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Fig. 1. This paper takes a piecewise planar reconstruction and improves its plane pa-
rameters and segmentation masks by inferring and utilizing inter-plane relationships.
From left to right, input image, segmented plane instances, recovered depthmap, re-
constructed 3D planar model

Abstract. This paper proposes a novel single-image piecewise planar re-
construction technique that infers and enforces inter-plane relationships.
Our approach takes a planar reconstruction result from an existing sys-
tem, then utilizes convolutional neural network (CNN) to (1) classify
if two planes are orthogonal or parallel; and 2) infer if two planes are
touching and, if so, where in the image. We formulate an optimization
problem to refine plane parameters and employ a message passing neural
network to refine plane segmentation masks by enforcing the inter-plane
relations. Our qualitative and quantitative evaluations demonstrate the
effectiveness of the proposed approach in terms of plane parameters and
segmentation accuracy.
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1 Introduction

Inter-plane relationships convey rich geometric information for underlying scene
structure. Man-made environments are full of parallelism and orthogonality,
whose information would constrain surface orientations. Planes meet along a
line, where knowing the presence and location of such contact lines would fur-
ther refine plane parameters and produce precise plane segmentation.
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With the emergence of deep learning, state-of-the-art piecewise planar recon-
struction methods are capable of finding plane instances and estimating their pa-
rameters even from a single image [12, 10, 24]. However, these approaches recon-
struct plane instances independently, and reconstructions suffer from inter-plane
inconsistencies. For example, depth values are inconsistent at plane boundaries,
leading to clear visual artifacts in the 3D models. Plane segmentation is also er-
roneous at its boundaries with many holes in-between, yielding gaps and cracks
in the 3D models, which could cause unpleasant user experiences in AR appli-
cations (e.g., a virtual ball gets stuck or goes through cracks into walls).

This paper proposes a novel single-image piecewise planar reconstruction
technique that takes and improves existing piecewise planar reconstruction by
detecting and enforcing inter-plane relationships. More concretely, given a piece-
wise planar reconstruction (i.e., a set of plane parameters and segmentation
masks), convolutional neural networks (CNNs) first infer two types of inter-
plane relationships: 1) If two planes are orthogonal, parallel, or neither; and 2)
If two planes are in contact and, if so, where in the image.

With the relationships, we formulate an optimization problem to refine plane
parameters so that 1) plane normals agree with the inferred orthogonality or
parallelism; and 2) plane intersections project onto the estimated contact lines.
Lastly, we employ message passing neural networks to refine plane segmentation
while ensuring that the plane segmentation and parameters become consistent.

We have utilized ScanNet [3] to generate ground-truth inter-plane relation-
ships and introduced three new inter-plane consistency metrics. We have built
the proposed algorithm in combination with two state-of-the-art piecewise planar
reconstruction methods (PlaneRCNN [10] and the work by Yu et al. [24]). Our
qualitative and quantitative evaluations demonstrate that the proposed approach
consistently improves the accuracy of the plane parameters and segmentation.
Code and data are available at https://github.com/yi-ming-qian/interplane.

