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1 Ethics and Bias Statement

1.1 Intended Use

– This algorithm is designed to hallucinate the aging process and produce an
approximation of a person’s appearance throughout his/her/their lifespan.

– The main use cases of this method are for art and entertainment purposes
(CGI effects, Camera filters, etc.). This method might also be useful for more
critical applications, e.g. approximating the appearance of missing people.
However, we would like to stress that as a non perfect data-driven method,
results might be inaccurate and biased. The output of our method should
be critically analyzed by a trained professional, and not be treated as an
absolute ground truth.

– The results of this method should not be used as grounds for de-
tention/arrest of a person or as any other form of legal evidence
under any circumstances.

1.2 Algorithm and Data Bias

We have devoted considerable efforts in our algorithm design to preserve the
identity of the person in the input image, and to minimize the influence of the
inherent dataset biases on the results. These measures include:

1. Designing the identity encoder architecture to preserve the local structures
of the input image.

2. Including training losses that were designed to maintain the person’s identity.
– Latent Identity loss: encourages identity features that are consistent

across ages.
– Cycle loss: drives the network to reproduce the original image from any

aged output.
– Self-reconstruction loss: makes the network learn to reconstruct the input

when the target age class is the same as the source age class.
3. The FFHQ dataset contains gender imbalance within age classes. To prevent

introducing these biases in the output, e.g. producing male facial features
for females or vice versa, we have trained two separate models, one for males
and one for females. The decision of which model to apply is left for the
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user. We acknowledge that this design choice restricts our algorithm from
simulating the aging process of people whose gender is non-binary. Further
work is required to make sure future algorithms will be able to simulate
aging for the entire gender spectrum.

Despite these measures, the network might still introduce other biases that we
did not consider when designing the algorithm. If you spot any bias in the results,
please reach out to help future research!

2 Networks Architecture

Our framework consists of a generator, which contains the identity encoder,
mapping network and the decoder, an age encoder and a discriminator. We
describe the architecture of each component below.

Identity encoder. The identity encoder contains a 7× 7 convolution layer
that processes the input image. That layer is followed by two 3×3 2-strided con-
volution layers that downsample the feature maps and four residual blocks [1]
that produce the final identity features. Each convolution layer is followed by
Pixel-norm [3], which we empirically found to produce less artifacts than Instance-
norm and ReLU activation. We applied equalized learning rate [3] for each con-
volution layer. Table 1 shows the Identity encoder architecture.

Mapping network. The mapping network is an 8 layer MLP network. It
takes a 50× n input age code vector, where n is the number of age classes, and
outputs a 256 element age latent code. The input is first normalized with Pixel-
norm [3]. Each fully connected layer is followed by a Leaky-ReLU activation and
Pixel-norm. We omit the Leaky-ReLU activation for the last layer. We applied
equalized learning rate [3] for each fully connected layer. The mapping network
architecture can be seen in Table 2.

Decoder. Our decoder contains six styled convolution blocks [4] where we
use bilinear upsampling in the last two blocks to return to the original image
resolution. To reduce droplet artifacts, we replace each 3 × 3 convolution +
AdaIN [2] combination with a modulated convolution block proposed in Style-
GAN2 [5], omitting the noise input. Each modulated convolution layer is followed
by a Leaky-ReLU activation and Pixel-norm, which we found to further help in
reducing the droplet artifacts. The last layer is a 1 × 1 convolution that maps
the final features of each pixel to RGB values. Equalized learning rate is used
in all convolution blocks. Details of the decoder architecture are summarized in
Table 3.

Age encoder. The age encoder has a 7× 7 convolution that takes the input
image. It is followed by four 3× 3 2-strided convolution layers that downsample
the feature maps, and a 1×1 convolution, that produces a feature map with 50×n
output channels. A global average pooling is then applied to generate the age
code vector. Each convolution layer, except for the last one, has a Leaky-ReLU
activation. We don’t use normalization in the age encoder. Equalized learning
rate [3] was applied to each convolution layer. The full age encoder architecture
can be found in Table 4.
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Layer Stride Act. Norm Output Shape

Input – – – 256 × 256 × 3

Conv. 7 × 7 1 ReLU Pixel 256 × 256 × 64
Conv. 3 × 3 2 ReLU Pixel 128 × 128 × 128
Conv. 3 × 3 2 ReLU Pixel 64 × 64 × 256

Res. Block 1 ReLU Pixel 64 × 64 × 256
Res. Block 1 ReLU Pixel 64 × 64 × 256
Res. Block 1 ReLU Pixel 64 × 64 × 256
Res. Block 1 ReLU Pixel 64 × 64 × 256

Table 1: Identity encoder architecture.

