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S.1 Details of Deformation Function D
We opt to use a simple deformation function for D in our experiments, which is
designed to preserve local rigidity similarly with ARAP [4] but much simpler yet
effective in practice. Specifically, given a source mesh s = (V ∈ {R3}1···N , E ∈ V2),
where V and E denote the collections of vertices and edges, and a target t
represented as an unsigned distance function ft, we define our deformation
function D(s; t) as follows:

D(s; t) =
(

argmin
V̂

{ ∑
v̂i∈V̂

ft(v̂i) + λ
∑

(i,j)∈E

||(v̂i − v̂j)− (vi − vj)||2
}
, E
)

(S1)

where vi and v̂i are the given and optimized positions of i-th vertex. The first
term represents the fitting loss that pushes the deformed source shape D(s; t)
to be close to t, and the second term is the rigidity regularization loss that
penalizes for the length changes of each edge in E . In our implementation, we
solve the minimization in Eq. S1 using Ceres solver [1] by initializing the vertex
coordinates with the source mesh and defining the unsigned distance function
with 1003 voxel grids. We set λ = 1 in all our experiments, as we found that it
well-preserves the CAD model features including sharp edges and corners for
most of the 3D models we used.

While we convert the CAD models to simplified watertight meshes in Sec. 4 in
the paper to efficiently deform and preserve the connectivity across the connected
components in the CAD model, the ARAP deformation can also be directly
applied to the surface of the CAD model with a simple preprocessing. We found
that remeshing each connected component and linking the components each
other with additional edges based on the proximity can also give a very similar
result in the deformation with that of using the converted watertight meshes.
This way can maintain the original CAD model structure with its accompanied
meta information. Fig. S1 shows the difference between the converted watertight
mesh deformation to the direct CAD model deformation, which are almost
indistinguishable. All figures of the qualitative evaluation results in our main
paper are rendered with the results of the direct CAD model deformation.

S.2 Image-to-CAD

To show the flexibility of our approach, we now extend it to the application
of image-to-CAD generation. Given an image of a 3D model, we first use
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Fig. S1. Deformation results with the converted watertight meshes and the raw CAD
models.
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Fig. S2. Qualitative results to show the feasibility of our approach for the Image-to-
CAD application. We show one of three input viewpoints used by Pixel2Mesh++ [5]
to produce their coarse mesh. We use this to retrieve a CAD model, which is then
deformed to fit the coarse mesh. Rigidity constraints ensure the quality of our output
as shown. See Fig. S6 for more results.

Pixel2Mesh++ [5], a state-of-the-art image-to-mesh network, to generate an
initial coarse mesh. We then use its output to retrieve a CAD model using the
proposed Ours-Reg trained on ShapeNet [2] and deform it to fit the coarse mesh.
Fig. S2 shows that our approach is able to output models without artifacts
produced by direct generation networks i.e. in this case Pixel2Mesh++. It is
clearly shown that our output has sharper edges and preserves thin structures
such as the legs of the chairs in Fig. S2. Note that our retrieval solely relies
upon the mesh prediction of Pixel2Mesh++ [5] and we warp the retrieved model
towards the output of this mesh prediction network without the knowledge of
the input images.

S.3 Additional Baselines

We further compare our method with additional baselines. CD-Margin is the
case of using the margin loss in Sec. 3.2 in the paper for training, but employing
dm (Chamfer distance) to define the relationships among the shapes (instead
of the fitting gap emD (Eq. 1 in the paper) and using Euclidean distance in the
embedding space (fixing G(·) in Eq. 2 in the paper to identity). Given this, we
introduce three more baselines:

– CD-Reg : The network is trained with the regression loss in Sec. 3.3 in the
paper, but using dm and identity G(·) to define shape relationships and
embedding distance.



Deformation-Aware 3D Model Embedding and Retrieval 3

Table S1. Additional baseline results that show the fitting gap for the top-1 retrieval of
the different object classes in three additional set-ups.The fitting gap emD (s, t) multiplied
by 1e−2 are reported.