2 Related Work

We first review piecewise planar reconstruction literature, and then study other
techniques relevant to our paper.
Piecewise planar reconstruction: Traditional approaches for piecewise pla-
nar reconstruction require multiple views or depth information [5, 6, 14, 19, 20,
25]. They generate plane proposals from 3D points by heuristics (e.g., RANSAC
based plane fitting), then assign a proposal to each pixel via a global infer-
ence (e.g., Markov Random Field). Deng et al. [4] proposed a learning-based
approach to recover planar regions, while still requiring depth information as
input. Recently, Chen et al. [12] revisited the piecewise planar depthmap re-
construction problem from a single image with an end-to-end learning frame-
work (PlaneNet). PlaneRecover [23] later proposed an unsupervised learning
approach. Both PlaneNet and PlaneRecover require the maximum number of
planes in an image as a prior (i.e., 10 in PlaneNet and 5 in PlaneRecover). To
handle arbitrary number of planes, PlaneRCNN employs a detection architecture
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from the recognition community to handle arbitrary number of planes [10]. Yu et
al. employs an associative embedding technique instead [24]. These methods
produce impressive reconstructions, but plane segmentation masks are almost
always imprecise at their boundaries. For example, a plane boundary should of-
ten be an exact line shared by another plane, which is rarely the case in these
methods. Furthermore, plane depth values are not consistent at their contacts.
Room layout estimation: Under special structural assumptions, piecewise pla-
nar reconstruction with exact segmentation boundary has been possible. Room
layout estimation is one such example, where the methods seek to find the bound-
ary lines between the horizontal floor and vertical walls. Estimation of plane ge-
ometry/parameters is automatic from the segmentation thanks to the structural
assumption [7, 13, 21, 27].
Segmentation with piecewise linear boundary: While not necessarily a
reconstruction task, segmentation with compact linear boundary is a closely re-
lated work. KIPPI is a polygonal image segmentation technique, which detects
and extends line segments to form polygonal shapes [1]. Planar graph recon-
struction is a similar task, effective for floorplan reconstruction [2], floorplan
vectorization [11], or outdoor architectural parsing [26]. The key difference in
our problem is that we solve reconstruction and segmentation, where plane pa-
rameters and segmentation boundaries are tightly coupled. In fact, the earlier
work by Kushal and Seitz [9] exploits this relationship to reconstruct a piece-
wise smooth 3D model. Their method extracts boundary first, which is often
challenging and requires manual work, then performs piecewise smooth surface
reconstruction. Our work solves reconstruction and segmentation simultaneously.
3D primitive-based reconstruction: 3D primitive based reconstruction pro-
duces piecewise planar/smooth models with clean boundary lines. Constructive
solid geometry with 3D solid primitives was used for large-scale building recon-
struction with an assumption of a block world [22]. More recently, a data-driven
approach was proposed for CSG model reconstruction [17]. They produce high-
quality 3D models but were demonstrated mostly on synthetic objects. This
work tackles complex cluttered indoor scenes.
Plane identification: Given a pair of images, a CNN was trained to identify
the same plane in the image pair, which was used for the loop-closing in the
SLAM application [18]. This work exploits much richer class of pairwise plane
relationships for a single image planar reconstruction.

3 Algorithm

Our system takes a piecewise planar reconstruction as input, and refines its plane
parameters and segmentation masks by exploiting inter-plane relationships. In
practice, we have used two state-of-the-art methods for generating our inputs:
PlaneRCNN by Liu et al. [10] and the work by Yu et al., which we refer to as
PlaneAE for convenience [24].

Our process consists of three steps (See Fig. 2). First, we use CNNs to in-
fer two inter-plane relationships for every pair of plane instances. Second, we
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Fig. 2. System overview. Given a single RGB input, we use PlaneRCNN or PlaneAE to
produce initial plane segmentation masks and parameters. We then use Orientation-
CNN and Contact-CNN for pairwise relationship reasoning. Next, we solve an opti-
mization problem to refine the plane parameters, followed by a message passing neural
network (Segmentation-MPN) to refine plane segmentation

formulate an optimization problem to refine plane parameters by enforcing the
inter-plane relationships. Third, we jointly refine the plane segmentation masks
by a message passing neural network to be consistent with the refined plane
parameters and the inter-plane relationships. We now explain the details.

