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Abstract. Vision perception is one of the most important components
for a computer or robot to understand the surrounding scene and achieve
autonomous applications. However, most of the vision models are based
on the RGB sensors, which in general are vulnerable to the insufficient
lighting condition. In contrast, the depth camera, another widely-used
visual sensor, is capable of perceiving 3D information and being more
robust to the lack of illumination, but unable to obtain appearance details
of the surrounding environment compared to RGB cameras. To make
RGB-based vision models workable for the low-lighting scenario, prior
methods focus on learning the colorization on depth maps captured by
depth cameras, such that the vision models can still achieve reasonable
performance on colorized depth maps. However, the colorization produced
in this manner is usually unrealistic and constrained to the specific vision
model, thus being hard to generalize for other tasks to use. In this
paper, we propose a depth map colorization method via disentangling
appearance and structure factors, so that our model could 1) learn
depth-invariant appearance features from an appearance reference and
2) generate colorized images by combining a given depth map and the
appearance feature obtained from any reference. We conduct extensive
experiments to show that our colorization results are more realistic and
diverse in comparison to several image translation baselines.
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1 Introduction

Recognizing the surrounding objects or the environment based on the visual
sensory is one of the fundamental topics in computer vision. Most of the existing
computer vision algorithms, including object recognition, simultaneous localiza-
tion and mapping (SLAM) for robot navigation and position, or the ones used in
autonomous driving, are applied on the images or videos taken by RGB cameras.
Under the condition of having sufficient lighting environment, appearance details
of objects can be well captured in RGB images, in which the vision models are
trained to perform recognition on such images. As the RGB image is formed
by recording the scattered light coming from the illuminated surface of the
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Fig. 1. RGB and Depth cameras are two most popular visual sensors nowadays, while
most of the typical computer vision models (e.g., object detection) are trained upon the
data acquired by RGB cameras. However, if there is no sufficient illumination in the
environment, the RGB camera usually cannot well capture image details, thus leading
to inaccurate recognition. In comparison, the active sensing of depth cameras is able to
function well under such low-lighting situation to produce depth maps. In this paper
we aim to utilize this advantage of depth cameras and colorize the depth map, such
that the vision models would still be able to perform their tasks.

surrounding environment into the camera, appearance details shown in the image
would gradually diminish when the environmental illumination becomes lower,
which leads to undesirable performance of recognition for vision models. The
case of having insufficient lighting is actually quite common in our daily life, e.g.,
indoor navigation or surveillance in a dark room, autonomous driving in the
evening, or cave exploration by a robot. How to maintain the ability of visual
perception in such cases is an important topic for the research community.

Depth camera is another popular visual sensor for perceiving the depth
information and it is nowadays equipped to various robots and autonomous
vehicles, where the rough structure/shape of the surrounding objects is well
preserved in the resultant depth maps. Depth camera can still function smoothly
in the low-lighting environment via its active sensing, e.g., based on the (infrared)
laser design. However, although depth camera is able to provide more robust
sensory ability against different illumination conditions, it is incapable of capturing
appearance details (e.g., color and texture) of the objects as the RGB cameras
do. Thus, the complementary property of RGB and depth cameras has attracted
wide research interests [21,23,14] to have them integrated together for achieving
better performance in visual perception and recognition.

Nevertheless, the combination between RGB and depth cameras does not
guarantee to fully resolve the challenge for recognizing objects in the low-lighting
environment. Therefore, several works [3,2,1,5,19] propose to tackle this problem
from another perspective via performing the colorization on depth maps, where
the colorized images are used as input for computer vision models to perform
their recognition tasks. We observe that these works are either based on the
hand-crafted colorization approaches or aiming to find the specific colorization
manner in order to boost the performance of a certain computer vision model, and
thus the colorized results are usually unrealistic and hard to be used for different
tasks. In this paper, we instead propose to focus on the problem of learning
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depth map colorization without being constrained on any specific applications
and target for generating realistic colorization results. In particular, the resultant
colorization produced by our model is expected to paint the given depth map
with (photo-)realistic textures and still maintain the overall structure/shape of
the objects, such that the RGB-based vision models can be easily adapted to the
colorized depth maps with less efforts.

