
ParSeNet: A Parametric Surface Fitting
Network for 3D Point Clouds

Gopal Sharma1 , Difan Liu1 , Subhransu Maji1 ,
Evangelos Kalogerakis1 , Siddhartha Chaudhuri2,3, and Radomı́r Měch2

1{gopalsharma, dliu, smaji, kalo}@cs.umass.edu, 2{sidch,rmech}@adobe.com

1University of Massachusetts Amherst 2Adobe Research 3IIT Bombay

1 Supplementary Material

In our Supplementary Material, we:

• provide background on B-spline patches;

• provide further details about our dataset, architectures and implementation;

• evaluate the robustness of SplineNet as a function of point density;

• evaluate our approach for reconstruction on the ABCPartsDataset;

• show more visualizations of our results; and

• evaluate the performance of our approach on the TraceParts dataset [4].

1.1 Background on B-spline patches.

A B-spline patch is a smoothly curved, bounded, parametric surface, whose shape
is defined by a sparse grid of control points C = {cp,q}. The surface point with
parameters (u, v) ∈ [umin, umax]× [vmin, vmax] is given by:

s(u, v) =

P∑
p=1

Q∑
q=1

bp(u)bq(v)cp,q (1)

where bp(u) and bq(v) are polynomial B-spline basis functions [2].

To determine how the control points affect the B-spline, a sequence of param-
eter values, or knot vector, is used to divide the range of each parameter into
intervals or knot spans. Whenever the parameter value enters a new knot span,
a new row (or column) of control points and associated basis functions become
active. A common knot setting repeats the first and last ones multiple times
(specifically 4 for cubic B-splines) while keeping the interior knots uniformly
spaced, so that the patch interpolates the corners of the control point grid. A
closed surface is generated by matching the control points on opposite edges of
the grid. There are various generalizations of B-splines e.g ., with rational basis
functions or non-uniform knots. We focus on predicting cubic B-splines (open or
closed) with uniform interior knots, which are quite common in CAD [2,3, 5, 7].

https://orcid.org/0000-0002-7492-7808
https://orcid.org/0000-0001-5971-2748
https://orcid.org/0000-0002-3869-9334
https://orcid.org/0000-0002-5867-5735

2 Sharma et al.

1.2 Dataset

The ABCPartsDataset is a subset of the ABC dataset obtained by first
selecting models that contain at least one B-spline surface patch. To avoid over-
segmented shapes, we retain those with up to 50 surface patches. This results
in a total of 32k shapes, which we further split into training (24k), validation
(4k), and test (4k) subsets. Figure 1 shows the distribution of number and type
of surface patches in the dataset.

4 8 12 16 20 24 28 32 36 40 44 48
Number of segments

0

1000

2000

3000

4000

5000

6000

Nu
m

be
r o

f S
ha

pe
s

pla
ne

cyl
ind

er

op
en

-sp
line

clo
sed

-sp
line con

e
sph

ere
0

50000

100000

150000

200000

Nu
m

be
r o

f s
ur

fa
ce

 p
at

ch
es

Fig. 1: Histogram of surface patches in ABCPartsDataset. Left: shows
histogram of number of segments and Right: shows histogram of primitive types.

1.3 Implementation Details of ParSeNet

Architecture details. Our decomposition module is based on a dynamic edge con-
volution network [9]. The network takes points as input (and optionally normals)
and outputs a per point embedding Y ∈ RN×128 and primitive type T ∈ RN×6.
The layers of our network are listed in Table 1. The edge convolution layer (Edge-
Conv) takes as input a per-point feature representation f ∈ RN×D, constructs a
kNN graph based on this feature space (we choose k = 80 neighbors), then forms
another feature representation h ∈ RN×k×2D, where hi,j = [fi, fi − fj], and i,j
are neighboring points. This encodes both unary and pairwise point features,
which are further transformed by a MLP (D → D′), Group normalization and
LeakyReLU (slope=0.2) layers. This results in a new feature representation:
h′ ∈ RN×k×D′

. Features from neighboring points are max-pooled to obtain a per
point feature f ′ ∈ RN×D′

. We express this layer which takes features f ∈ RN×D

and returns features f ′ ∈ RN×D′
as EdgeConv(f , D, D′). Group normalization

in EdgeConv layer allows the use of smaller batch size during training. Please
refer to [9] for more details on edge convolution network.
SplineNet is also implemented using a dynamic graph CNN. The network takes
points as input and outputs a grid of spline control points that best approximates
the input point cloud. The architecture of SplineNet is described in Table 2.
Note that the EdgeConv layer in this network uses batch normalization instead
of group normalization.