3.1 Inter-plane relationships learning

We consider two types of pairwise inter-plane relationships.
• Orientation: Are two planes parallel or orthogonal?
• Contact: Are two planes in contact? Where is the contact line in an image?
Manhattan structure is prevalent for man-made environments and the orienta-
tion relationship would effectively constrain surface normals for many pairs of
planes. Plane-contacts are straight lines, whose information would constrain sur-
face normal/offset parameters and provide precise segmentation boundaries. We
employ standard CNNs to infer both relationships.
Orientation-CNN: A pair of planes is classified into three orientation types:
parallel, orthogonal, or neither. The input is an 8-channel tensor: the RGB image
(3 channels), the binary segmentation masks of the two planes (2 channels), the
depthmaps of the two planes (2 channels), and the dot-product between the
two plane normals (1 channel). The depthmap has depth values at every pixel,
not just over the plane masks. The dot-product is a scalar and we copy the
same value at every pixel location to form an image. ResNet-50 is adopted as
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the architecture, where we change the first layer to accommodate the input 8-
channel tensor and change the last layer to output 3 values that corresponds
to the three orientation types. Orientation-CNN is trained with a cross-entropy
loss against the ground-truth (See Sec. 4 for the GT preparation).

Contact-CNN: The network classifies if two planes are in contact (binary clas-
sification) and estimates the contact line as a pixel-wise segmentation mask
(binary segmentation). The input is the same 8-channel tensor as in Orientation-
CNN. We again take ResNet-50 as the backbone and replaced the first layer. For
binary contact classification, we change the last layer to output a 2D vector. For
binary contact segmentation, we attach a branch of bilinear upsampling and con-
volution layers to the last residual block of ResNet-50, which is adopted from the
binary segmentation branch of [24]. The output size of the segmentation mask
is the same as the input image. The network is trained with a cross-entropy loss
against the ground-truth, where the loss for the segmentation mask is averaged
over all the pixels. The classification and segmentation losses are enforced with
equal weights. For a non-contact plane pair, an empty mask is the supervision.

3.2 Plane parameter refinement

We solve the following optimization problem to refine the plane parameters. Our
variables are the plane normal Ni and the offset di for each plane: Ni ·X = di.
X is a 3D point coordinate.

min
{Ni,di}

Eunit + Einput + Eparallel + Eortho + Econtact, (1)

Eunit = 10
∑
i∈P

(Ni ·Ni − 1)2, (2)

Einput = 10
∑
i∈P

wi(Ni ·Ni)
2 +

∑
i∈P

∑
p∈Mi

wi(Ni ·X
p

i − di)2/|Mi |, (3)

Eparallel =
∑

(i,j)∈Ppa

wiwj(Ni ·Nj − 1)2, (4)

Eortho =
∑

(i,j)∈Por

wiwj(Ni ·Nj)
2, (5)

Econtact =
∑

(i,j)∈Pco

∑
p∈Mi,j

wiwj(D
p
i −Dp

j )2/|Mi,j |. (6)

• Eunit enforces Ni to have a unit norm. P denotes the set of planes.

• Einput keeps the solution close to the original and breaks the scale/rotational
ambiguities inherent in the other terms. The first term is on the plane normal. Ni

denotes the initial plane normal. wi is a rescaled segmentation area:
∑

i∈P wi =

1. The second term measures the deviation from the initial depthmap. X
p

i de-
notes the 3D coordinate of a pixel p based on the initial plane parameters. The
plane equation residual is summed over the mask Mi of the ith plane.
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• Eparallel and Eortho enforces the parallel and orthogonal relationships, respec-
tively. Ppa and Por denotes the pairs of planes with the inferred parallel and
orthogonal relationships, respectively.
• Econtact measures the consistency of depth values along the plane contacts be-
tween pairs of planes Pco with the inferred contact relationships. For every pixel
p in the plane contact area Mi,j estimated by the Contact-CNN, we compute
the depth values (Dp

i ,D
p
j ) based on their plane parameters. The term evaluates

the average depth value discrepancy.
The energy terms are well normalized by the rescaled segmentation areas

(wi). We rescale Eunit and the first term of Einput by a factor of 10 and keep the
balancing weights fixed throughout the experiments. Eunit has a large weight
because its role is close to a hard constraint (ensuring that the plane normal is a
unit vector). Einput has a large weight because the normal estimation is usually
more accurate than the offset estimation in the initial input from PlaneRCNN
and PlaneAE. We use an off-the-shelf BFGS optimization library in SciPy to
solve the problem [15].