We tackle the depth map colorization problem based on a hypothesis: an RGB
image is composed of the structure factor and the appearance factor, where the
former can be well captured by the corresponding depth map. This hypothesis of
the disentanglement for RGB images is realized by our proposed model, which
has three main components: structure sub-network, appearance sub-network,
and a mixing sub-network (see Fig. 2). Given a depth map that we would like
to colorize and a reference RGB-Depth image-pair as the source of appearance,
the mixing sub-network takes 1) the structure factor extracted by the structure
sub-network from the given depth map and 2) the appearance factor extracted
by the appearance sub-network from the reference image-pair, as the input and
then outputs the colorized depth map.

Based on our proposed model, a depth map can be colorized into different
appearances by utilizing various reference RGB-Depth image-pairs. Each of
our designed model is learned to obtain its function, i.e, extraction of struc-
ture/appearance factors for structure/appearance sub-networks and image gener-
ation for mixing sub-network. In addition, we apply several designs to improve
our training procedure, such as the random flipping of reference image-pair and
the time-invariant property of a video sequence. Experiments are conducted on
the NYU-Depth v2 [20] and the SceneNet RGB-D [17] datasets. We provide the
quantitative and qualitative evaluation on both the quality and diversity of the
colorized depth maps, and demonstrate the efficacy of our method on maintaining
performance for RGB-based computer vision models, in comparison to several
baselines.

2 Related Work

Depth Colorization Previous works [3,1,2,5,19] on depth colorization mainly
focus on how to transfer the depth maps into the format compatible with RGB
images, such that the computer vision models which are primitively learned or
designed for other data domains (e.g., RGB images) can still be adopted. For
instance, Eitel et al. [3] propose a hand-crafted way to map the normalized depth
values into RGB color channels (i.e., from highest depth values to lowest ones,
they are gradually mapped into red, green, and blue colors). In [1], since a depth
map contains rich 3D information, they instead propose to convert a depth image
into a map of 3D surface normal, where the magnitude along each axis of a
normal vector is encoded into RGB color channels respectively. Although the
colorization obtained by these two methods do have the RGB colors, they are
dissimilar to the typical images taken by regular RGB cameras, which may not be
utilizable by typical RGB-based computer vision models. More recently, the work
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of [2] tackles the depth map colorization problem from the perspective of transfer
learning, where a deep network is learned to find the optimal transformation
from depth maps into RGB images, with respect to a given pre-trained Conv-Net.
Since the given Conv-Net is pre-trained for a specific task, the learned transform
and the resultant colorized depth maps are actually not realistic and thus less
generalizable for direct usage by other models. Our goal in this paper is distinct
from aforementioned approaches since we aim to generate the (photo-)realistic
colorization on depth maps and our model is not designed specifically for any
particular pre-trained models. There are also other approaches in performing
colorization on the gray-scale images [7,11]. However, their input gray-scale
images are the monochrome photos which already have quite some appearance
details. Hence these gray-scale photos are fundamentally different from our target
depth maps in this paper, which only represent the rough structure/shape of
objects in the surrounding environment.

Image-to-Image Translation Another way to tackle the depth map coloriza-
tion problem is to treat it as a special case of image-to-image translation task,
where we take RGB images and depth maps as two data domains, and learn
the translation between them. Image-to-image translation methods have been
developed widely. For instance, Isola et al. [8] leverage the conditional generative
adversarial network (GAN) [4] for learning the translation from one domain
to another (with taking one domain as condition), where their method needs
the paired data across domains for training. Zhu et al. [24] utilize the cycle
consistency for learning the translation networks between two image domains,
without requiring paired data. However, those methods are only able to produce
one-to-one translation, i.e., the mapping between domains is deterministic, and
thus the translated outputs lack diversity. Instead, the work of [25] extends the
image-to-image translation from one-to-one mapping into one-to-many. With
taking the data from one domain as condition, their method learns to model
a distribution of plausible translated outputs for another domain based on the
conditional generative modeling. However, as which will be shown later in our
experiments, applying such models in the task of depth map colorization could
suffer from the issue of mode collapse. Moreover, the resultant images may not
be sufficiently realistic nor maintain the structure as in the input depth map. In
comparison, our method is based on learning the disentanglement of RGB images
and can generate realistic colorization with high image quality and diversity.