Layer Act. Norm Output Shape

Age code – Pixel 50 × n

Linear LReLU Pixel 256
Linear LReLU Pixel 256
Linear LReLU Pixel 256
Linear LReLU Pixel 256
Linear LReLU Pixel 256
Linear LReLU Pixel 256
Linear LReLU Pixel 256
Linear – Pixel 256

Table 2: Mapping network ar-
chitecture.

Layer Act. Norm Output Shape

Idenity Features – – 64 × 64 × 256

Styled Conv. LReLU Pixel 64 × 64 × 256
Styled Conv. LReLU Pixel 64 × 64 × 256
Styled Conv. LReLU Pixel 64 × 64 × 256
Styled Conv. LReLU Pixel 64 × 64 × 256

Styled Conv. LReLU Pixel 64 × 64 × 128
Upsamle – – 128 × 128 × 128

Styled Conv. LReLU Pixel 128 × 128 × 64
Upsamle – – 256 × 256 × 64

Conv. 1 × 1 Tanh – 256 × 256 × 3

Table 3: Decoder architecture.

Layer Stride Act. Output Shape

Input – – 256 × 256 × 3

Conv. 7 × 7 1 LReLU 256 × 256 × 64
Conv. 3 × 3 2 LReLU 128 × 128 × 128
Conv. 3 × 3 2 LReLU 64 × 64 × 256
Conv. 3 × 3 2 LReLU 32 × 32 × 512
Conv. 3 × 3 2 LReLU 16 × 16 × 1024
Conv. 1 × 1 1 – 16 × 16 × (50 × n)
Global Pooling – – 1 × 1 × (50 × n)

Table 4: Age encoder architecture.

Layer Act. Norm Output Shape

Input – – 256 × 256 × 3
Conv. 1 × 1 LReLU – 256 × 256 × 64

Conv. 3 × 3 LReLU – 256 × 256 × 64
Conv. 3 × 3 LReLU – 256 × 256 × 128
Downsample – – 128 × 128 × 128

Conv. 3 × 3 LReLU – 128 × 128 × 128
Conv. 3 × 3 LReLU – 128 × 128 × 256
Downsample – – 64 × 64 × 256

Conv. 3 × 3 LReLU – 64 × 64 × 256
Conv. 3 × 3 LReLU – 64 × 64 × 512
Downsample – – 32 × 32 × 512

Conv. 3 × 3 LReLU – 32 × 32 × 512
Conv. 3 × 3 LReLU – 32 × 32 × 512
Downsample – – 16 × 16 × 512

Conv. 3 × 3 LReLU – 16 × 16 × 512
Conv. 3 × 3 LReLU – 16 × 16 × 512
Downsample – – 8 × 8 × 512

Conv. 3 × 3 LReLU – 8 × 8 × 512
Conv. 3 × 3 LReLU – 8 × 8 × 512
Downsample – – 4 × 4 × 512

Minibatch Stdev. – – 4 × 4 × 513
Conv. 3 × 3 LReLU – 4 × 4 × 512
Conv. 4 × 4 LReLU – 1 × 1 × n

Table 5: Discriminator architecture.

Discriminator. We use the StyleGAN discriminator [4] architecture with
minibatch standard deviation [3]. The first layer is a 1 × 1 convolution layer
that generates a 64 channel feature map for each input pixel. This is followed by
twelve 3× 3 convolution layers [4], we downsample the feature map after every
other 3×3 block (6 times overall). After that we apply minibatch discrimination
followed by a 3× 3 convolution block and 4× 4 convolution block with n output
channels in order to discriminate multiple classes as suggested by Liu et al. [7].
Leaky ReLU activations and Equalized learning rate are used in all convolution
layers. We do not use normalization in the discriminator. Table 5 shows the
detailed discriminator architecture.
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Age Class Males Females

0–2 1237 804
3–6 1631 2169
7–9 1005 1234

15–19 930 1957
30–39 5512 5848
50–69 3917 2054

(b)

Fig. 1: FFHQ-Aging dataset details. Left: age distributions for males and females
for the raw dataset. Right: number of training images for each anchor age class
after pruning. The majority of training classes contain more than 1,000 images,
which we found sufficient for training our model.