3.3 Plane segmentation refinement (Segmentation-MPN)

PlaneRCNN [10] jointly refines plane segmentation by “ConvAccu Module”,
which is a special case of more general convolutional message passing neural ar-
chitecture (Conv-MPN) [26]. PlaneAE [24] estimates segmentation masks jointly
by associative embedding. However, there are two major issues in their segmen-
tation results. First, they ignore inter-plane contact relationships: Plane param-
eters would not be consistent with the boundaries, and the 3D model would
look broken (gaps and discontinuities). Second, they tend to under-segment (es-
pecially PlaneRCNN) because the ground-truth is often under-segmented, too. 1

We follow PlaneRCNN and utilize Conv-MPN for joint segmentation refine-
ment. We add the binary split mask as the 5th channel to the input so that the
network knows when the segmentation boundary becomes consistent with the
plane parameters. A plane may have multiple contacts, and the union of all the
split-masks is formed for each plane. We make the following modifications to
address the above two issues (See Fig. 3).
Resolving parameter inconsistencies: Our idea is simple. For each pair of
planes with the inferred contact mask, we compute the exact plane boundary
inside the mask as a line from the refined plane parameters. We split the mask
into two regions along the line and send them as images to Conv-MPN. The
split mask serves as the input as well as the loss so that Conv-MPN will learn to
satisfy the contact consistency. More precisely, we compute the 3D intersection
line from the refined plane parameters and project the line into the image, where
the intrinsic parameters are given for each image in the database. After splitting
the mask into two regions along the line at the pixel-level, we can determine

1 Ground-truth segmentation comes from plane-fitting to 3D points [10]. For being
conservative, they focus on high confidence areas with high point densities only,
dropping the plane boundaries.
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Fig. 3. Contact-aware joint segmentation refinement. We follow PlaneRCNN [10] and
utilize Conv-MPN [26] architecture. (Left) In the original formulation in PlaneRCNN,
the mask loss (Lmask) tries to make the output equal to the under-segmented “ground-
truth”. (Right) In the new formulation, we change the definition of negative samples
(blue pixels) in the mask loss (Lmask) to prevent under-segmentation. Furthermore,
we add a contact loss Lcontact with the split mask so that the plane segmentation
boundary becomes consistent with the plane parameters. The same split mask is also
added to the input of the network. Lastly, we add Lunique to prevent over-segmentation
and ensure that a pixel (green boxes) belongs to at most one plane

easily which split mask should belong to which plane by comparing the current
plane segmentation and the line. We simply add a cross entropy loss Lcontact for
pixels inside the split contact mask.

Resolving under-segmentation: In the original PlaneRCNN formulation [10],
the cross entropy loss was defined with the under-segmented “ground-truth”
plane mask. The red and blue pixels in Fig. 3 illustrate the positive and negative
pixels for the loss (Lmask). We modify the definition of negative samples in
this mask loss (Lmask) to be the union of the other under-segmented “ground-
truth” regions instead, allowing Conv-MPN to grow beyond the under-segmented
“ground-truth”. In order to prevent over-segmentation this time, we introduce
a new loss (Lunique) which prevents a pixel from belonging to multiple planes.
To be precise, the loss is defined at each pixel as

Lunique = − log(2−max(1, α)). (7)

α is the sum of the top 2 mask probabilities at a pixel. The sum of the three
terms Lmask, Lcontact, and Lunique becomes the loss without rescaling.



8 Y. Qian et al.

Parallel pairs Orthogonal pairs Contact pairs and contact masks

Fig. 4. Inter-plane relationships dataset. Here we show three example pairs for each
relationship type, where the PlaneRCNN plane masks are colored by red and blue. For
contact pairs, we also show the contact lines as overlays (green) in the third column
and as the binary masks in the last column. Note that our relationship annotations are
automatically generated from the ScanNet database [3]

4 Dataset and Metrics

Inter-plane relationship learning is a new task, where this paper generates the
ground-truth and introduces new evaluation metrics (See Fig. 4).