3 Proposed Method for Depth Map Colorization

As motivated in the introduction, the objective of our proposed method is to
colorize a given depth map D by taking the appearance information from a
reference of RGB-Depth image-pair {IR, DR}. The architecture of the proposed
model is illustrated in Fig. 2, consisting of three sub-networks: structure sub-
network S, appearance sub-network E, and mixing sub-network M . In the
following, we will describe how we achieve the depth map colorization in details.
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Fig. 2. Overview of the proposed model, which is composed of three main components:
structure sub-network, appearance sub-network, and a mixing sub-network (shaded in
green, blue, and red background respectively).

3.1 Disentanglement via Self-supervised Learning

The main assumption behind our model design is that: an RGB image I can be
disentangled into the structure and appearance components, where they should
be independent from each other. In particular, we hypothesize that the structure
information has been fully maintained in the corresponding depth map D. Thus,
the structure sub-network S is designed to extract the structure factor vS = S(D)
from the input depth map D. In addition, while following the assumption above,
the appearance information of an RGB image should be obtainable by subtracting
the structure information from it. Hence, the appearance sub-network E takes
an RGB-Depth image-pair {IR, DR} as input, and then learns to extract the
structure-invariant appearance factor vE = E(IR, DR) from IR. Upon having
both vS and vE , the mixing sub-network M combines them and produces the
colorization result, which ideally should be a (photo-)realistic RGB image with
its structure and appearance similar/related to D and IR respectively.

Self-Supervised Learning. Our task is to colorize a given depth map D
by using the appearance reference from any arbitrary RGB-Depth image-pair
{IR, DR}. Since D and {IR, DR} are unnecessary a pair that belongs to the
same scene, there is no dataset under such setting that we can directly use to
supervise our models. Moreover, it is impossible to collect a dataset with proper
ground truths, i.e., finding multiple real-world images related to the same depth
map having different appearance and the corresponding appearance references.

To address the problem of having no proper dataset, we propose a self-
supervised learning scheme. Basically, we use the RGB-Depth image-pair {IR, DR}
and its depth map DR as the input for the appearance sub-network E and struc-
ture sub-network S respectively. Then the resultant colorization produced by
the mixing sub-network M should be able to well reconstruct an RGB image
ÎR = M(E(IR, DR), S(DR)). Nevertheless, directly using the objective defined
on such reconstruction for training our model could be problematic.
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The main reason is as follows. The primary motivation behind our model
design is to make the appearance sub-network extract only the structure-invariant
appearance information from the reference RGB-Depth image-pair, i.e., to achieve
the disentanglement between the structure factor vS and the appearance factor
vE , such that we are able to flexibly colorize a depth map D with any arbitrary
appearance reference for producing diverse colorization results with the well-
maintained structure ofD. However, regarding our self-supervised learning scheme,
since the input DR for the structure sub-network S is used again in the input
pair {IR, DR} for the appearance sub-network E, the mixing sub-network M
could have a trivial solution via learning to ignore S(DR), as M already receives
all the information from E to reconstruct ÎR to be similar to IR. In other words,
there is no guarantee to achieve the disentanglement between vS = S(DR) and
vE = E(IR, DR) solely via using the aforementioned reconstruction.

Random Flipping. In order to resolve such issue and still keep the benefit of
self-supervised learning, we introduce a random flipping step to randomly flip
the reference RGB-Depth pair {IR, DR} before passing it to the appearance
sub-network. Such random flipping operation F helps to alleviate the depen-
dency between the inputs for both appearance and structure sub-networks, i.e.,
{F (IR), F (DR)} and DR respectively (note that IR and DR are under the same
flipping). Therefore, the mixing sub-network is encouraged to jointly consider
vS = S(DR) and v′E = E(F (IR), F (DR)) for achieving the reconstruction of
IR. In particular, the appearance factor v′E extracted by E is enhanced to be
structure-invariant, and our colorization model is encouraged to acquire the
structural information mainly from the structure sub-network S, as the input
DR for S and the colorization output ÎR = M(v′E , vS) should be consistent
in structure even when the reference RGB-Depth pair {IR, DR} is flipped. We
define an objective to calculate the L1, L2, and the perceptual errors [9]:

Lr =
∥∥∥I, Î∥∥∥

1
+
∥∥∥I, Î∥∥∥

2
+
∑
l

∥∥∥φl(I), φl(Î)
∥∥∥
2
, (1)

where I and Î are input and reconstructed images respectively, and φl denotes
the feature representation obtained from the l-th layer of an ImageNet-pretrained
VGG network using relu1 1, relu2 1, relu3 1, and relu4 1 layers. The objec-
tive based on our self-supervised scheme and the random flipping step considers
(1) in reconstruction:

Lrec =Lr(IR,M(v′E , vS)). (2)

As shown in Fig. 2, both appearance sub-network E and structure sub-network
S share the similar network architecture. The only difference is that S has the
skip-connections to the mixing sub-network M over multiple convolution layers,
serving a purpose to help the mixing sub-network preserve the structure details
of the input depth map DR.

Time Invariant Property (TIP). To further improve the self-supervised
signal to deal with the lack of ground truths to train our colorization network, we
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Fig. 3. Illustration of using Time Invariant Property (TIP) to provide additional
supervised signals for our model training.

propose another design to facilitate the model training, named as Time Invariant
Property (TIP). The basic idea is to leverage the characteristics of the RGB-D
video: We assume that the consecutive frames in an RGB-D video sequence share
similar or even the identical appearances, but only have difference in the structure
which is related to their depth maps. For instance, the RGB-D video sequences
used for our experiments are taken in indoor scene by a moving camera, where
the textures/appearances between consecutive frames are similar to each other.

This assumption then provides additional supervision to train the colorization
model. One training scheme is illustrated in Fig. 3. Given an RGB-D video
sequence, we use the depth map at time stamp t as the input to the structure
sub-network S, and its neighboring RGB-Depth image-pair at time stamp t+ n
as the appearance reference, to perform the colorization. Since the appearance
features among neighboring frames are similar, we treat the RGB image at
time stamp t as the ground truth of colorization for network training. However,
there could exist a potential concern where the depth map structure of the
appearance reference could be similar to the target depth map, which may break
the disentanglement assumption. Fortunately, the proposed random flipping
operation can well decorrelate these two depth maps and ensure our time invariant
property. The reconstruction loss with TIP is similar to (2):

Ltip =Lr(IRt ,M(v′E,t+n, vS,t)), (3)

where v′E,t+n denotes the extracted appearance factor from the reference pair

IRt+n, D
R
t+n at time stamp t+n, vS,t denotes the extracted structure factor for the

input depth map DR
t at time stamp t, and IRt denotes the image at time stamp t.

3.2 Adversarial Learning and Cycle Consistency

To further improve the robustness of our proposed model (denoted as “Full Model”
in the following sections), we introduce two additional training techniques, as
shown in Fig. 4. First, we utilize the adversarial learning approach [4] via
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Fig. 4. Illustration of the DRIT-arch and adversarial learning used for improving our
model training (cf. Section 3.2).

utilizing a discriminator on the colorization output to make the results more
realistic. Second, as inspired by a recent work (i.e., DRIT [12,13]) on learning
disentanglement for improving image-to-image translation, we apply a similar idea
(denoted as DRIT-arch) to enforce cycle consistency and stabilize our network
training. To better explain the overall procedure of DRIT-arch as illustrated
in Fig. 4, we denote the reference RGB-Depth image-pair as {IR, DR}, and
name the input depth map for colorization as DT . Note that DT is unrelated to
the reference {IR, DR}. Then our network first produces the colorized output
IT = M(E(IR, DR), S(DT )), which should have the appearance factor from
{IR, DR} and a similar structure to DT . Then, we pair IT and DT as a new
source of appearance reference and use it to colorize DR, where the resultant
colorization should well reconstruct IR:

Lcyc =Lr(IR,M(E(IT , DT ), S(DR))). (4)

This cycle consistency provides us another supervision to train the network. It
is worth mentioning that the cycle consistency can be applied without relying
on the TIP assumption. Since there is no ground truth for IT , we adopt an
adversarial loss Ladv [16] to make the colorized output similar to real images.

