose, conditioned on the existence of other parts, which might be of similar
geometry. Building on the 2D structural guidance, we generate a pose proposal
for each visible part and leverage these predictions to help hallucinate poses for
invisible parts. We use a part graph network, using edges to encode di�erent
relationships among parts, and design a two-phase message-passing mechanism
to take part relationship constraints into consideration in the assembly.

To best of our knowledge, we are the �rst to assembleunlabeled 3D parts
with a single imageinput. We set up a testbed of the problem on the recently
released PartNet [42] dataset. We compare our method with several baseline
methods to demonstrate the e�ectiveness of our approach. We evaluate all model
performances on the unseen test shapes. Extensive ablation experiments also
demonstrate the e�ectiveness and necessity of the proposed method.

In summary, our contributions are:

{ we formulate the task of single-image-guided 3D part assembly;
{ we propose a two-module method, consisting of a part-instance image seg-

mentation network and an assembly-aware part graph convolution network;
{ we compare with three baseline methods and conduct ablation studies demon-

strating the e�ectiveness of our proposed method.

2 Related Work

We review previous works on 3D pose estimation, single-image 3D reconstruction,
as well as part-based shape modeling, and discuss how they relate to our task.

3D Pose Estimation. Estimating the pose of objects or object parts is a long-
standing problem with a rich literature. Early in 2001, Langley et al. [76] at-
tempted to utilize visual sensors and neural networks to predict the pose for
robotic assembly tasks. Zenget al. [78] built an robotic system taking multi-view
RGB-D images as the input and predicting 6D pose of objects for Amazon
Picking Challenge. Recently, Litvak et al. [37] proposed a two-stage pose esti-
mation procedure taking depth images as input. In the vision community, there
is also a line of works studying instance-level object pose estimation for known
instances [1,49,60,28,73,59,2] and category-level pose estimation [19,45,3,64,7]
that can possibly deal with unseen objects from known categories. There are
also works on object re-localization from scenes [77,23,62]. Di�erent from these
works, our task takes as inputs unseen parts without any semantic labels at the
test time, and requires certain part relationships and constraints to be held in
order to assemble a plausible and physically stable 3D shape.
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Single-Image 3D Reconstruction. There are previous works of reconstructing 3D
shape from a single image with the representations of voxel grids [10,58,68,50],
point clouds [14,34,22], meshes [66,70], parametric surfaces [18], and implicit
functions [8,39,46,52,75]. While one can consider employing such 2D-to-3D lifting
techniques as a prior step in our assembly process so that the given parts can
be matched to the predicted 3D shape, it can misguide the assembly in multiple
ways. For instance, the 3D prediction can be inaccurate, and even some small
geometric di�erences can be crucial for part pose prediction. Also, the occluded
area can be hallucinated in di�erent ways. In our case, the set of parts that
should compose the object is given, and thus the poses of occluded parts can be
more precisely speci�ed.

Part-Based Shape Modeling. 3D shapes have compositional part structures.
Chaudhuri et al. [5], Kalogerakis et al. [26] and Jaiswal et al. [24] introduced
frameworks learning probabilistic graphical models that describe pairwise rela-
tionships of parts. Chaudhuri and Koltun [ 6], Sunget al. [57] and Sunget al. [56]
predict the compatibility between a part and a partial object for sequential shape
synthesis by parts. Dubrovina et al. [13], PAGENet [ 32] and CompoNet [53] take
the set of parts as the input and generates the shape of assembled parts. Di�erent
from these works that usually assume known part semantics or a part database,
our task takes a set of unseen parts during the test time and we do not assume
any provided part semantic labels.

GRASS [33], Im2Struct [ 44] and StructureNet [40,41] learns to generate box-
abstracted shape hierarchical structures. SAGNet [72] and SDM-Net [17] learn
the pairwise relationship among parts that are subsequently integrated into a
latent representation of the global shape. G2LGAN [63] autoencodes the shape
of an entire object with per-point part labels, and a subsequent network in the
decoding re�nes the geometry of each part. PQ-Net [71] represents a shape as a
sequence of parts and generates each part at every step of the iterative decoding
process. All of these works are relevant but di�erent from ours in that we obtain
the �nal geometry of the object not by directly decoding the latent code into part
geometry but by predicting the poses of the given parts and explicitly assembling
them. There are also works studying partial-to-full shape matching [35,36,12].
Unlike these works, we use a single image as the guidance, instead of a 3D model.

