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9 Supplementary material

9.1 Additional discussion on tracking techniques

In dense real-time tracking applications [44,41,52,53] there are examples of artic-
ulated models that use hybrid representations. Similarly to our work, they also
provide constant-time occupancy queries without the need for acceleration data
structures. However, these shape models consist of simple rigid primitives, or
use an artist-designed template. In contrast, we learn a deformable shape model
from data, and allow users to query the pose-corrected occupancy anywhere in
space. In more detail:

– Schmidt et al. [44]: relies on a discretization of the SDF on grids and/or prim-
itives to answer distance queries, only models piecewise rigid parts (compare
our rigid (R) variant), and requires the construction of the parts SDF before
tracking – a process that relies on user interaction.

– Tkach et al. [54]: the quality of approximation produced by our method is
vastly superior to that achieved by sphere-meshes. Further, similarly to [44],
the template is specified manually.

– Taylor et al. [52]: similarly to [44], the tracking template is specified manu-
ally, and the technique requires a mixture of mesh-based closest point queries
and implicit function queries.

– Thiery et al. [53]: the approximation quality argument is analogous to that
of [54], while to construct such models one need a consistently meshed motion
sequence – an extremely stringent requirement in practice.

9.2 Ablation studies

Please see the animated results of reconstruction and tracking in the supple-
mentary video. Please see the details of the dataset in the supplementary
data split files. Note that, except Figure 9 where we use AMASS/Transitions
due to its diversity of poses, we adopt AMASS/DFaust for all the other studies.
Also note that due to computational limitations, we evaluate on one motion se-
quence only in Figure 10. We select a sequence that has a median reconstruction
performance as a representative example.
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Loccupancy mIoU↑ Chamfer L1↓ F%↑

Cross-Entropy .959 .00006 98.01
L2 .959 .00004 98.54

Table 5: Loccupancy

Lweights mIoU↑ Chamfer L1↓ F%↑

7 .845 .00351 76.64
3 .959 .00004 98.54

Table 6: Lweights
Fig. 7: Ablation study of the loss used for fitting the occupancy function (L2
vs. binary cross-entropy), and the ablation study of the impact of the skinning
weight loss in Eq. (10) on the right.

Losses ablation – Figure 7. One can view O(x|θ) as a binary classifier that
aims to separate the interior of the shape from its exterior. Accordingly, one can
use a binary cross-entropy loss for optimization, but our experiments suggest
that an L2 loss perform slightly better. Hence, we employ the L2 loss for all of
our experiments; see Table 5. We also validate the importance of the skinning
weights loss in Table 6 and observe a big improvement when Lweights is included.

Model mIoU↑ Chamfer L1↓ F%↑

R .933 .00021 94.13
D\Π .926 .00023 92.23
D .959 .00004 98.54

Table 7: Projection Π

D 1 2 4 8 16

mIoU↑ .955 .957 .959 .958 .957
Chamfer L1↓ .00130 .00004 .00004 .00199 .00004

F%↑ 98.00 98.38 98.54 98.09 97.85

Table 8: Projection size D
Fig. 8: Ablation of our (per-part) linear subspace projection.

Linear subspace projection Π – Figure 8. Note that the rigid model (R)
actually outperforms the deformable model (D) if one removes the learnt linear
dimensionality reduction (D\Π); see Table 7. This is a result only observed
on the test set, while on the training set D\Π performs comparably. In other
words, Π helps our model to achieve better generalization by enforcing a sparse
representation of pose. In Table 8, we report the results of an ablation study
on the dimensionality of the projection, which was the basis for the selection
of D=4.

θ mIoU↑ ChamferL1↓ F%↑

D {B−1
b } .962 .00003 99.22

D {B−1
b x} .959 .00003 98.86

D {B−1
b t0} .965 .00002 99.42

Table 9: θ for D.

MLP input mIoU↑ ChamferL1↓ F%↑

U [x, {B−1
b t0}] .520 .001057 26.83

U [{B−1
b x}] .865 .00019 86.61

D [{B−1
b x}, {B−1

b t0}] .965 .00002 99.42

Table 10: [x,θ] for U model.
Fig. 9: Ablations of pose representations.

Analysis of pose representations – Figure 9. In Table 9, we ablate sev-
eral representations for the pose θ used by the deformable model. We start by
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just using the collection of homogeneous transformations {B−1b }. Note that the
query point encoded in various coordinate frames is also an effective pose rep-
resentation {B−1b x}, which has a much lower dimensionality. Finally, we notice
that rather than using the query point, one can pick a fixed point to represent
pose. While any fixed point can be used, we select the origin of the model t0
for simplicity, resulting in {B−1b t0}. The resulting representation is compact and
effective. Table 10 shows a similar analysis for the unstructured model (metrics
for D provided for reference). Note how the performance of U can be significantly
improved by providing the network with the encoding of the query point x in
various coordinate frames – that is, the network is no longer required to “learn”
the concept of changes of coordinates.

Model 24×8 24×16 24×24 24×32 24×40

U .539 .538 .601 .642 .653
R .913 .902 .931 .939 .946
D .917 .915 .946 .950 .952

Table 11: IoU metric.

Fig. 10: We evaluate the performance of the model as we increase the number of
units used for each of the 24 parts in the set {8, 16, 24, 32, 40}. The number of
layers in each sub-network is held fixed to 4.

Analysis of model size – Figure 10. Both rigid (R) and deformable (D)
models significantly outperform the results of the unstructured (U) model, as
we increase the neural network’s layer size and approach the network capacity
employed by [9,39,37].
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p(O|θ) p(θ) ~ mIoU↑ Chamfer L1↓ F%↑

D 7 7 .952 .00005 97.24
D 7 3 .948 .00005 97.50
D 3 7 .965 .00004 98.79
D 3 3 .968 .00004 99.08

Table 12: DFaust “easy” (00-01)

p(O|θ) p(θ) ~ mIoU↑ Chamfer L1↓ F%↑

D 7 7 .546 .01430 44.31
D 7 3 .891 .00032 86.15
D 3 7 .862 .00258 79.05
D 3 3 .948 .00006 96.48

Table 13: DFaust “hard” (02-09)

Fig. 11: Ablations for the tracking application

Tracking ablations – Figure 11. In the tracking application, we ablate with
respect to the pose prior (p(θ)) and the use of random perturbations to approx-
imate the distance function via convolution (~). First, note that the best results
are achieved when both of these components are enabled, across all metrics.
We compare the performance of our models on easy vs. hard sequences. Hard
sequences more clearly illustrate the advantages of the algorithms proposed.
We validate the usefulness of the pose prior in avoiding tracking failure (e.g.
IoU : 44.31%→ 86.15%). The use of random perturbations allow the optimiza-
tion to converge more precisely (Chamfer: .00258→ .00006).

Fig. 12: Distribution of F-Score across the AMASS/DFaust dataset.

Metrics distribution on AMASS/DFaust. Rather than reporting aggre-
gated statistics, we visualize the IoU errors of all of the 100 DFaust experiments,
and sort them by the performance achieved by the deformable model (D). Note
how the deformable model achieves consistent performance across the dataset.
There are only two sequences where the rigid model performs better than the
deformable model.