Overall Objective. The overall objective for our model training involves the
above-mentioned self-supervised loss via random flipping and time invariant
property in (3), the cycle-consistency loss in (4), and the adversarial loss Ladv:

Lall =Ltip + Lcyc + λadvLadv, (5)

where λadv serves to balance the loss function, which is set as 0.001 in this work.

Implementation Details. We follow the standard training scheme of GAN
[4] to optimize the objective in (5), using the Adam optimizer [10] with a fixed
learning rate of 0.001. First, we train our model from scratch only using time
invariant property with random flipping via (3) for 100 epochs as a warm-up
stage. After the model is more stable and able to produce reasonable results,
we adopt the full loss function via (5) to make outputs more realistic and



Colorization of Depth Map 9

encourage our model to keep the appearance factor along with output images.
Furthermore, we use PatchGANs [8] and least-squares objective [16] for stable
training. More details are provided in the supplementary material about the
network architecture and training procedure. Our project page is at https:

//github.com/alanlai199/ColorizeDepthNet

4 Experimental Results

Dataset. We adopt two datasets in our experiments: NYU Depth v2 [20] and
SceneNet RGB-D [17]. The NYU Depth v2 dataset is composed of a collection
of RGB-D video sequences and is originally proposed for learning indoor scene
segmentation task. Here we use all the 284 raw video clips in the training
set as we would like to leverage the time invariant property within the video
sequences, while all the 654 RGB-D images in its test set (originally for evaluating
segmentation) are used for testing. The SceneNet RGB-D dataset has a large
scale collection of synthetic RGB-D videos, which are with photo-realistic quality
in rendering. Here we randomly select 50,728 short video clips and 493 RGB-D
images of different room-layouts from its training and test sets for our model
learning and testing respectively.

4.1 Evaluation Metrics and Baselines for Comparison

There are two different quantitative evaluation schemes for the colorization
results in our experiments. For the first evaluation scheme, we aim to quantify
the performance of reconstruction, i.e., colorization on a depth map by using its
corresponding ground truth RGB image. Here we adopt the well-know PSNR
(peak signal-to-noise ratio, higher the better) metric for the assessment on the
reconstructed image with respect to the ground truth RGB image.

For the second scheme, we target to evaluate the image quality and the
diversity of the colorized depth maps. Here we adopt Fréchet Inception distance
(FID [6], lower the better), which is commonly used in GAN-related works,
as our metric. FID basically compares the similarity between two sets of data
based on the distance between their distributions in the space of Inception
feature representation [22]. Regarding both NYU Depth v2 and SceneNet RGB-D
datasets, we choose 5 distinct RGB-Depth image-pairs from each of their test
sets as our appearance references, and perform colorization on all the testing
depth maps of each dataset. The colorization outputs are then compared with
the real RGB images in the testing set, by using FID scores.

Three models of image-to-image translation are used as our baselines for
comparison, including CycleGAN [24], Pix2Pix [8], and BicycleGAN [25]. We
take RGB images and depth maps as two different data domains for training the
baselines. Both CycleGAN and Pix2Pix can only produce one-to-one mapping,
which means they can only generate one RGB output image for each input depth
map. BicycleGAN acts more similar to our model; ideally it is able to colorize a
given depth map into various appearances, where the appearance feature could

https://github.com/alanlai199/ColorizeDepthNet
https://github.com/alanlai199/ColorizeDepthNet
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RGB of 𝐷
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Dataset

SceneNet
Dataset

Appearance Reference
RGB-Depth Pair

{𝐼𝑅 , 𝐷𝑅}

Appearance Reference
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{𝐼𝑅 , 𝐷𝑅}
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Groundtruth
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CycleGAN

Pix2Pix

BicycleGAN

Our Reconstruction

Fig. 5. Qualitative results of our framework and image-to-image translation baselines.

be extracted from a reference RGB image, which is then combined with a given
depth map as the input to achieve colorization. Note that, the generators in all
baseline models have similar architecture as the one for BicycleGAN, in which
the capacity of the generator is larger than our proposed model, i.e., 4× 107 v.s.
1.5× 107 (ours) in terms of the number of parameters.