ParSeNet 3

102 103

Number of Points per Segment
1.50

1.75

2.00

2.25

2.50

2.75

3.00

3.25

CD
 (1

e
2)

open-spline
open-spline up-sample

102 103

Number of Points per Segment

5

10

15

20

25

CD
 (1

e
2)

closed-spline
closed-spline up-sample

Fig. 2: Robustness analysis of SplineNet. Left: open B-spline and Right:
closed B-spline. Performance degrades for sparse inputs (blue curve). Nearest
neighbor up-sampling of the input point cloud to 1.6K points reduces error for
sparser inputs (yellow curve). The horizontal axis is in log scale. The error is
measured using Chamfer distance (CD).

Training details. We use the Adam optimizer for training with learning rate 10−2

and reducing it by the factor of two when the validation performance saturates.
For the EdgeConv layers of the decomposition module, we use 100 nearest
neighbors, and 10 for the ones in SplineNet. For pre-training SplineNet on
SplineDataset, we randomly sample 2k points from the B-spline patches. Since
ABC shapes are arbitrarily oriented, we perform PCA on them and align the
direction corresponding to the smallest eigenvalue to the +x axis. This procedure
does not guarantee alignment, but helps since it reduces the orientation variability
in the dataset. For pre-training the decomposition module and SplineNet we
augment the training shapes represented as points by using random jitters, scaling,
rotation and point density.

Back propagation through mean-shift clustering. The W matrix is constructed
by first applying non-max suppression (NMS) on the output of mean shift
clustering, which gives us indices of K cluster centers. NMS is done externally
i.e. outside our computational graph. We use these indices and Eq. 9 to compute
the W matrix. The derivatives of NMS w.r.t point embeddings are zero or
undefined (i.e. non-differentiable). Thus, we remove NMS from the computational
graph and back-propagate the gradients through a partial computation graph,
which is differentiable. This can be seen as a straight-through estimator [8].
A similar approach is used in back-propagating gradients through Hungarian
Matching in [4]. Our experiments in Table 1 shows that this approach for end-
to-end training is effective. Constructing a fixed size matrix W will result in
redundant/unused columns because different shapes have different numbers of
clusters. Possible improvements may lie in a continuous relaxation of clustering
similar to differentiable sorting and ranking [1], however that is out of scope for
our work.

4 Sharma et al.

Index Layer out

1 Input N × 3

2 EdgeConv(out(1), 3, 64) N × 64

3 EdgeConv(out(2), 64, 64) N × 64

4 EdgeConv(out(3), 64, 128) N × 128

5 CAT(out(2), out(3), out(4)) N × (256)

6 RELU(GN(FC(out(5), 1024))) N × 1024

7 MP(out(6), N, 1) 1024

8 Repeat(out(7), N) N × 1024

9 CAT(out(8), out(5)) N × 1280

10 RELU(GN(FC(out(9), 512))) N × 512

11 RELU(GN(FC(out(10), 256))) N × 256

12 RELU(GN(FC(out(11), 256))) N × 256

13 Embedding=Norm(FC(out(12), 128)) N × 128

14 RELU(GN(FC(out(11), 256)) N × 256

15 Primitive-Type=Softmax(FC(out(14), 6)) N × 6

Table 1: Architecture of the Decomposition Module. EdgeConv: edge
convolution, GN: group normalization, RELU: rectified linear unit, FC: fully
connected layer, CAT: concatenate tensors along the second dimension, MP:
max-pooling along the first dimension, Norm: normalizing the tensor to unit
Euclidean length across the second dimension.

1.4 Robustness analysis of SplineNet

Here we evaluate the performance of SplineNet as a function of the point
sampling density. As seen in Figure 2, the performance of SplineNet is low
when the point density is small (100 points per surface patch). SplineNet
is based on graph edge convolutions [9], which are affected by the underlying
sampling density of the network. However, upsampling points using a nearest
neighbor interpolation leads to a significantly better performance.

1.5 Evaluation of Reconstruction using Chamfer Distance

Here we evaluate the performance of ParSeNet and other baselines for the
task of reconstruction using Chamfer distance on ABCPartsDataset. Chamfer
distance between reconstructed points P and input points P̂ is defined as:

pcover =
1

|P |
∑
i∈P

min
j∈P̂
‖i− j‖2 ,

scover =
1

|P̂ |

∑
i∈P̂

min
j∈P
‖i− j‖2 ,

CD =
1

2
(pcover + scover).

