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Abstract. We consider the problem of semi-supervised 3D action recog-
nition which has been rarely explored before. Its major challenge lies
in how to effectively learn motion representations from unlabeled data.
Self-supervised learning (SSL) has been proved very effective at learn-
ing representations from unlabeled data in the image domain. However,
few effective self-supervised approaches exist for 3D action recognition,
and directly applying SSL for semi-supervised learning suffers from mis-
alignment of representations learned from SSL and supervised learning
tasks. To address these issues, we present Adversarial Self-Supervised
Learning (ASSL), a novel framework that tightly couples SSL and the
semi-supervised scheme via neighbor relation exploration and adversarial
learning. Specifically, we design an effective SSL scheme to improve the
discrimination capability of learned representations for 3D action recog-
nition, through exploring the data relations within a neighborhood. We
further propose an adversarial regularization to align the feature distri-
butions of labeled and unlabeled samples. To demonstrate effectiveness of
the proposed ASSL in semi-supervised 3D action recognition, we conduct
extensive experiments on NTU and N-UCLA datasets. The results con-
firm its advantageous performance over state-of-the-art semi-supervised
methods in the few label regime for 3D action recognition.

Keywords: Semi-supervised 3D action recognition, Self-supervised learn-
ing, Neighborhood Consistency, Adversarial learning

1 Introduction

Recently, 3D action recognition (a.k.a. skeleton-based action recognition) has
made remarkable progress through learning discriminative features with effective
networks [7,47,18,12,44,29,30]. However, these methods heavily rely on the avail-
able manual annotations that are costly to acquire. Techniques requiring less or
no manual annotations are therefore developed, and among them a powerful ap-
proach is semi-supervised learning. It is aimed at leveraging unlabeled data to en-
hance the model’s capability of learning and generalization such that the require-
ment for labeled data can be alleviated. It has been widely applied in the image
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domain [14,25,27,15,34,24,16]. Compared with these methods, [45] has recently
proposed a more efficient way of feature learning from unlabeled data, namely
self-supervised semi-supervised learning (S4L), that couples self-supervision with
a semi-supervised learning algorithm. It employs the self-supervised technique
to learn representations of unlabeled data to benefit semi-supervised learning
tasks. Self-supervised learning is very advantageous in making full use of unla-
beled data, which learns the representations of unlabeled data via defining and
solving various pretext tasks. Thus in this work we exploit its application to
semi-supervised 3D action recognition, which has little previous investigation.

Fig. 1. Illustration of our main idea. We
design an effective SSL scheme to cap-
ture the discriminative motion representa-
tions of unlabeled skeleton sequences for
3D action recognition. Since directly ap-
plying SSL to semi-supervised learning suf-
fers from misalignment of representations
learned from SSL and supervised learning
tasks, we further pioneer to align their fea-
ture distributions via adversarial learning

As images contain rich infor-
mation that is beneficial to fea-
ture extraction, many effective SSL
techniques [5,37,42] are image-based.
Comparatively, for tasks over skele-
ton data which represent a person by
3D coordinate positions of key joints,
it becomes very challenging to lever-
age SSL techniques to learn discrimi-
native motion representation. There-
fore, how to learn motion represen-
tation with SSL technique is an ur-
gent problem for this task. Recently,
[48] proposes a SSL method to learn
temporal information of unlabeled se-
quence via skeleton inpainting. This
SSL treats each sample as an indi-
vidual such that it ignores the shared
information among samples with the
same action class. As a result, semi-
supervised 3D action recognition has
derived little benefit from the repre-
sentations learned by skeleton inpainting.