Method
Table Chair Sofa Car

Top-1 Top-3 Top-1 Top-3 Top-1 Top-3 Top-1 Top-3

M
e
a
n

d
m
(s
,
t
)

CD-Margin 4.875 3.449 4.750 3.518 3.087 4.151 2.525 1.905
CD-Reg 9.457 5.828 9.127 5.980 7.095 4.547 2.658 1.947

Symm-Margin 5.939 3.887 5.533 3.857 4.709 3.301 2.958 2.137
Symm-Reg 6.517 4.025 9.824 6.579 7.667 4.990 2.989 2.218

Ours-Margin 6.227 4.026 5.664 3.889 4.825 3.400 2.962 2.142
Ours-Reg 5.955 3.979 5.751 3.981 5.091 3.628 3.119 2.263

M
e
a
n

e
m D
(s
,
t
)

CD-Margin 2.362 1.373 2.134 1.242 1.587 0.909 1.249 0.773
CD-Reg 5.086 2.736 4.166 2.310 3.186 1.498 1.327 0.778

Symm-Margin 2.183 1.267 1.946 1.169 1.497 0.855 1.261 0.743
Symm-Reg 2.500 1.334 4.349 2.591 3.313 1.639 1.157 0.695

Ours-Margin 2.127 1.251 1.915 1.144 1.420 0.835 1.226 0.747
Ours-Reg 1.969 1.129 1.752 1.054 1.338 0.788 1.112 0.681

Table S2. Additional baseline results for ranking evaluations with 150 models per query.
The models are randomly selected and sorted by emD (s, t) (the query is not included).
All results are for the top-1 retrieval results of each method. The numbers multiplied
by 1e−2 are reported.

Method
Table Chair Sofa Car

Mean Mean Mean Mean Mean Mean Mean Mean Mean Mean Mean Mean

dm emD Rank dm emD Rank dm emD Rank dm emD Rank

CD-Margin 6.77 3.19 12.55 6.02 2.72 13.24 5.07 1.93 15.76 3.02 1.48 18.94
CD-Reg 10.37 5.42 46.67 9.51 4.31 41.35 7.62 3.32 43.06 3.16 1.45 18.66
Symm-Margin 8.54 2.96 9.70 7.09 2.46 9.31 5.69 1.77 11.04 3.54 1.37 14.83
Symm-Reg 8.72 3.15 12.56 10.37 4.61 46.54 7.62 3.32 43.06 3.16 1.45 18.66
Ours-Margin 8.89 2.88 8.86 7.15 2.37 8.15 5.83 1.67 9.09 3.61 1.34 12.95
Ours-Reg 8.59 2.71 7.05 7.39 2.24 6.32 6.23 1.62 7.91 3.80 1.24 7.80

– Symm-Margin: The relationships among the shapes are defined with the
fitting gap emD (Eq. 1 in the paper), but still G(·) in Eq. 2 in the paper is
fixed to identity.

– Symm-Reg : The same with Symm-Margin, but the network is trained with
the regression loss in Sec.3.3.

The quantitative results are reported in Tab. S1 and Tab. S2 (similarly to Tab. 1
and Tab. 2 in the paper). Refer to Sec. 5 for the details of the evaluation metrics.
The performance is improved when using the fitting gap emD as the relationships
instead of Chamfer distance dm, as shown in the results of Symm-Margin and
Symm-Reg (compared with the results of CD-Margin and CD-Reg). However,
still the performance of Symm-Margin and Symm-Reg is inferior to our case
(Ours-Margin and Ours-Reg) using the egocentric distance field to embed the
relationships. Also, note that the regression loss provides better performance only
when the egocentric distance field is used in the embedding (Ours-Margin vs.
Ours-Reg) but not for the other cases (CD-Margin vs. CD Reg and Symm-Margin
vs. Symm-Reg).
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Table S3. The percentage of recall@1 for different methods. A correct match is defined
as the case when the top-1 retrieval is in the top-5 ranks based on emD(s, t).

Method Table Chair Sofa Car

Ranked-CD 50.50 52.52 46.91 54.26
AE 54.73 54.41 49.76 43.89

CD-Margin 51.04 50.69 44.53 39.20
CD-reg 18.34 17.43 16.64 38.07

Symm-Margin 61.35 61.29 53.25 45.03
Symm-Reg 56.52 14.23 16.80 61.22

Ours-Margin 64.26 65.55 58.32 46.73
Ours-Reg 70.64 73.97 65.61 67.19

Table S4. Quantitative comparison of Ours-Margin with and without the hard negative
mining and Ours-Reg, experimented on ShapeNet [2]. The fitting gap emD (s, t) multiplied
by 1e−2 are reported. Bold is the smallest.

Method
Table Chair Sofa Car

Top-1 Top-3 Top-1 Top-3 Top-1 Top-3 Top-1 Top-3

Ours-Margin 2.127 1.251 1.915 1.144 1.420 0.835 1.226 0.747
Ours-Margin
w/ hardneg

2.090 1.233 1.904 1.131 1.400 0.822 1.220 0.744

Ours-Reg 1.969 1.129 1.752 1.054 1.338 0.788 1.112 0.681

S.4 Additional Evaluation Metric - Recall

We also report recall of the retrieval results. Since the notion of the correct match
is not defined in our problem, we compute recall@1 by calculating the proportion
of the cases when the top-1 retrieval is in the top-5 ranks based on emD(s, t). The
results are reported in Tab. S3. Ours outperforms the baselines with big margins.