3 Problem Formulation

We de�ne the task of single-image-guided 3D part assembly: given a single RGB
image I of sizem � m depicting a 3D object S and a set ofN 3D part point
clouds P = f p1; p2; � � � ; pN g (8i; p i 2 Rdpc � 3), we predict a set of part poses�

(Ri ; t i ) j Ri 2 R3� 3; t i 2 R3; i = 1 ; 2; � � � ; N
	

in SE(3) space. After applying the
predicted rigid transformation to all the input parts pi 's, the union of them recon-
structs the 3D object S. We predict output part poses f (Ri ; t i ) j i = 1 ; 2; � � � ; N g
in the camera space, following previous works [15,67]. In our paper, we use
Quaternion to represent rotation and useqi and Ri interchangeably.
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Fig. 2: Network Architecture. Our approach contains two network modules:
(a) the part-instance image segmentation module, in which we predict 2D instance-
level part masks on the image, and (b) the part pose prediction module, where
we combine 2D mask information and 3D geometry feature for each part, push
them through two phases of graph convolution, and �nally predict 6D part poses.

We conduct a series of pose and scale normalization on the input part point
clouds to ensuresynthetic-to-real generalizability. We normalize each part point
cloud posepi 2 P to have a zero-mean center and use a local part coordinate
system computed using PCA [47]. To normalize the global scale of all training
and testing data, we compute Axis-Aligned-Bounding-Boxes (AABB) for all the
parts and normalize them so that the longest box diagonal across allpi 's of a
shape has a unit length while preserving their relative scales. We cluster the
normalized part point clouds pi 's into sets of geometrically equivalent part classes
C = f C1; C2; � � � ; CK g, where C1 = f pi g

N 1
i =1 , C2 = f pi g

N 1 + N 2
i = N 1 +1 , etc. For example,

four legs of a chair are clustered together if their geometry is identical. This
process of grouping indiscernible parts is essential to resolve the ambiguity among
them in our framework. C is a disjoint complete set such thatCk \ Cl = � for
every Ck ; Cl 2 C; k 6= l and [ K

k=1 Ck = P. We denote the representative point
cloud pj for each classCj 2 C.

4 Method

We propose a method for the task ofsingle-image-guided 3D part assembly, which
is composed of two network modules: 1) part-instance image segmentation and 2)
part pose prediction. Figure 2 illustrates the overall architecture. We �rst extract
a geometry feature of each part from the input point cloud pj 2 C and generates
N instance-level 2D segmentation masksf M i 2 f 0; 1gm � m ji = 1 ; 2; � � � ; N g on
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the input image (m = 224). Conditioned on the predicted segmentation masks,
our model then leverages both the 2D mask features and the 3D geometry features
to propose 6D part posesf (qi ; t i )ji = 1 ; 2; � � � ; N g. Below, we explain the two
network module designs and refer to supplementary for implementation details.

4.1 Part-Instance Image Segmentation

To induce a faithful reconstruction of the object represented in the image, we
need to learn a structural layout of the input parts from the 2D input. We
predict a part instance mask M i 2 f 0; 1gm � m for each part pi . All part masks
subject to the disjoint constraint, i.e., M bg +

P N
i =1 M i = 1, where M bg denotes a

background mask. If a part is invisible, we simply predict an empty mask and let
the second network to halluciate a pose leveraging contextual information and
learned data priors. The task di�culties are two folds. First, the network needs
to distinguish between the geometric subtlety of the input part point clouds to
establish a valid 2D-3D correspondence. Second, for the identical parts within
each geometrically equivalent class, we need to identify separate 2D mask regions
to pinpoint their exact locations.

Context-Aware 3D Part Features. To enable the network to reason the delicate
di�erences between parts, we construct the context-aware 3D conditional feature
f 3d 2 R2F2 (F2 = 256), which is computed from three components: part geometry
feature f geo 2 RF2 , instance one-hot vectorf ins 2 RPmax (Pmax = 20), and a
global part contextual feature f global 2 RF2 . We use PointNet [48] to extract
a global geometry featuref geo for each part point cloud pi . If a part pj has
multiple instances kj > 1 within a geometrically equivalent classCj (e.g. four
chair legs), we introduce an additional instance one-hot vectorf ins to tell them
apart. For part which has only one instance, we use an one-hot vector with
the �rst element to be 1. For contextual awareness, we extract a global feature
f global over all the input part point clouds, to facilitate the network to distinguish
between similar but not equivalent part geometries (e.g. a short bar or a long bar).
Precisely, we �rst compute f geo and f ins for every part, then compute f local =
SLP1([f geo; f ins ]) 2 RF2 to obtain per-part local feature, where SLP is short for
Single-Layer Perception. We aggregate over all part local features via a max-
pooling symmetric function to compute the global contextual feature f global =
SLP2 (MAX i =1 ;2;��� ;N (f i;local )) . Finally, we de�ne f 3d = [ f local ; f global ] 2 R2F2

to be the context-aware 3D per-part feature.