Moreover, we also find that, directly applying SSL for semi-supervised learn-
ing suffers from misalignment of representations learned from self-supervised
and supervised learning tasks. As shown in Fig. 1, labeled and unlabeled sam-
ples are enforced with supervised and self-supervised optimization objectives re-
spectively. Though both sampled from the same data distribution, their feature
distributions are misaligned. This misalignment would weaken the generaliza-
tion of semi-supervised 3D action recognition models to unseen samples. A task
with similar problem as ours is unsupervised domain adaptation (UDA) that
matches the feature distributions from di�erent domains. While their problem
is quite similar to ours, there exist important differences between UDA and our
task. In UDA, the discrepancy of feature distributions is caused by different
domains. Our problem is the misalignment of representations learned from SSL
and supervised learning tasks in semi-supervised 3D action recognition. One line
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of research in UDA is adversarial-based adaptation methods [9,35,20] that have
shown promising results in domain adaptation. These methods seek to minimize
an approximate domain discrepancy distance through an adversarial objective
with respect to a domain discriminator. Hence, inspired by the alignment ef-
fect of adversarial learning in UDA, we exploit its application to couple the
self-supervision method into a semi-supervised learning algorithm.

In this work, we propose an Adversarial Self-Supervised Learning (ASSL)
Network for semi-supervised 3D action recognition. As shown in Fig. 1, our
model leverages (i) self-supervised learning to capture discriminative motion
representation of unlabeled skeleton sequences, and (ii) adversarial regularization
that allows to align feature distributions of labeled and unlabeled sequences.
More specifically, in addition to a self-inpainting constraint [48] for learning
temporal information of each individual unlabeled sample, we propose a new
perspective of consistency regularization within the neighborhood to explore the
data relationships. Neighborhoods can be considered as tiny sample-anchored
clusters with high compactness and class consistency. Consistency regularization
within the neighborhood further reveals the underlying class concept of the self-
supervised motion representation. Such discriminative motion representations
significantly improve the performance of semi-supervised 3D action recognition.
Moreover, considering that adversarial learning can minimize the discrepancy
between two distributions, we also propose a novel adversarial learning strategy
to couple the self-supervision method and a semi-supervised algorithm. The
adversarial regularization allows the model to align the feature distributions
of labeled and unlabeled data, which boosts the capability of generalization to
unseen samples for semi-supervised 3D action recognition.

We perform extensive studies for semi-supervised 3D action recognition on
two benchmark datasets: NTU RGB+D [28] and N-UCLA [39] datasets. With
the proposed ASSL network, we establish new state-of-the-art performances of
semi-supervised 3D action recognition. Summarily, our main contributions are
in three folds:

1. We present an Adversarial Self-Supervised Learning (ASSL) framework for
semi-supervised 3D action recognition, which tightly couples SSL and a semi-
supervised scheme via adversarial learning and neighbor relation exploration.

2. We offer a new self-supervised strategy, i.e., neighborhood consistency,
for semi-supervised 3D action recognition. By exploring data relationships
within the neighborhood, our model can learn discriminative motion repre-
sentations that significantly improve the performance of semi-supervised 3D
action recognition.

3. We identify that directly applying SSL for semi-supervised learning suf-
fers from the representation misalignment of labeled and unlabeled sam-
ples. A novel adversarial regularization is pioneered to couple SSL into a
semi-supervised algorithm to align their feature distributions, which further
boosts the capability of generalization.
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2 Related Work

2.1 3D Action Recognition

Human action recognition is one of important computer vision tasks. Due to
the informative representation for the action, skeleton-based action recognition
has been examined thoroughly in past literature. Previously, the traditional ap-
proaches [36,37,11,38] try to design various hand-crafted features from skeleton
sequences to represent human motion, e.g., relative 3D geometry between all
pairs of body parts [36]. Recently, deep learning has also been applied to this
task due to its wide success. To model temporal dependencies, many meth-
ods leverage and extend the recurrent neural networks (RNNs) to capture the
motion features for skeleton-based action recognition, e.g., HBRNN [7] and
VA-LSTM [47]. Based on Convolutional Neural Networks (CNNs) that are pow-
erful at learning hierarchical representations, spatio-temporal representations
are extracted for action recognition in [6,12,18,41]. For graph-structured data,
graph-based approaches [31,19,32] are popularly adopted for skeleton-based ac-
tion recognition, e.g., ST-GCN [44] and AGC-LSTM [30]. Though successful,
these supervised methods highly rely on massive data samples with annotated
action labels, which are expensive to obtain. Semi-supervised approaches are
thus developed to alleviate this data annotation limitation, and in this paper,
we apply it to learning motion representation for 3D action recognition.

