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Fig. A.1: Tllustration of the proposed network for large-scale painting super-
resolution. “Conv” denotes convolutional layer, and “RBs” indicates residual
blocks removed the batch normalization

An overview of the proposed network structure is illustrated in Fig. A.1. All
batch normalization (BN) layers are removed from the residual blocks (RBs)
since BN layers shrink range flexibility from networks by normalizing the fea-
tures [1,2]. Therefore, the structure of a residual block is Conv-ReLU-Conv with
a short cut. The convolution kernel is set to be 3x3 for all convolutional (Conv)
layers, and zero-padding is conducted to preserve the feature map size after
convolution. Instead, the concatenation layer adopts a kernel size of 1x1. The
activation function is ReLU (except for the output layer that uses tanh), and the
number of channels at each intermedia convolutional layers is set to be 64. The
upscaling layers employ the sub-pixel convolution [3]. The network difference
between 8x and 16x upscaling is that the first upscaling layer will perform 2x
and 4x upscaling, respectively.

B Visual Comparisons

This section will demonstrate more visual comparison between the state-of-the-
art methods and the proposed method on the newly collected PaintHD dataset.
More specifically, our method is compared to a state-of-the-art SISR method
RCAN [1] and a representative Ref-SR method SRNTT [5]. The comparison will
be conducted at 8x and 16X, respectively.

B.1 Results of 8 x

The visual comparison of 8x upscaling is shown in Figs. B.1 and B.2. Each
example spans two rows, where the upper and lower figures in the first column
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are the LR input and reference, respectively. The rest columns are results from
corresponding methods. For better visual comparison, only two zoom-in areas
are cropped from the original results as indicated by the color-coded boxes in
the LR input. The input and reference may be patches from the same original
painting, but they avoid large overlap and would show different scales, angles,
and styles of the stroke.

B.2 Results of 16Xx

By the same token, the visual comparison is conducted at 16x in the similar
way as shown in Figs. B.3 and B.4.

B.3 Effect of Different References

For Ref-SR methods, investigation on the effect from references is an interesting
and opening problem, e.g., how the references affect SR results, how to control
(i.e., utilize or suppress) such effect, etc. This section intends to explore the effect
of references in the proposed Ref-SR method. As shown in Figs. B.5 and B.6, the
same LR input is super-resolved using different reference images, respectively.

In general, the local texture in the results would vary with the reference tex-
ture. In Fig. B.5, the stroke/texture scale in Reference 1 is relatively smaller
than that in Reference 2, thus the texture presented in the results using Ref-
erence 1 would be of smaller scale, i.e., more details and visually sharper. In
Fig. B.6, Reference 2 shows stronger canvas texture, which is transferred to the
results. The proposed method transfers the texture from different references to
the results, while preserving the content of the LR input.
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Fig. B.1: Visual results with scaling factor 8x
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Fig. B.2: Visual results with scaling factor 8x
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Fig. B.3: Visual results with scaling factor 16x
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Fig. B.4: Visual results with scaling factor 16x
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Fig. B.5: Visual results with scaling factor 8 x using different reference images.
For each reference image, we show three patches extracted from the correspond-
ing results
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Fig. B.6: Visual results with scaling factor 8x using different reference images.
For each reference image, we show three patches extracted from the correspond-
ing results
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