ParSeNet 5

Index Layer Output

1 Input N × 3

2 EdgeConv(out(1),3, 128) N × 128

3 EdgeConv(out(2),128, 128) N × 128

4 EdgeConv(out(3),128, 256) N × 256

5 EdgeConv(out(4),256, 512) N × 512

6 CAT(out(2), out(3), out(4), out(5))) N × (1152)

7 RELU(BN(FC(out(6), 1024)) N × 1024

8 MP(out(7), N, 1) 1024

9 RELU(BN(FC(out(8), 1024)) 1024

10 RELU(BN(FC(out(9), 1024)) 1024

11 Tanh(FC(out(10), 1200)) 1200

12 Control Points = Reshape(out(11), (20, 20, 3)) 20 × 20 × 3

Table 2: Architecture of SplineNet. EdgeConv: edge convolution layer, BN:
batch noramlization, RELU: rectified linear unit, FC: fully connected layer, CAT:
concatenate tensors along second dimension, and MP: max-pooling across first
dimension

Here |P | and |P̂ | denote the cardinality of P and P̂ respectively. We randomly
sample 10k points each on the predicted and ground truth surface for the
evaluation of all methods. Each predicted surface patch is also trimmed to define
its boundary using bit-mapping with epsilon 0.1 [6]. To evaluate this metric, we
use all predicted surface patches instead of the matched surface patches that is
used in Section 5.3.

Results are shown in Table 3. Evaluation using Chamfer distance follows the
same trend of residual error shown in Table 1. ParSeNet and SPFN with points
as input performs better than NN and RANSAC. ParSeNet and SPFN with
points along with normals as input performs better than with just points as input.
By training ParSeNet end-to-end and also using post-process optimization
results in the best performance. Our full ParSeNet gives 35.67% and 49.53%
reduction in relative error in comparison to SPFN and RANSAC respectively.
We show more visualizations of surfaces reconstructed by ParSeNet in Figure
3.

1.6 Evaluation on TraceParts Dataset

Here we evaluate the performance of ParSeNet on the TraceParts dataset, and
compare it with SPFN. Note that the input points are normalized to lie inside
a unit cube. Points sampled from the shapes in TraceParts [4] have a fraction
of points not assigned to any cluster. To make this dataset compatible with our
evaluation approach, each unassigned point is merged to its closest cluster. This
results in evaluation score to differ from the reported score in their paper [4].

First we create a nearest neighbor (NN) baseline as shown in the Section 5.3.
In this, we first scale both training and testing shape an-isotropically such that
each dimension has unit length. Then for each test shape, we find its most similar

6 Sharma et al.

Method Input p cover (1× 10−4) s cover (1× 10−4) CD (1× 10−4)

NN p 10.10 12.30 11.20

RANSAC p+n 7.87 17.90 12.90

SPFN p 7.17 13.40 10.30
SPFN p+n 6.98 13.30 10.12

ParSeNet p 6.07 12.40 9.26
ParSeNet p+n 4.77 11.60 8.20
ParSeNet + e2e + opt p+n 2.45 10.60 6.51

Table 3: Reconstruction error measured using Chamfer distance on
ABCPartsDataset. ‘e2e’: end-to-end training of ParSeNet and ‘opt’: post-
process optimization applied to B-spline surface patches.

Fig. 3: Given the input point clouds with normals in the first row, we show
surfaces produced by ParSeNet without post-processing optimization (second
row), and full ParSeNet including optimization (third row). The last row shows
the ground-truth surfaces from our ABCPartsDataset.

shape from the training set using Chamfer Distance. Then for each point on the
test shape, we transfer the labels and primitive type from its closest point in R3

on the retrieved shape. We train ParSeNet on the training set of TraceParts
using the losses proposed in the Section 4.2 and we also train SPFN using their
proposed losses. All results are reported on the test set of TraceParts.

Results are shown in the Table 4. The NN approach achieves a high segmen-
tation mIOU of 81.92% and primitive type mIOU of 95%. Figure 4 shows the
NN results for a random set of shapes in the test set. It seems that the test and
training sets often contain duplicate or near-duplicate shapes in the TraceParts
dataset. Thus the performance of the NN can be attributed to the lack of shape
diversity in this dataset. In comparison, our dataset is diverse, both in terms
of shape variety and primitive types, and the NN baseline achieve much lower
performance with segmentation mIOU of 54.10% and primitive type mIOU of
61.10%.