Conditional U-Net Segmentation. We use a conditional U-Net [51] for the part-
instance segmentation task. Preserving the standard U-Net CNN architecture,
our encoder takes an 3-channel RGB image as input and produce a bottleneck
feature map f 2d 2 RF1 � 7� 7 (F1 = 512). Concatenating the image featuref 2d

with our context-aware 3D part conditional feature f 3d, we obtain f 2d+3 d =
[f 2d; f 3d] 2 R(F1 +2 F2 ) � 7� 7, where we duplicatef 3d along the spatial dimensions
for 7 � 7 times. The decoder takes the conditional bottleneck featuref 2d+3 d and
decodes a part maskM i for evert input part pi . We keep skip links as introduced
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in the original U-Net paper between encoder and decoder layers. To satisfy the
non-overlapping constraint, we add a SoftMax layer across all predicted masks,
augmented with a background maskM bg 2 f 0; 1g(m � m ) .

4.2 Part Pose Prediction

With the 2D grounding masks produced by the part-instance image segmentation
module, we predict a 6D part pose (Ri ; t i ) for every input part pi 2 P using
the part pose prediction module. We predict a unit Quaternion vector qi that
corresponds to a 3D rotationRi and a translation vector t i denoting the part
center position in the camera space.

Di�erent from object pose estimation, the task of part assembly requires a
joint prediction of all part poses. Part pose predictions should not be independent
with each other, as part poses follow a set of more rigid relationships, such as
symmetry and parallelism. For a valid assembly, parts must be in contact with
adjacent parts. The rich part relationships restrict the solution space for each part
pose. We leverage a two-phase graph convolutional neural network to address
the joint communication of part poses for the task of part assembly.

Mask-Conditioned Part Features. We consider three sources of features for each
part: 2D image feature f img 2 RF3 , 2D mask feature f mask 2 RF3 (F3 = 512),
context-aware 3D part feature f 3d 2 R2F2 . We use a ResNet-18 [20] pretrained
on ImageNet [11] to extract 2D image feature f img . We use a separate ResNet-18
that takes the 1-channel binary mask as input and extracts a 2D mask feature
f mask , where masks for invisible parts are predicted as empty. Then, �nally, we
propagate the 3D context-aware part featuref 3d introduced in the Sec. 4.1 that
encodes 3D part geometry information along with its global context.

Two-Phase Graph Convolution. We create a part graph G = ( V; E), treating
every part as a node and propose a two-phase of graph convolution to predict
the pose of each part.

During the �rst phase, we draw pairwise edges among all partspi in every
geometrically equivalent part classesCj and perform graph convolution over
G1 = ( V; E1), where

E 1 = f (pi 1 ; pi 2 )j8pi 1 ; pi 2 2 Cj ; i 1 6= i 2; 8Cj 2 Cg: (1)

Edges inE 1 allow message passing among geometrically identical parts that are
likely to have certain spatial relationships or constraints (e.g. four legs of a chair
have two orthogonal re
ection planes). After the �rst-phase graph convolution,
each nodepi has an updated node feature. The updated node feature is then
decoded as an 6D pose (Ri ; t i ) for each part. The predicted part poses produce
an initial assembled shape.

We leverage a second phase of graph convolution to re�ne the predicted
part poses. Besides the edges inE 1, we draw a new set of edgesE 2 by �nding
top-5 nearest neighbors for each part based upon the initial assembly and de�ne
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G2 =
�
V; E1 [ E 2

�
. The intuition is that once we have an initial part assembly,

we are able to connect the adjacent parts so that they learn to attach to each
other with certain joint constraints.