S.5 Hard Negative Mining in the Margin-Loss-Based Approach

For our margin-loss-based approach (Ours-Margin) described in Sec. 3.2 in the
paper, we also tried hard negative mining [3] in the network training. For each
query, we generate the set of negative samples N′t with the 8 hardest negatives
in Nt (the closest to the query by the learned egocentric distance δ(t; s)) and 5
other randomly selected negatives; the additional random negatives are added
to avoid overfitting. For training efficiency, instead of forward-propagating the
network for each step to compute the egocentric distance δ(t; s), we cache the
latent vectors F(·) and the distance field (PSD) matrices G(·) for all the models
in the database and update them every 10 epochs. The hard negative mining was
tested in the fine-tuning, and the network model was first trained in the normal
way (with all randomly selected negatives) for 30 epochs. Tab. S4 shows the
quantitative results on ShapeNet [2], indicating that the hard negative mining
slightly improves the performance. But, Ours-Reg still performs better than
Ours-Margin in all classes.
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Table S5. Qualitative comparisons on ShapeNet Table dataset with the varying
dimension of the latent space. The fitting gap emD (s, t) multiplied by 1e−2 are reported.
Bold is the smallest among the dimensions.

Dimension
AE CD-Margin Ours-Margin Ours-Reg

Top-1 Top-3 Top-1 Top-3 Top-1 Top-3 Top-1 Top-3

d = 64 2.481 1.489 2.429 1.418 2.159 1.229 1.997 1.153
d = 128 2.325 1.357 2.369 1.380 2.131 1.243 1.981 1.133
d = 256 2.331 1.334 2.362 1.373 2.127 1.251 1.969 1.129
d = 512 2.330 1.351 2.323 1.370 2.092 1.235 2.006 1.143

S.6 Analysis of Latent Space Dimension

As mentioned in Sec. 4 in the paper, we demonstrate the effect of varying the
dimension of the latent space, both for baselines and our methods. Tab. S5
shows the quantitative results on ShapeNet Table dataset when varying the
dimension of the latent space from 64 to 512. While the higher dimensions
mostly offer slightly better performance, the difference is marginal, meaning
that even the smallest dimension (d = 64) has sufficient capacity to encode the
asymmetric deformability relationships. Also, regardless of the dimension, our
methods consistently outperform the baselines with significant margins.
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S.7 More Qualitative Results

In the following figures, we show more qualitative comparisons between our
method and baseline methods for the experiments of ShapeNet (Sec. 5.1), Scan-
to-CAD (Sec. 5.2) in the paper, and Image-to-CAD (Sec. S.2).

Fig. S3. More qualitative results of ShapeNet experiment (chairs). See Sec. 5.1 in the
paper for the details.
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Fig. S4. More qualitative results of ShapeNet experiment (sofas and tables). See
Sec. 5.1 in the paper for the details.



8 M. A. Uy et al.

Human
Anno

AE Our
Reg

Our
Margin

Scan Human
Anno

AE Our
Reg

Our
Margin

Scan

Re
tri
ev
ed

D
ef
or
m
ed

Re
tri
ev
ed

D
ef
or
m
ed

Re
tri
ev
ed

D
ef
or
m
ed

Re
tri
ev
ed

D
ef
or
m
ed

Re
tri
ev
ed

D
ef
or
m
ed

Re
tri
ev
ed

D
ef
or
m
ed

Re
tri
ev
ed

D
ef
or
m
ed

Re
tri
ev
ed

D
ef
or
m
ed

Re
tri
ev
ed

D
ef
or
m
ed

Re
tri
ev
ed

D
ef
or
m
ed

Re
tri
ev
ed

D
ef
or
m
ed

Re
tri
ev
ed

D
ef
or
m
ed

Re
tri
ev
ed

D
ef
or
m
ed

Re
tri
ev
ed

D
ef
or
m
ed

Re
tri
ev
ed

D
ef
or
m
ed

Re
tri
ev
ed

D
ef
or
m
ed

Fig. S5. More qualitative results of Scan-to-CAD experiment (chairs, tables, sofas).
See Sec. 5.2 in the paper for the details.
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Fig. S6. More qualitative results of Image-to-CAD experiment. See Sec. S.2 for the
details.
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