2.2 Semi-Supervised Learning

Semi-supervised learning algorithms learn from a data set that includes both la-
beled and unlabeled data, usually mostly unlabeled. For a comprehensive review
of semi-supervised methods, we refer readers to [3]. Recently, there is increas-
ing interest in deep learning based semi-supervised algorithms. One group of
these methods is based on generative models, e.g., denoising autoencoders [26],
variational autoencoders [14] and generative adversarial networks [25,27]. Some
semi-supervised methods add small perturbations to unlabeled data, and require
similar outputs between them by enforcing a consistency regularization, e.g.,
Π-Model [15], Temporal Ensembling [15], Mean Teacher [34] and Virtual Adver-
sarial Training [24]. There are also some other works. To name a few, Lee et al.
[16] pick up the class with maximum predicted probability as pseudo-labels for
unlabeled data, and use them to train the models. [10] presents a conditional
entropy minimization for unlabeled data, which encourages their predicted prob-
ability to bias some class. The work most related to ours is [45] which proposes
a new technique for semi-supervised learning by leveraging SSL techniques to
learn representation of unlabeled images. Their work enlarges the generalization
of semi-supervised learning methods. In this work, we exploit effective SSL to
learn discriminative motion representation for semi-supervised 3D action recog-
nition. Moreover, we further propose a novel adversarial regularization to couple
SSL into the semi-supervised algorithm.
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2.3 Self-Supervised Learning for Action Recognition

Self-supervised learning for action recognition aims to learn motion representa-
tions from the unlabeled data by solving the pretext tasks. Recently, a stream of
studies [33,23,8,17,1,43] design various temporal-related tasks to learn the tem-
poral pattern from the unlabeled RGB videos. For example, a sequence sorting
task is introduced in [17]. [21,40] propose to learn the video representation by
predicting motion flows. Note that, these methods are for learning representa-
tions from RGB videos and not applicable to long-term skeleton sequences. For
3D action recognition, Zheng et al. [48] propose a conditional skeleton inpaint-
ing architecture to learn the long-term dynamics from unlabeled skeleton data.
However, this SSL ignores the shared information among samples with the same
action class and therefore may yield less discriminative feature representations.
Hence, we propose an effective self-supervised strategy to learn discriminative
representation that is beneficial for semi-supervised 3D action recognition.

3 Method

3.1 Problem Formulation

Instead of relying on massive labels in existing methods, we use only a few
labeling data in semi-supervised 3D action recognition. Formally, let X be the
training set. The training samples xi 2 X are skeleton sequences with T frames,
and xi = fxi,1; :::;xi,T g. At each time t, the xi,t is a set of 3D coordinates of
body joints, which can be obtained by the Microsoft Kinect and the advanced
human pose estimation algorithms [2,46]. In contrast to supervised 3D action
classification, training samples are split to two subsets in our task here: a labeled
training set denoted as XL = fx1; :::;xLg and an unlabeled training set denoted
as XU = fx1; :::;xUg. The training samples xl 2 XL have annotated labels
fy1; :::; yLg with yl 2 C, where C = f1; :::; Cg is a discrete label set for C action
classes. The training samples xu 2 XU are unlabeled. Usually, L is smaller than
U (L� U).

Inspired by S4L [45], we propose an Adversarial Self-Supervised Learning
framework to learn discriminative motion representations from XL and XU . It
couples self-supervised techniques into the semi-supervised scheme via adversar-
ial learning and neighbor relation exploration. Detailed descriptions of ASSL are
described in the following subsections.