We implement the graph convolution as two iterations of message pass-
ing [74,69,40]. Given a part graph G = (V; E) with initial node features f 0 and
edge featurese0, each iteration of message passing starts from computing edge
features

et +1
(pi 1 ;p i 2 ) = SLPg

�
[f t

i 1
; f t

i 2
; et

(pi 1 ;p i 2 ) ]
�

; t 2 f 0; 1g: (2)

where we do not usee0 during the �rst phase of graph convolution, and de�ne
e0

(pi 1 ;p i 2 ) = 0 if ( pi 1 ; pi 2 ) 2 E 1 and e0
(pi 1 ;p i 2 ) = 1 if ( pi 1 ; pi 2 ) 2 E 2 for the second

phase. Then, we perform average-pooling over all edge features that are connected
to a node and obtain the updated node feature

f t +1
i =

1
jf u j (pi ; pu ) 2 Egj

X

(pi ;pu )2 E

et +1
(pi ;pu ) ; t 2 f 0; 1g: (3)

We de�ne f t +1
i = f t

i if there is no edge drawn from nodei . We de�ne the �nal
node features to bef i = [ f 0

i ; f 1
i ; f 2

i ] for each phase of graph convolution.
Respectively, we denote the �nal node feature of �rst phase and second phase

graph convolution to be 1f i and 2f i for a part pi .

Part Pose Decoding. After gathering the node features after conducting the
two-phase graph convolution operations as1f i and 2f i ; i 2 f 1; 2; � � � ; N g, we use
a Multiple-Layer Perception (MLP) to decode part poses at each phase.

sqi ;s t i = MLP P oseDec (sf i ) ; s 2 f 1; 2g; i 2 f 1; 2; � � � ; N g: (4)

To ensure the output of unit Quaternion prediction, we normalize the output
vector length so that ksqi k2 = 1.

4.3 Training and Losses

We �rst train the part-instance image segmentation module until convergence
and then train the part pose prediction module. Empirically, we �nd that having
a good mask prediction is necessary before training for the part poses.

Loss for Part-Instance Image Segmentation.We adapt the negative soft-iou loss
from [38] to supervise the training of the part-instance image segmentation module.
We perform Hungarian matching [29] within each geometrically equivalent class
to guarantee that the loss is invariant to the order of part poses in ground-truth
and prediction. The loss is de�ned as

L mask i = �

P
u;v 2 [m;m ] M̂ (u;v )

i � M (u;v )
M ( i )

P
u;v 2 [m;m ]

�
M̂ (u;v )

M ( i ) + M (u;v )
i � M̂ (u;v )

M ( i ) � M (u;v )
i

� : (5)
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where M i 2 f 0; 1g[m;m ] and M̂ M (i ) 2 [0; 1][m;m ] denote the ground truth and the
matched predicted mask.M refers to the matching results that match ground-
truth part indices to the predicted ones. [m; m] includes all 2D index (u; v)'s on
a 224� 224 image plane.

Losses for Part Pose Prediction. For the pose prediction module, we design an
order-invariant loss by conducting Hungarian matching within each geometry-
equivalent classesCi 2 C. Additionally, we observe that separating supervision
loss for translation and rotation helps stabilize training. We use the following
training loss for the pose prediction module.

L pose =
NX

i =1

(� 1 � L T + � 2 � L C + � 3 � L E ) + � 4 � L W (6)

We use theL 2 Euclidean distance to measure the di�erence between the 3D
translation prediction and ground truth translation for each part. We denote M
as the matching results.

L T i = kt̂M (i ) � t i k2; 8i 2 f 1; 2; � � � ; N g: (7)

where t̂M (i ) and t i denote the matched predicted translation and the ground
truth 3D translation. We use weight parameter of � 1 = 1 in training.

We use two losses for rotation prediction: Chamfer distance [15] L C and
L2 distanceL E . Because many parts have symmetric geometry (e.g. bars and
boards) which results in multiple rotation solutions, we use Chamfer distance
as the primary supervising loss to address such pose ambiguity. Given the point
cloud of part pi , the ground truth rotation Ri , and the matched predicted rotation
R̂M (i ) , the Chamfer distance loss is de�ned as

L C i =
1

dpc

X

x 2 R̂ M ( i ) (pi )

min
y2 R i (pi )

kx � yk2
2 +

1
dpc

X

y2 R i (pi )

min
x 2 R̂ M ( i ) (pi )

kx � yk2
2; (8)

where Ri (pi ) and R̂M (i ) (pi ) denote the rotated part point clouds using Ri and
R̂M (i ) respectively. We use� 2 = 20 for the Chamfer loss. Some parts may be
not perfectly symmetric (e.g. one bar that has small but noticeable di�erent
geometry at two ends), using Chamfer distance by itself in this case would make
the network fall into local minima. We encourage the network to correct this
situation by penalizing the L 2 distance between the matched predicted rotated
point cloud and the ground truth rotated point cloud in Euclidean distance.