4.1 Dataset

We borrow the piecewise planar reconstruction dataset by Liu et al. [12, 10],
which was originally constructed from ScanNet [3]. We follow the same process
in splitting the dataset into training and testing sets. Note that the camera
intrinsic parameters are associated with each image. We generate inter-plane
relationship labels (parallel, orthogonal, and contact) as follows.

First, we associate each PlaneRCNN plane segment to a corresponding GT
segment with the largest overlap. To detect parallel and orthogonal plane pairs,
we check if the angle between plane normals are either 0 or 90 degrees with a
tolerance of 10 degrees. To detect the contact relationship, we compute the 3D
intersection line using the GT plane parameters, and project onto the image.
After rastering the line into a set of pixels, we filter out pixels if the distance
to the closest pixel in the two plane masks is more than 20 pixels. Two planes
are declared to be in contact if more than 5% pixels survive the filtering. We
apply 5× 5 dilation (OpenCV implementation, 5 times) to the remaining pixels
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and apply 5× 5 Gaussian blur (OpenCV implementation) to obtain the contact
mask. The process produced roughly 2, 472, 000 plane pairs. 16%, 47%, and 12%
of the pairs are labeled as parallel, perpendicular, and in contact, respectively.

4.2 Metrics

Piecewise planar reconstruction with inconsistent plane parameters and segmen-
tation information leads to 3D models with large visual artifacts. Standard re-
construction metrics are angular errors in the plane normals, errors in the plane
offset parameters, or depth errors inside the plane mask. Similarly, standard
segmentation metrics are variation of information (VoI), rand index (RI), seg-
mentation covering (SC), and intersection over union (IoU) [24, 10]. However,
these metrics are evaluated per-plane and do not reflect the visual quality of
3D models well, where inter-plane inconsistencies become more noticeable. This
paper introduces three new metrics.
Relative orientation error (ROE): For each plane pair, we compute the angle
between their normals using the GT plane parameters and the reconstructed
parameters. The discrepancy of the two angles averaged over all the plane pairs
is the metric.
Contact consistency error (CCE): Depth values of the two planes must be
the same along the contact line. CCE measures the average depth value discrep-
ancy along the ground-truth contact line. Note a difference from the contact
energy term Econtact Eq.(6) from the optimization, which measures the discrep-
ancy along the contact line predicted by Contact-CNN. This metric measures
the discrepancy along the ground-truth line.
Segmentation metric over contact mask: This is a simple modification to
the standard segmentation metrics. We simply compute the standard metrics
(VoI, RI, SC, and IoU) inside the contact line mask instead of an entire image.
Segmentation masks must be accurate at its boundaries to achieve high scores.

5 Experiments

We have implemented our approach in Python using the PyTorch library. We
train our networks with the Adam optimizer [8] and set the learning rate to
10−4. The batch size of 24 is used for Orientation-CNN and Contact-CNN, and
the batch size of 1 is used for segmentation-MPN. The training of each network
takes about 10 to 15 hours on an NVIDIA GTX 1080 Ti GPU with 11GB of
RAM. The average run-times of our algorithm (pairwise relationship prediction,
BFGS optimization, and segmentation refinement) are shown in Table 1 when
testing on an image with the resolution of 224× 224.

5.1 Planar reconstruction

Table 2 provides the quantitative evaluation of the geometrical reconstruction
accuracy. The table reports the three standard reconstruction metrics (mean
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Fig. 5. Visual comparison of 3D planar reconstruction results. From left to right, it
shows the input RGB image, the ground truth, the PlaneRCNN results [10], our results
with PlaneRCNN, the PlaneAE results [24], our results with PlaneAE. The proposed
approach fixes incomplete and inconsistent reconstructions at various places, high-
lighted in red ovals. Also refer to the supplementary video for the best assessment
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Table 1. Average running time in seconds of our method