3.2 Neighborhood Consistency for Semi-Supervised 3D Action
Recognition

Semi-supervised 3D action recognition aims to learn discriminative motion rep-
resentation from massive unlabeled sequences. However, this is difficult over
succinct 3D human poses. To tackle this challenge, we propose an effective SSL
strategy, neighborhood consistency, that enhances the underlying class semantics
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Fig. 2. Framework of Adversarial Self-Supervised Learning (ASSL). The ASSL lever-
ages SSL and adversarial regularization for semi-supervised 3D action recognition. For
SSL techniques, in addition to a self-inpainting constraint [48] for learning temporal
information of each individual unlabeled sample, we propose to apply a new consis-
tency regularization within the neighborhood to explore data relations. The adversarial
training with a feature discriminator is used to align feature distributions of labeled
and unlabeled samples, which further boosts generalization of semi-supervised models
to unseen samples

of motion representation by exploring data relations within the neighborhoods,
so as to improve recognition performance.

As shown in Fig. 2, we first employ skeleton inpainting [48] to learn temporal
information for each unlabeled sequence. Specifically, an encoder network Enc
takes an input skeleton sequence xu from training set XU and produces a vector
as the temporal features hu 2 Rd. Conditioned on the learned representation hu,
a decoder network Dec aims to fill the masked regions in the input sequence. Due
to the difference between the action classification (discrimination) and skeleton
inpainting (regression) tasks, we use a translation layer i.e., a linear layer, to
bridge the gap between the feature spaces of both tasks. The output of linear
layer is denoted as �hu for the sample xu. Then, in this feature space, we employ
K-nearest neighbor [4] to select K nearest neighbors from unlabeled training set
XU . The neighbor set of xu is denoted as 
xu

= fx1
u; :::;x

K
u g. A message aggre-

gation module is proposed to produce the local center vector. We use a multilayer
perceptron to assign a weight for each neighbor sample, which evaluates their
similarities as the anchor. The weights �k are computed as follows:

�k =
exp

�
MLP

�
j�hu � �h

k
uj
��

PK
k=1 exp

�
MLP

�
j�hu � �h

k
uj
�� ; (1)
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where �h
k
u is the translated feature of neighbor sample xku 2 
xu

, MLP (�) de-
notes the multilayer perceptron in message aggregation module. According to
the computed weights f�1; :::; �Kg, the local class center cu can be aggregated
with the neighbor set 
xu as follows:

cu =

KX
k=1

�k�h
k
u: (2)

Considering the high compactness and class consistency within neighbor-
hoods, we require that the samples within neighborhoods achieve a similar pre-
diction with the local center cu. However, for a sample xu, its neighbor samples
either share the class label (positive) with xu or not (negative). To minimize
the impact of negative neighbors, we introduce a simple selecting criterion: we
get the 1-nearest labeled neighbor from the labeled training set XL for the an-
chor xu and the neighbor xku. If the labeled neighbors of the anchor xu and the
neighbor xku have the same label, xku is regarded as the positive neighbor. The
set of selected positive neighbor for sample xu is denoted as 
pxu

. Finally, the
loss of consistency regularization within neighborhood is defined as follows:

LKL =
X

xu∈XU

0@KL �fc(cu); fc(�hu)
�

+
X

xK
u ∈Ω

p
xu

KL
�
fc(cu); fc(�h

k
u)
�1A ; (3)

where fc(�) is the classifier that outputs the predictions, KL(�) denotes Kullback-
Leibler divergence.

Like consistency regularization for unlabeled samples xu 2 XU , the neighbor
sets of labeled examples xl 2 XL are also selected from the unlabeled set XU .
which are denoted as 
xl

. Similarly, we use the feature �hl of xl as the anchor
to estimate its local center representation cl with its neighbors set 
xl

as the
Eqn. (1)-(2) (shown in Fig. 2). Under the assumption that the anchor shares the
same class semantic with the local center, we use a cross-entropy loss CE(�) for
the center cl:

LcCE =
X

xl∈XL

(CE (fc(cl); yl)) ; (4)

where yl is the class label of xl.
Overall, the optimization objectives of unlabeled samples can be formulated

as follows:

LU = LKL + LcCE + Linp; (5)

where Linp denotes the skeleton inpainting loss that is the L2 distance between
the inpainted sequence and the original input sequence. Minimizing this opti-
mization objective LU encourages the model to enhance the underlying class
concept of the self-supervised motion representation and yield discriminative
feature representations.
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3.3 Adversarial Learning for Aligning Self-Supervised and
Semi-Supervised Representations

(a) Sup. (b) Sup. + Sel.