4.2 Quantitative and Qualitative Results

In Fig. 5 and Table 1, we show the quantitative and qualitative evaluations
respectively for our proposed model and the image-to-image translation baselines.
For both evaluation schemes described previously, we observe that our full model
performs favorably on colorization in comparison to baselines, where the resultant
images have clearer edges, realistic appearance, and larger variety/diversity. In
particular, our colorization results demonstrate the flexibility of our proposed
method for adding different appearances into the same depth map via learning
disentanglement, while the BicycleGAN baseline suffers from the mode collapse
problem (i.e., produces the same colorization result no matter which appearance
reference is given). As both the Pix2Pix and CycleGAN can only produce one-
to-one mapping, it is not surprising to see lower diversity. In addition, we often
observe noisy patterns in the baseline results, in which it verifies the difficulty of
such depth colorization task for image-to-image translation models. Based on
our reconstruction results, it is also worth noting that the appearance features
extracted from the appearance reference are actually high-level and invariant to
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Table 1. Quantitative evaluation on the NYU Depth v2 and SceneNet RGB-D datasets,
in terms of PSNR for reconstruction and FID [6] for both quality/diversity of the
colorization results, with comparison to the image-to-image translation baselines.

Dataset NYU Depth v2 SceneNet RGB-D

Metrics PSNR FID PSNR FID

Cycle GAN 8.9948 245.2066 9.7859 187.3561
Pix2Pix 10.9974 142.2589 11.8593 152.3537

BicycleGAN 10.7301 145.3382 15.5830 192.1874

Our Full Model 12.1115 45.1402 22.3333 92.7267

Appearance Reference RGB-D Pair {𝐼𝑅 , 𝐷𝑅}

Groundtruth
RGB of 𝐷

Depth Map 𝑫 for 
Colorization

Our Full Model

Our Full Model
w/o DRIT-arch and 

Adversarial learning

Our Model w/o Time
Invariant Property (TIP)

Reconstruction

Fig. 6. Qualitative examples of our design choices for model variants.

the structure, e.g., the objects on the same position in both ground truth RGB
image and our reconstruction may not have the identical appearance.

4.3 Ablation Study

We perform an ablation study to investigate the contributions of our design
choices in the proposed model on NYU Depth v2. The quantitative and qualitative
evaluations of different variants are provided in the Fig. 6 and Table 2. Having
all the designs in the full model achieves the best performance in terms of
FID, showing that the results are the most realistic and diverse ones compared
to other model variants. Also, both the random flipping operation and time
invariant property (TIP) contribute to model learning, thus helping to produce
more realistic colorization. Especially, the TIP plays an important role to largely
improve the diversity as indicated by the FID scores. Regarding the DRIT-arch
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Table 2. Ablation study of our design choices on NYU Depth v2.

Metrics PSNR FID

Our Full Model 12.1115 45.1402

w/o Random Flipping 13.8649 58.9894
w/o Time Invariant Property 16.1137 138.9675

w/o DRIT-arch & Discriminator 12.7394 55.9795

and adversarial learning with discriminator, they together benefit the training
of disentanglement and improve the image quality of colorization. It is also
worth noting that, although the model variant without TIP can achieve the best
performance in PSNR, it can only perform well in the case of reconstruction
(i.e., colorization on a depth map by having its corresponding ground truth RGB
image as the appearance reference) but fail to nicely paint the depth map with
other appearance sources, which leads to much worse FID scores and colorization
results with artifacts as clearly shown in Fig. 6 (some structure information from
the appearance reference stains the colorization in the bottom row).