Input method Relationship prediction BFGS optimization Segmentation-MPN Total

PlaneRCNN 0.35 1.36 1.24 2.95

PlaneAE 0.15 0.84 0.95 1.94

Table 2. Quantitative evaluation of reconstruction accuracy. The unit of the offset
error, the depth error and CCE is in centimeters. The unit of normal error and ROE
is in degrees. The color cyan denotes the best result in each triplet

Normal Error Offset Error Depth Error ROE CCE

PlaneRCNN 12.37 20.12 21.97 12.12 12.92
+Ours (w/o contact) 11.38 19.81 21.98 10.09 14.82
+Ours (all) 11.11 20.09 21.93 10.06 9.25

PlaneAE 9.77 15.53 17.60 11.28 13.05
+Ours (w/o contact) 9.38 15.55 17.40 10.71 13.24
+Ours (all) 9.68 15.85 17.36 10.69 11.59

angular error of plane normals, mean absoluate error of plane offset parameters,
and mean depth error inside the ground-truth segmentation mask) and the new
ROE and CCE metrics. We tested the proposed system with PlaneRCNN or
PlaneAE while running their released official code. As an ablation study, we also
run our optimization process while removing the contact term (Econtact).

As shown in Table 2, our approach consistently improves normal-error, depth-
error, ROE, and CCE metrics, in particular, the last two inter-plane consistency
metrics. The offset error rather increased, because it conflicts with the depth
error which our optimization minimizes. The offset-error does not take into ac-
count the surface region on the plane, and we believe that the depth-error is
more informative. The use of the plane-contact constraints have dramatic effects
on the CCE metric as expected. ROE and CCE reflect the visual quality of the
reconstructed 3D models more accurately as shown in Figure 5. The models
are rendered from viewpoints close to the original in the top half, where the
proposed method consistently improves segmentation at plane boundaries, of-
ten completely closing the gaps in-between. Models are rendered from lateral
viewpoints in the bottom half. It is clear that planes meet exactly at their con-
tacts with our approach, while 3D models by PlaneRCNN or PlaneAE often
suffer from severe artifacts due to plane gaps and intersections. Also refer to the
supplementary video for the best assessment of the visual quality.

5.2 Plane instance segmentation

“Ground-truth” plane segmentation in the PlaneRCNN dataset have large errors.
We have randomly chosen 50 testing images and manually annotated ground-
truth plane segmentation by the LabelMe tool [16] (See the second column of
Fig. 6). Following [24, 10], we employ four segmentation metrics mentioned in
Sec. 4.2 (VoI, RI, SC, and IoU). To further evaluate the segmentation accuracy
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Table 3. Quantitative evaluation of plane segmentation. The smaller the better for
VoI, while the larger the better for the other metrics. The color cyan denotes the best
result in each pair

Evaluation on the entire image Evaluation on contact line only

Method VoI↓ RI SC IoU% VoI↓ RI SC IoU%

PlaneRCNN 0.967 0.910 0.788 78.98 2.301 0.744 0.456 39.90
PlaneRCNN+Ours 0.822 0.936 0.830 80.90 2.146 0.778 0.508 48.96

PlaneAE 1.183 0.881 0.735 69.86 2.253 0.735 0.466 38.90
PlaneAE+Ours 1.002 0.882 0.753 69.26 2.101 0.733 0.486 41.72

along the contact plane boundary, we have annotated the plane contact lines
with LabelMe and computed the same metrics only inside the contact lines (See
Sec. 4.2). Table 3 shows that our approach consistently improves segmentation
accuracy over both PlaneRCNN and PlaneAE, especially along the contact lines.
Fig. 6 qualitatively demonstrates that our approach produces more complete seg-
mentation, especially at plane boundaries. Furthermore, our plane segmentation
boundaries are exact straight lines that are consistent with the plane parameters,
while the boundaries are usually curved in the raw PlaneRCNN and PlaneAE
results. It is also noteworthy that we faithfully recover the T-junctions in an
indoor scene as shown in both Fig. 5 and Fig. 6.