Fig. 3. The t-SNE visualization of motion
features learned by Sup. and Sup. + Sel..
(a) Sup. is trained with the supervised ob-
jective for the labeled samples. (b) Sup.
+ Sel. is trained through optimizing the
supervised and SSL objectives (Eqn. (5))
for the labeled and unlabeled samples, re-
spectively. Different colors indicate different
classes. Best viewed in color. The squares
with black border denote the labeled data,
and others are unlabeled data

According to the training of exist-
ing semi-supervised learning meth-
ods, the labeled and unlabeled sam-
ples are enforced with supervised and
SSL objectives, respectively. In this
work, Eqn. (5) is used for the un-
labeled samples. Although our pro-
posed SSL technique is quite effective
for semi-supervised 3D action recog-
nition, we identify that the represen-
tations learned with supervised and
SSL task are misaligned. As shown in
the Fig. 3, with the benefit of SSL
technique, the features of Sup. + Sel.
present a more compact distribution
than Sup.. However, in contrast to
the intra-class compactness of labeled
data (the squares with black border),
there are scattering distributions for
the unlabeled data in Fig. 3(b). Thus,
although both sequences are sampled
from the same data distribution, their
feature distributions are misaligned
due to different optimization objectives. To tackle this problem, we propose
a novel adversarial training strategy to couple SSL method with the semi-
supervised 3D action recognition. Specifically, a discriminator Dis is trained to
distinguish the unlabeled features from the labeled features. And the model is
trained simultaneously to confuse the discriminator Dis. Hence, the adversarial
loss is defined as follows:

Ladv =
1

L

X
xl∈XL

�
log
�
Dis(�hl)

��
+

1

U

X
xu∈XU

�
log
�
1�Dis(�hu)

��
: (6)

The adversarial regularization allows the model to align the feature distri-
butions of labeled and unlabeled data. Therefore, like the labeled data, the fea-
ture distribution of unlabeled data becomes more intra-class compactness, which
boosts the capability of generalization to unseen samples. More analyses about
adversarial regularization are reported in Section 4.3.

3.4 Model Architecture and Optimization

Unlike the existing 3D action recognition method [7,47,18,12,44,29,30] learning
the discriminative features through the designed effective networks, the goal of



Adversarial Self-Supervised Learning 9

this work is to explore effective semi-supervised scheme for 3D action recogni-
tion. Therefore, this work adopts a universal architecture. In order to effectively
capture the motion dynamics, we use three bidirectional GRU layers to encode
the input skeleton sequence in the Enc. The decoder consists of two unidirec-
tional GRU layers. We use 4 linear layers and 3 linear layers in the discriminator
and the multilayer perceptron of message aggregation, respectively. The classifier
is a two-layer perceptron.

During training, our ASSL network is learned by minimizing the following
loss on the training data:

L = LL + �1LU + �2Ladv: (7)

where LL is a cross-entropy loss of all labeled examples in XL, �1 and �2 are non-
negative scalar weights. Note that, we always sample the same number labeled
and unlabeled samples in mini-bathes.

4 Experiments

In this section, we evaluate and compare our work with previous semi-supervised
methods and also conduct detailed component analysis.

4.1 Experimental Setup

Datasets Two popular benchmark datasets, NTU RGB+D dataset [28] and
Northwestern-UCLA dataset [39], are used for our experiments.

NTU RGB+D dataset [28] contains 56,880 samples covering 60 different
classes of human actions performed by 40 distinct subjects. These videos are
collected with three cameras simultaneously in different horizontal views. Two
evaluation protocols are provided: Cross-Subject (CS) and Cross-View (CV).
For CS protocol, skeleton sequences performed by 20 subjects are used for train-
ing, and the rest for testing. For CV protocol, all videos from Camera 2 and 3
are used for training while those from Camera 1 are used for testing. For semi-
supervised 3D action recognition, 5%, 10%, 20% and 40% of training sequences
of each class are labeled on the training set.