3 FFHQ-Aging Dataset Details

Fig. 1a shows the age distribution of images in the raw FFHQ-Aging dataset for
males and females. Figure 1b shows the number of training images for each age
class after the data cleaning process described in Sec. 4 of the main paper.

To align the images, we use the same data alignment technique as Karras
et al. [3] (see Fig. 8e in their paper), which was also used to align the original
FFHQ dataset. We mirror pad the image boundaries and then blur them. Then,
we use the eyes and mouth landmark locations to select an oriented crop area
according to

x′ = er − el

y′ =
1

2
(mr + ml)−

1

2
(er + el)

c =
1

2
(er + el)− 0.1 · y′

s = max(4.0 · |Normalize(x′)|, 4.4 · |Normalize(y′)|)

x =
s

2
· (Normalize(x′ − Rotate90(y′)))

y = Rotate90(x)

Box = [c− x− y, c− x + y, c + x + y, c + x− y]

Where el, er are the landmarks for the left and right eyes respectively, ml,mr

are the landmarks for left and right corners of the mouth, ”Normalize” is vector
normalization, s is the size of the box, and c is the center of the cropping box.
In order to make sure we obtain the full head that also includes the neck, we
took slightly larger crops then the original FFHQ dataset, our scale factor for y′

is 4.4 as opposed to 3.6 which was used originally.
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Fig. 2: Anchor classes ablation study. We show latent interpolation on models
trained on 2 anchor classes (top row), 3 anchor classes (middle row) and 6 anchor
classes (bottom row). Increasing the number of anchor classes greatly improves
the framework’s ability to generate high quality age transformations over full
lifespan.

4 Additional Results

4.1 Continuous Age Transformations

We generated continuous lifespan age transformations by interpolating 24 output
images between each neighboring age class anchors. See attached videos and
Figures 7 and 8 for the results.

4.2 Ablation Studies

We performed two ablation studies in order to prove our main claims. In the first
study we show the importance of using multiple age classes as anchors in order
to learn a latent space Wage that will allow for continuous age transformations.
We trained two additional models, one with age classes 0–2 & 50–69 as the
only anchors and one with age classes 0–2, 15–19 & 50–69 as the anchors. We
then generated full lifespan transformation of 11 images from each model by
interpolating missing anchor classes when needed along with interpolating one
output image between each two base classes. Fig. 2 shows how additional anchor
classes are crucial in creating reliable and plausible lifespan age transformations.

In the second study, we examined importance of our design choices in con-
structing the input age vector code space Z. We show the connection between
the structure of Z to the ability of the age latent spaceWage to span all possible
ages. Specifically, we show the importance of using multiple vector elements to
represent each age class as well as the importance of adding noise to the one-hot
input signal. We trained two additional models on all 6 anchor classes, one with
50 elements per age class, but with no added noise, and one with a single ele-
ment per age class and no added noise. In Fig. 3 we can see that although the
anchor classes are always well represented within the latent space, both number
of elements per age class and added noise, are important parts to ensure the
continuity of Wage and high image quality.
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Fig. 3: Age class representation ablation study. We show latent interpolation on
models trained with one-hot representation with 1 element per age class (top
row), one-hot representation with 50 elements per age class (middle row) and
one-hot representation with 50 elements per age class and added gaussian noise
(bottom row). Expanding the number of elements representing each age class
allows representation of ages outside the anchor classes. Adding noise, further
improves the image quality for interpolated outputs (Zoom in for details).
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Fig. 4: Linearity of age latent space. We compare the results of the network
outputs for the 3–6 class vs. the network outputs for 3–6 class interpolated as
the mid point between the 0–2 and 7–9 age latent vectors 0.5 ·w0−2

age + 0.5 ·w7−9
age .