5.3 Pairwise relationship inference

Table 4 evaluates the inter-plane relationship classification (parallel, orthogo-
nal, and contact) and the contact mask estimation by our two CNN modules
(Orientation-CNN and Contact-CNN). We compare against three baseline meth-
ods that use PlaneRCNN for reconstruction and simple heuristics to infer the
relationships between planes.
• PlaneRCNN-Angle is a baseline for the orientation classification utilizing Plan-
eRCNN reconstruction. It simply takes the plane surface normals from PlaneR-
CNN, calculates the angle differences for pairs of planes, then classifies the rela-
tionship (parallel, orthogonal, or neither) based on the angular difference with
a tolerance of 10 degrees.
• PlaneRCNN-Contact1 is a baseline for the contact inference utilizing Plan-
eRCNN plane masks. We perform the dilation operation 5 times (by OpenCV
implementation) to expand each PlaneRCNN plane mask. A pair of planes is
deemed to be in contact if the intersection of their expanded masks have more
than 10 pixels. The intersection region is reported as the contact mask.
• PlaneRCNN-Contact2 is a baseline for the contact inference utilizing Plan-
eRCNN plane masks as well as parameters. We follow the steps of generating
ground-truth contact information in Sec. 4, while replacing the GT plane param-
eters by the PlaneRCNN parameters. This baseline takes into account both 2D
segmentation masks and 3D plane depths in judging the contact relationship.

Table 4 demonstrates that the proposed approach performs the best in all
the metrics. While all the baselines perform reasonably well by utilizing the
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Fig. 6. Visual comparison of planar segmentation results. From left to right, it shows
the input RGB image, our ground-truth manual annotation by LabelMe [16], the Plan-
eRCNN results [10], our results with PlaneRCNN, the PlaneAE results [24], and our
results with PlaneAE. Improvements by the proposed approach are noticeable at vari-
ous places, as highlighted in the red ovals
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Table 4. Inter-plane relationship evaluation on the two CNN modules (Orientation-
CNN and Contact-CNN). F1-scores are used for the parallel, orthogonal, and con-
tact relationship classifier. IoU metric is used for the contact mask prediction. We
compare against a few baseline methods (PlaneRCNN-Angle, PlaneRCNN-Contact1,
and PlaneRCNN-Contact2). We also conduct an ablation study where we control the
amount of input information. The color cyan and orange denote the best and the second
best results

Method
F1-score
(parallel)

F1-score
(orthogonal)

F1-score
(contact)

IoU%
(contact mask)

PlaneRCNN-Angle 0.51 0.68 — —

PlaneRCNN-Contact1
— —

0.64 35.75
PlaneRCNN-Contact2 0.69 21.60

Ours (mask) 0.37 0.51 0.69 42.84
Ours (mask+RGB) 0.45 0.58 0.69 41.40
Ours (mask+RGB+depth) 0.59 0.74 0.72 42.64

Ours (all) 0.60 0.76 0.75 45.43

PlaneRCNN reconstruction results, our simple CNN solutions (Orientation-CNN
and Contact-CNN) infer inter-plane relationships the best. The ablation study
(the last 4 rows) shows that the CNN modules consistently improves numbers
as more input information is given.

6 Conclusion

This paper proposed a novel single-image piecewise planar reconstruction tech-
nique that infers and enforces inter-plane relationships. Our approach utilizes
CNNs to infer the relationships, refines the plane parameters by optimization,
and employs a message passing neural network for jointly refining the plane
segmentation, while enforcing the inter-plane consistency constraints. We have
generated ground-truth inter-plane relationship labels and introduced three new
metrics in assessing reconstruction and segmentation. Qualitative and quantita-
tive evaluations demonstrate the effectiveness of the proposed method.
Acknowledgments: This research is partially supported by NSERC Discovery
Grants, NSERC Discovery Grants Accelerator Supplements, and DND/NSERC
Discovery Grant Supplement.
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