Northwestern-UCLA dataset [39] has 1,494 samples performed by 10 different
subjects belonging to 10 action classes. Each action sample is captured by three
Kinect cameras simultaneously from a variety of viewpoints. Its training set
consists of samples from the first two cameras and the rest from the third camera
form the testing set. For semi-supervised 3D action recognition, we use 5%, 15%,
30% and 40% labels of training sequences of each class on the training set.

Baselines There is no available semi-supervised baseline for 3D action recog-
nition, so we use following methods as baselines that achieve state-of-the-art
performances in the RGB domain:

1) Supervised-only (Sup.), training with labeled skeleton sequences only.
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2) Pseudo labels [16], leveraging the idea that the predicted labels of unlabeled
samples are used for training. First, train a model with the labeled data,
then predict the classes of unlabeled samples. These pseudo labels are used
to retrain the network in a supervised fashion with labeled and unlabeled
data simultaneously.

3) Virtual Adversarial Training (VAT) [24], training with unlabeled data to
make the model robust around input data point against local perturbation.
It generates small adversarial perturbations for unlabeled samples, which
greatly alter the output distribution; then consistency loss is applied over
unlabeled training data to encourage consistency of predictions for input
data and its adversarially perturbed version.

4) Conditional Entropy Minimization (EntMin) [10], minimizing the entropy of
prediction over unlabeled training data as a regularization for model training.
Predicted class probabilities are encouraged to be near a one-hot vector via
training with unlabeled data.

5) Self-Supervised Semi-Supervised Learning (S4L) [45], the most related method
to ours. It trains the model on self-supervised and semi-supervised tasks in a
multi-task fashion. For 3D action recognition, we use the skeleton inpainting
framework [48] as the pretext task for self-supervised learning.

Implementation All comparisons with semi-supervised baselines are made un-
der the same setting to be fair. In all experiments, the dimension of hidden states
in the GRU and bidirectional GRU is set to 512. On both datasets, we randomly
sample T = 40 frames from each skeleton sequence as input during training and
testing. We train all networks by the ADAM optimizer [13]. The learning rate,
initiated with 0.0005, is reduced by multiplying it by 0.5 every 30 epochs. We
set �1 = 1 and �2 = 0:1 in Eqn. (7). Our experiments are all implemented with
PyTorch and 1 Titan Xp GPU.

4.2 Comparison with Semi-Supervised Methods

We evaluate our method by comparing it with baselines for semi-supervised 3D
action recognition and show results on NTU and N-UCLA datasets respectively
in Tables 1 and 2.

Table 1. Test accuracy (%) on NTU dataset (Cross-Subject (CS) and Cross-View
protocols (CV)) with 5%, 10%, 20 and 40% labels of training set. v./c. denotes the
number of labeled videos per class

Method
5% 10% 20% 40%

CS (33 v./c. ) CV (31 v./c.) CS (66 v./c.) CV (62 v./c.) CS (132 v./c.) CV (124 v./c.) CS (264 v./c.) CV (248 v./c.)

Supervised-only 47.2 53.7 57.2 63.1 62.4 70.4 68.0 76.8

Pseudolabels [16] 50.9 56.3 58.4 65.8 63.9 71.2 69.5 77.7
VAT [24] 51.3 57.9 60.3 66.3 65.6 72.6 70.4 78.6
VAT + EntMin [10] 51.7 58.3 61.4 67.5 65.9 73.3 70.8 78.9
S4L (Inpainting) [45] 48.4 55.1 58.1 63.6 63.1 71.1 68.2 76.9

ASSL (ours) 57.3 63.6 64.3 69.8 68.0 74.7 72.3 80.0
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Table 2. Test accuracy (%) on N-UCLA dataset with 5%, 15%, 30% and 40% labels
of training set. v./c. denotes the number of labeled videos per class

Method 5% (5 v./c.) 15% (15 v./c.) 30% (30 v./c.) 40% (40 v./c.)