ParSeNet 7

We further compare our ParSeNet with SPFN with just points as input.
ParSeNet achieves 79.91% seg mIOU compared to 76.4% in SPFN. ParSeNet
achieves 97.39% label mIOU compared to 95.18% in SPFN. We also perform
better when both points and normals are used as input to ParSeNet and SPFN.

Finally, we compare reconstruction performance in the Table 5. With just
points as input to the network, ParSeNet reduces the relative residual error by
9.35% with respect to SPFN. With both points and normals as input ParSeNet
reduces relative residual error by 15.17% with respect to SPFN.

Method Input seg mIOU label mIOU

NN p 81.92 95.00

SPFN p 76.4 95.18
SPFN p + n 88.05 98.10

ParseNet p 79.91 97.39
ParseNet p + n 88.57 98.26

Table 4: Segmentation results on the TraceParts dataset. We report
segmentation and primitive type prediction performance of various methods.

Method Input res P cover

NN p 0.0138 91.90

SPFN p 0.0139 91.70
SPFN p + n 0.0112 92.94

ParseNet p 0.0126 90.90
ParseNet p + n 0.0095 92.72

Table 5: Reconstruction results on the TraceParts dataset. We report
residual loss and P cover metrics for various methods.

8 Sharma et al.

Test
Shapes

NN
Retrieval

Test
Shapes

NN
Retrieval

Test
Shapes

NN
Retrieval

Test
Shapes

NN
Retrieval

Test
Shapes

NN
Retrieval

Test
Shapes

NN
Retrieval

Fig. 4: Nearest neighbor retrieval on the TracePart dataset We randomly
select 30 shapes from the test set of TraceParts dataset and show the NN retrieval,
which reveals high training and testing set overlap. Shapes are an-isotropically
scaled to unit length in each dimension. This is further validated quantitatively
in Table 4.

ParSeNet 9

References

1. Cuturi, M., Teboul, O., Vert, J.P.: Differentiable ranking and sorting using op-
timal transport. In: Advances in Neural Information Processing Systems 32,
pp. 6861–6871. Curran Associates, Inc. (2019), http://papers.nips.cc/paper/

8910-differentiable-ranking-and-sorting-using-optimal-transport.pdf

2. Farin, G.: Curves and Surfaces for CAGD. Morgan Kaufmann, 5th edn. (2002)
3. Foley, J.D., van Dam, A., Feiner, S.K., Hughes, J.F.: Computer Graphics: Principles

and Practice. Addison-Wesley Longman Publishing Co., Inc., USA, 2nd edn. (1990)
4. Li, L., Sung, M., Dubrovina, A., Yi, L., Guibas, L.J.: Supervised fitting of geometric

primitives to 3d point clouds. In: Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR) (June 2019)

5. Piegl, L., Tiller, W.: The NURBS Book. Springer-Verlag, Berlin, Heidelberg, 2nd
edn. (1997)

6. Schnabel, R., Wahl, R., Klein, R.: Efficient RANSAC for point-cloud shape detection.
Computer Graphics Forum 26, 214–226 (06 2007)

7. Schneider, P.J., Eberly, D.: Geometric Tools for Computer Graphics. Elsevier Science
Inc., USA (2002)

8. Schulman, J., Heess, N., Weber, T., Abbeel, P.: Gradient estimation using stochas-
tic computation graphs. In: Cortes, C., Lawrence, N.D., Lee, D.D., Sugiyama,
M., Garnett, R. (eds.) Advances in Neural Information Processing Systems 28,
pp. 3528–3536. Curran Associates, Inc. (2015), http://papers.nips.cc/paper/

5899-gradient-estimation-using-stochastic-computation-graphs.pdf

9. Wang, Y., Sun, Y., Liu, Z., Sarma, S.E., Bronstein, M.M., Solomon, J.M.: Dynamic
graph cnn for learning on point clouds. ACM Transactions on Graphics 38(5) (Oct
2019)

http://papers.nips.cc/paper/8910-differentiable-ranking-and-sorting-using-optimal-transport.pdf
http://papers.nips.cc/paper/8910-differentiable-ranking-and-sorting-using-optimal-transport.pdf
http://papers.nips.cc/paper/5899-gradient-estimation-using-stochastic-computation-graphs.pdf
http://papers.nips.cc/paper/5899-gradient-estimation-using-stochastic-computation-graphs.pdf