L E i =
1

dpc






 R̂M (i ) (pi ) � Ri (pi )








2

F
; (9)

where k�kF denotes the Frobenius norm,dpc = 1000 is the number of points
per part. Note that L E i on its own is not su�cient in cases when the parts are
completely symmetric. Thus, we add theL E loss as a regularizing term with a
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smaller weight of � 3 = 1. We conducted an ablation experiment demonstrating
the L E loss contributes to correcting rotation for some parts.

Finally, we compute a shape holistic Chamfer distance as the predicted
assembly should be close to the ground truth Chamfer distance.

L W =
1

N � dpc

X

x 2 Ŝ

min
y2 S

kx � yk2
2 +

1
N � dpc

X

y2 S

min
x 2 Ŝ

kx � yk2
2; (10)

where Ŝ = [ N
i =1 (R̂M (i ) (pi ) + t̂ i ) denotes the predicted assembled shape point

cloud and S = [ N
i =1 (Ri (pi ) + t i ) denotes the ground truth shape point cloud.

This loss encourages the holistic shape appearance and the part relationships to
be close to the ground-truth. We use� 4 = 1.

5 Experiments

In this section, we set up the testbed for the proposedsingle-image 3D part
assemblyproblem on the PartNet [42] dataset. To validate the proposed approach,
we compare against three baseline methods. Both qualitative and quantitative
results demonstrate the e�ectiveness of our method.

5.1 Dataset

Recently, Mo et. al. [42] proposed the PartNet dataset, which is the largest 3D
object dataset with �ne-grained and hierarchical part annotation.In our work,
we use the three largest furniture categories that requires assembly: Chair, Table
and Cabinet. We follow the o�cial PartNet train/val/test split (70% : 10% : 20%)
and �lter out the shapes with more than 20 parts.

For each object category, we create two data modalities:Level-3 and Level-
mixed. The Level-3 corresponds to the most �ne-grained PartNet segmentation.
Since an algorithm can implicitly learn the semantic priors dealing with the only
Level-3 data, which impedes generalization, as IKEA furnitures might not follow
the PartNet semantics, we created an additional category modality,Level-mixed,
which contains part segmentation at all levels in the hierarchy. Speci�cally, for
each shape, we traverse every path of the ground-truth part hierarchy and stop
randomly. We have 3736 chairs, 2431 tables, 704 cabinets inLevel-3 and 4664
chairs, 5987 tables, 888 cabinets inLevel-mixed.

For the input image, we render a set of 224� 224 images the PartNet models
with ShapeNet textures [4]. We randomize the viewpoints by azimuth [0� ; 360� ),
elevation [25� ; 30� ] and distance [0:6; 1:0]. We then compute the world-to-camera
matrix and obtain the 3D object position in the camera space used for supervising
segmentation module. For the input point cloud, we use Furthest Point Sampling
(FPS) to sample dpc = 1000 points over the each part mesh. We then normalize
them following the descriptions in Sec. 3. With normalized parts, we detect
geometrically equivalent parts by �rst �ltering out parts comparing dimensions of
AABB under a threshold of 0.1. We further process the remaining parts computing
all possible pairwise part Chamfer distance normalized by their average diagonal
length under a hand-picked threshold of 0.02.
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Fig. 3: Qualitative Results We show six examples of each category in the two
modalities. The upper and lower rows are Level-3 and Level-mixed respectively.

5.2 Evaluation Metric

To evaluate the part assembly performance, we use two metrics:part accuracy
and shape Chamfer distance. The part accuracy metric that leverages Chamfer
distance between the part point clouds after applying the predicted part pose and
the ground truth pose to address such ambiguity. Following previously de�ned
notation in Section 4.3, we de�ne the Part Accuracy Score (PA) as follows and
set a threshold of� = 0 :1.

PA =
1
N

NX

i =1

1
� 





 (R̂M (i ) (pi ) + t̂ i ) � (Ri (pi ) + t i )








chamfer
< �

�
(11)

Borrowing the evaluation metric heavily used in the community of 3D object
reconstruction, we also measure theshape Chamfer distancefrom the predicted
assembled shape to the ground-truth assembly. Formally, we de�ne theshape
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