Supervised-only 34.1 37.9 48.9 58.8

Pseudolabels [16] 35.6 48.9 60.6 65.7
VAT [24] 44.8 63.8 73.7 73.9
VAT + EntMin [10] 46.8 66.2 75.4 75.6
S4L (Inpainting) [45] 35.3 46.6 54.5 60.6

ASSL (ours) 52.6 74.8 78.0 78.4

As seen from tables, with the proposed ASSL network, we establish new state-
of-the-art performances of semi-supervised 3D action recognition. To be specific,
S4L (Inpainting) performs worse than Pseudolabels, VAT and VAT + EntMin,
suggesting it is inefficient to learn discriminative representation via skeleton in-
painting and thus semi-supervised 3D action recognition has derived little benefit
from self-supervised representations. S4L (Inpainting), though a advanced semi-
supervised approach, requires an effective self-supervised representations that
are difficult to learn in this task. Compared with these semi-supervised meth-
ods, our benefit is larger when the number of labels is reduced. For example,
with 5% labels of training set on NTU dataset, the results of our ASSL present
greater improvement compared with VAT + EntMin. This clearly demonstrates
the power of the proposed ASSL.

4.3 Ablation Study

We then investigate effectiveness of the neighborhood consistency and adversarial
training in our proposed ASSL on NTU and N-UCLA datasets. We also analyze
effects of different neighborhood sizes and Neighborhood quality.

Neighborhood Consistency We evaluate the effects of the proposed self-
supervised strategy, neighborhood consistency, upon the discriminativeness of
motion representations that is shown in final performance of semi-supervised 3D
action recognition. In Table 3, the model Sup. + Inp. is trained with a cross-
entropy loss for labeled data and a self-inpainting loss Linp for unlabeled data.
Instead of self-inpainting loss, Sup. + Nei. explores the data relations within
neighborhoods by enforcing the consistency regularization (Eqn. (3), (4)) for
unlabeled data. We can see that Sup. + Nei. significantly outperforms the Sup.
+ Inp.. The comparison results justify that our neighborhood consistency can
learn more discriminative motion representations that are more beneficial for
semi-supervised 3D action recognition.

Moreover, the self-inpainting constraint [48] aims at learning temporal in-
formation of each individual unlabeled sequence. The goal of our neighborhood
consistency regularization is to explore inter-sample relations within neighbor-
hoods. We jointly learn the two features in Sup. + Inp. + Nei.. It can be seen
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Table 3. Ablation study on self-supervised learning methods, skeleton inpainting (Inp.)
[48] and neighbor consistency (Nei.). Classification accuracy (%) is reported on NTU
with 5% labels and N-UCLA with 15% labels.

Methods
NTU 5% N-UCLA 15%

CS (33 v./c.) CV (31 v./c.) (15 v./c.)

Supervised-only (Sup.) 47.2 53.7 37.9

Sup. + Inp. 48.4 55.1 46.6
Sup. + Nei. 52.1 57.8 60.0
Sup. + Inp. + Nei. 55.2 61.1 66.4

ASSL 57.3 63.6 74.8

compared with Sup. + Inp. and Sup. + Nei., Sup. + Inp. + Nei. achieves better
performance on both datasets for semi-supervised 3D action recognition. This
illustrates that the representations learned by our neighborhood consistency are
complementary to those learned with self-inpainting. Therefore, the benefits of
combining these two SSL techniques to capture discriminative representation
from unlabeled sequences in our final model are verified (seen Eqn. (5)).

Neighborhood Size We assume that the larger neighborhood size imposes
stronger regularization and gives better performance. In order to justify this
hypothesis, we investigate the effects of different neighborhood sizes in Fig. 4.
As neighborhood size increases, the performance is improved and then becomes
saturated. This implies that more discriminative representations can be learned
with a larger size. But, if using too large a size, the model will cover distant data
points that have weak semantic consistency within the neighborhood,and hence
the performance becomes saturated.

