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1 Supplementary Materials

To evaluate OnlineAugment® better, we provide three additional experiments in
this section. First, we present videos to display the augmentation process during
training. The curves, measuring the adaptivity of OnlineAugment, are also given.
Finally, we compare the running time of different data augmentation methods.

1.1 Video Demos

We append three video demos in the supplementary materials. They demonstrate
the augmentation processes of A-STN, D-VAE, and P-VAE. In each video demo,
we randomly select 25 CIFAR-10 training images as anchors. Each frame shows
their augmented versions at one training epoch. Specially, we use checkpoints of
A-STN, D-VAE, or P-VAE at the beginning of each epoch to produce the demo
images. The A-STN video has double images in each frame, where the left and
right parts show the inverse affine transformations. For viewing convenience, we
tag the epoch numbers at the top of videos.

We can observe diverse and adaptive data augmentations in the demo videos.
A-STN can produce nearly 180-degree rotations, large scale variations, and shear
effects. In the D-VAE video, smooth local deformations are observable across
different areas of images. P-VAE can learn different noise patterns such as hor-
izontal or vertical stripes, small mosaics, and lightness. All three videos share
a similar feature: the augmentation strength first increases and then decreases.
The videos also correspond to the adaptivity curves in Figure 1.

1.2 TIllustration of OnlineAugment Adaptivity

OnlineAugment can adapt to the target learner in training. To demonstrate the
adaptivity, we draw curves in Figure 1 to measure the augmentation strength.
We can find the augmentations are relatively small at the first few epochs. As
the training continues, the augmentations become more substantial as the tar-
get learner already learns enough knowledge from the clean data. Finally, the
training converges with reduced augmentations. The target learner with a small
learning rate may not require significant data augmentations. An exception is
P-VAE has a considerable image distance at the beginning. The large noises are
due to our initialization of the P-VAE model, which we leave for future studies.

1 'We will release the training code upon acceptance.
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Table 1: GPU hours of offline searching time. AutoAugment (AA) [1],
Population-based Augmentation (PBA) [3], and Fast AutoAugment (Fast AA)
[4] need to search augmentation polices on separate proxy tasks. In contrast, our
OnlineAugment has no offline searching cost.

Dataset AA PBA Fast AA OnlineAugment
CIFAR-10 5000 5.0 3.5 0.0
SVHN 1000 1.0 1.5 0.0
ImageNet 15000 - 450 0.0

Table 2: Per iteration seconds in online training. We measure the time using
different input image resolutions and workers in Pytorch data loaders. In the
experiments, we train ResNet50 [2] with batch size 128 using 1 RTX 8000 GPU
and Intel(R) Xeon(R) Silver 4116 CPUs. Since all the offline methods share the
same augmentation policy format, they should have equivalent online training
time costs. Thus, we use AutoAugment (AA) [1] to represent all offline methods
here. Ours have higher online time costs due to updating augmentation networks.

32x32 Image (ResNet50, BS: 128)  224x224 Image (ResNet50, BS: 128)

Workers AA A-STN D-VAE P-VAE Comb. AA A-STN D-VAE P-VAE Comb.

0 0.17 0.14 0.17 0.17 0.27 084 1.21 1.37 1.32 3.29
1 0.17 0.12 0.14 0.15 0.27 050 0.94 1.06 1.03 2.97

1.3 Running Time Comparisons

For fair comparisons, we divide the running time into two parts: offline searching
time and online training time. The offline data augmentation methods require to
learn augmentation policies on separate proxy tasks. Then they apply the poli-
cies for online training. Our OnlineAugment, by contrast, performs the online
training directly. Tables 1 and 2 give offline and online time comparisons, respec-
tively. Our s is superior in terms of zero offline time cost. For online training,
ours is slower as it needs to update both the target learner and augmentation
networks in each iteration. According to Table 2, the gap is smaller for small
images training. Especially, A-STN is even faster in this case.

There are several possible ways to improve the training efficiency of Onlin-
eAugment. One is to reduce the frequency of updating the augmentation net-
works A-STN, D-VAE, and P-VAE. Currently, we update them in each iteration
of updating the target learner. The online training time will significantly de-
crease if updating them less frequently. Another direction is to optimize the
architectures of A-STN, D-VAE, and P-VAE. We can also reduce the training
costs by using more compact models.
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Fig. 1: Tllustration of augmentation strengths for A-STN, D-VAE, and P-VAE = 123
along epochs. We measure the strengths using the L2 distances between the clean 12
and augmented data. The left and right columns show the L2 distances in the 125
image and logit spaces. The trend is that the augmentation strengths increase 126
in the early stages of training, while during the target network converges, the 127

augmentation magnitude gradually decreases. 128
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