The resemblance of the interpolated results to the trained results suggests that
age is spanned quasi-linearly in the Wage latent space.

4.3 Generalization Ability

To test our framework ability to generalize, we carried out two experiments.
In the first experiment, we tested the generalization ability of the age latent
space Wage. We produced outputs for the 3–6 age class by interpolating it as
the mid point of 0–2 and 7–9 age classes. We fed the decoder a latent age vector
w̃3−6

age = 0.5 ·w0−2
age + 0.5 ·w7−9

age and compare the results with the outputs for the
trained 3–6 class. As can be seen in Fig. 4, the similarity between the trained
results and the interpolated results suggests that the learned age latent space,
Wage, is approximately linear w.r.t the target age input which contributes to the
ability of the framework to generate results outside of the trained age classes.
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Fig. 5: Results on inputs from untrained age classes. Note that masking artifacts
are a result of the segmentation process, and were not caused due to our method.

In the second experiment, we tested the generalization ability of the identity
feature space. We feed the network images from the remaining 4 untrained classes
in FFHQ-Aging, 10–14, 20–29, 40–49 & 70+. Fig. 5 demonstrates our method’s
ability to produce high-quality results for unseen face structures from unseen
age classes.

4.4 User Studies

The user interface of our user studies is presented in Figure 6. The same UI
was used both for the studies in the main paper and in this supplemental doc-
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Fig. 6: User study interface. We asked 3 different questions to assess age, identity
and overall quality.

Age range: 0–2 3–6 7–9 15–19 30–39 50–69 All

[8] Ours [8] Ours [8] Ours [8] Ours [8] Ours [8] Ours [8] Ours

Same identity ↑ 14 20 19 23 24 24 20 25 24 22 19 23 120 137

Age difference ↓ 1.0 3.4 2.1 3.2 4.5 5.1 6.4 10.3 8.2 7.4 13.3 6.5 5.9 6.0

Overall better ↑ 2 23 1 24 1 23 2 23 1 24 0 25 7 142

Table 6: User study results vs. IPCGAN [8] that was retrained on our dataset.
Our results are better at preserving subject identity, and the two methods are
extremely close at age accuracy. Most importantly, when asked which result is
better overall, users preferred our results in 95% of the cases (142 out of 150,
compared to 7 for IPCGAN and 1 indecisive).

Age range: 0–2 3–6 7–9 15–19 30–39 50–69 All

[6] Ours [6] Ours [6] Ours [6] Ours [6] Ours [6] Ours [6] Ours

Same identity ↑ 16 22 24 25 25 25 25 24 25 24 25 24 140 144

Age difference ↓ 4.0 4.4 15.7 6.2 19.8 9.5 17.5 12.3 13.3 7.0 23.1 7.7 15.6 7.8

Overall better ↑ 5 20 6 18 3 20 3 20 3 21 1 24 21 123

Table 7: User study results vs. STGAN [6] that was retrained on our dataset. Our
results are better at preserving subject identity, and have better age accuracy.
Most importantly, when asked which result is better overall, users preferred our
results in 82% of the cases (123 out of 150, compared to 21 for STGAN and 6
indecisive).

ument. In addition to the main paper user studies, we also wanted to verify
that our results are not solely due to a better dataset. To this end, we retrained
IPCGAN [8] and STGAN [6] on our data.

In the following studies, we evaluate the results of 25 randomly selected
photos on each of the 6 age classes, repeating each question 3 times, for a total
of 2250 individual answers per user study. Note that in these studies we can
compare all 6 age groups, whereas in our other user studies we were limited by
the choice to use the authors’ pre-trained models which were not available for
all ages.

User study results are in Tables 6 and 7. Indeed, we see that even when
retrained on our data, there is a significant performance gap between our results
and previous works [6,8]. Our results are better at identity preservation, and
either better or on-par in age accuracy. As explained in the main text, since
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overall quality is determined by both these factors and others such as image
quality, we asked users which result is better overall. Our results were selected
as better in 82% (vs. StGAN) and 95% (vs. IPCGAN) of the cases.
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Fig. 7: Full lifespan transformation. Also see supplemental videos.
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Fig. 8: Full lifespan transformation. Also see supplemental videos.