Neighborhood Quality We further examine effects of the class consistency
of anchor Neighborhood, i.e., Neighborhood quality. In Fig. 5, we report the
progress of the ratio of neighbor samples sharing the same action label as the
anchor throughout training. We can observe the ratio of class consistent neigh-
borhoods increases, and then becomes saturated. This indicates exploring data

Fig. 4. Classification accuracy (%) with
different neighborhood size on NTU
dataset with 5% labels

Fig. 5. The ratio of neighbor samples shar-
ing the same action label as the anchor
throughout training on N-UCLA dataset
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Table 4. Ablation study on adversarial training. Classification accuracy (%) is reported
on NTU with 5% labels and N-UCLA with 15% labels.

Methods
NTU 5% N-UCLA 15%

CS (33 v./c.) CV (31 v./c.) (15 v./c.)

Sup. + Inp.
w/o adv 48.4 55.1 46.6
w/ adv 51.2 57.1 52.4

Sup. + Nei.
w/o adv 52.1 57.8 60.0
w/ adv 53.4 59.1 68.5

ASSL w/o adv 55.2 61.1 66.4
(Sup. + Inp. + Nei.) w/ adv 57.3 63.6 74.8

relations is helpful to inferring underlying class semantics, thus facilitating the
clustering of samples with the same action labels.

Adversarial Training The adversarial alignment is proposed to mitigate the
gap between representations learned from supervised and self-supervised tasks.
To evaluate effectiveness of adversarial training for coupling self-supervision
methods with the semi-supervised 3D action recognition, we train several self-
supervised models with or without adversarial regularization. The results are
reported in Table 4. It is obvious that all models with adversarial regulariza-
tion achieve better performances than those without. For example, on N-UCLA
dataset, the result of ASSL w/ adv is 74.8%, outperforming ASSL w/o adv by
8.4%. The improved performance in Table 4 demonstrates that it is an effective

(a) CS-Sup. (b) CS-ASSL w/o adv (c) CS-ASSLw/ adv

(d) CV-Sup. (e) CV-ASSL w/o adv (f) CV-ASSL w/ adv

Fig. 6. The t-SNE visualization of motion features learned by Supervised Baseline
(Sup.), ASSL w/o adv and ASSL w/ adv (ours) on NTU dataset. Different colors
indicate different classes. Best viewed in color. The squares with black border denote
the labeled data, and others are unlabeled data
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strategy to couple self-supervision with semi-supervised algorithms by adversar-
ial training.

To further explore this scheme, we visualize the feature distributions of Sup.,
ASSL w/o adv and ASSL w/ adv by using t-SNE [22] in Fig. 6. For the model
Sup. trained with only supervised objective on labeled data, the decision bound-
aries of its feature distributions are very ambiguous. The model ASSL w/o adv
is trained with supervised and self-supervised objectives for labeled and unla-
beled data, respectively. Compared with Sup., the features of ASSL w/o adv
present tighter distributions, which benefit from self-supervised learning. But,
long-tail distributions still exist for unlabeled samples (circles). Fig. 6(c) and
6(f) show clearly the alignment between feature distributions of labeled and un-
labeled data for ASSL w/ adv, i.e., the proposed ASSL. Overall, the comparison
results prove the effectiveness of adversarial training for coupling self-supervision
with semi-supervised action recognition. And this drives our model to learn more
discriminative features that have desired intra-class compactness and inter-class
separability.

5 Conclusions

In this paper, we consider the semi-supervised learning scheme for 3D action
recognition task. The proposed ASSL effectively couples SSL into semi-supervised
algorithm via neighbor relation exploration and adversarial learning. Explor-
ing data relations with neighborhood consistency regularization encourages the
model to learn discriminative motion representations that significantly improve
the performance of this task. Moreover, we introduce a novel adversarial regu-
larization to couple SSL method into a semi-supervised algorithm. This allows
the model to align the feature distributions of labeled and unlabeled samples
and boosts the capability of generalization to unseen samples. Our experiments
verify that the proposed neighbor relation exploration and adversarial learning
are strongly beneficial for semi-supervised 3D action recognition. With the pro-
posed ASSL network, we establish news state-of-the-art performances of semi-
supervised 3D action recognition.
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