Table 3. Comparisons between different methods in terms of consistency in average
precision for object detection on NYU Depth v2 (top) and SceneNet (bottom) test
sets. Here, we randomly select 5 appearance reference image-pairs and exclude them
from the testing set for the “Our Full Model” setting, while using depth maps and
corresponding reference image-pairs for the “Reconstruction” setting.

chair sofa bed tv table person sink fridge toilet oven

Ill-Lighted 3.5 9.5 19.4 15.3 12.6 26.8 28.4 31.3 33.2 12.6

CycleGAN 8.4 1.7 0.2 0.1 4.9 0.6 0.0 0.0 0.0 0.0
Pix2Pix 38.0 46.6 52.0 10.9 37.8 35.9 39.7 55.7 76.0 5.5

BicycleGAN 46.2 31.4 45.4 7.3 35.9 31.7 20.3 38.1 20.9 2.5

Reconstruction 71.0 76.3 82.5 39.7 77.7 69.0 59.7 77.9 88.1 46.2
Our Full Model 69.9 71.4 85.0 36.1 75.1 59.6 61.7 66.4 90.0 35.7

chair toilet bench bowl pottedplant

Ill-Lighted 18.7 25.0 25.0 0.0 0.0

CycleGAN 33.0 15.9 8.3 3.6 0.0
Pix2Pix 0.0 0.0 4.9 12.8 6.1

BicycleGAN 23.4 21.5 25.0 6.3 0.0

Reconstruction 70.3 75.4 32.1 68.8 66.7
Our Full Model 65.1 67.0 68.8 62.5 44.4
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Fig. 7. Examples for recognition consistency. Our reconstruction and colorization show
higher detection consistency with respect to the original image than the other methods.

4.4 Recognition and Temporal Consistency

As motivated in this paper, we would like to colorize the depth maps such that the
vision models originally trained on RGB images can still function reasonably on
the colorization results even when the illumination is insufficient. Therefore, given
a depth map D and its corresponding RGB image I taken under sufficient lighting,
we expect that the vision model would have similar/consistent recognition outputs
across I and the colorization of D produced by our proposed method. In order
to verify if such consistency exists, we adopt an off-the-shelf object detector,
YOLOv3 [18] pre-trained on the COCO dataset [15], to perform the object
detection on both ground truth RGB images and the colorization results, and
then evaluate the consistency between their detection results.

The metric of consistency is defined upon the average precision of object
detection on colorization results by considering the detection results on the
original RGB images as the ground truths bounding boxes (IoU ≥ 0.5). Note
that we do not perform any fine-tuning on the detector towards colorization. As
COCO dataset has 80 object categories where most of them do not appear in
NYU-Depth-v2, we manually select 10 object classes which frequently appear in
NYU-Depth-v2 as our targets for verification. Similarly, for SceneNet, 5 object
classes are chosen. In addition to having the comparison with the aforementioned
image-translation methods in terms of consistency, we introduce another baseline
which applies gamma-correction on the original RGB images for simulating the
photos taken under ill-lighting situation (gamma equals to 10 in our experiments).
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Fig. 8. Example results of colorizing a depth video.

The quantitative and qualitative results are shown in Fig. 7 and Table 3,
respectively. The colorization results produced by our full model (using the
appearance reference distinct from the original image) not only have higher
consistency in comparison to other baselines, but also obtain comparable per-
formance with respect to the reconstruction (i.e., depth map colorized by the
appearance reference from its original image). These results validate the benefit
of our depth map colorization for maintaining recognition ability of vision models
up to a certain degree under the ill-lighting environment.

Moreover, we experiment on colorizing a video sequence of depth maps, based
on a fixed RGB-Depth image-pair as the appearance reference, in order to testify
the temporal consistency of our colorization results, i.e., the same object should
be colorized similarly across video frames. As shown in the qualitative results of
Fig. 8, our model is able to produce temporally smooth colorization, and we are
able to well recognize the objects despite their different appearances compared
to original RGB images.

5 Conclusions

We present a method for colorizing the depth map via disentanglement of image
appearance and structure. A practical application is to provide an alternative,
clear, and colorful view of the ill-lighting scene. Unlike previous works which
usually produce unrealistic images, our model focuses on generating realistic
colorization with the flexibility of using any reference image as the source of
appearance information. Several self-supervised designs are adopted to realize
our model training, such as random flipping, time invariant property (TIP),
adversarial learning, and cycle consistency. The ablation study demonstrates
the contributions of each design to encourage the image disentanglement that
benefits colorization. Results on both the recognition and temporal consistencies
further verifies the applicability of our proposed colorization model.
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