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1 Mathematical Analysis of the Rationality of
Momentum Update Mechanism

In order to mathematically prove the rationality of our momentum update design
as described in Section 3.1 of the main manuscript, we design a toy game to
present the momentum update process of the distance-distributions for different
sample pair sets (i.e., mean µ, variance σ2) with analysis/derivation.

Assume two random sets A,B with N and M sample pairs, respectively,
and both sets exhibit Gaussian distribution. The mean and variance of set A =
{di|i = 1, · · · , N} with N sample pairs are represented as µA = 1
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represent the set C as the combination of set A and set B, the mean of the
combined set C can be formulated as:

µC =

∑N
i=1 di +

∑M
j=1 d

′

j

N +M
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(1)
where β = N

N+M . Similarly, the variance of the combined set C can be obtained:

σ2
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∑N
i=1(di − µC)2 +

∑M
j=1(d

′

j − µC)2

N +M
, (2)

when N is much larger than M (just like the situation in our training where the
number of the previously “seen” mini-batches/samples is much larger than the
number of samples in the current mini-batch), we could use µA to approximate

? This work was done when Xin Jin was an intern at MSRA.
?? Corresponding Author.



2 X. Jin et al.

Table 1: Details about the ReID datasets.

Datasets Abbreviation Identities Images Cameras Scene

Market1501 [25] M 1501 32668 6 outdoor

DukeMTMC-reID [26] D 1404 32948 8 outdoor

CUHK03 [9] C 1467 28192 2 indoor

MSMT17 [18] MSMT17 4101 126142 15 outdoor, indoor

µC , i.e., µC ≈ µA, thus we can have:
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By taking the sample pairs within a min-batch as the sample pairs of set B, we
can see that our momentum update design in Eq. (1) of our main manuscript is
consistent with the above analysis/derivation.

2 Details of Datasets

In Table 1, we present the detailed information about the related person ReID
datasets. Market1501 [25], DukeMTMC-reID [26], CUHK03 [9], and large-scale
MSMT17 [18] are the most commonly used datasets for unsupervised domain
adaptive person ReID [22, 23, 4] and fully supervised person ReID [24, 30]. Mar-
ket1501, DukeMTMC-reID, CUHK03, and MSMT17 all have commonly used
pre-established train and test splits, which we use for our training and cross
dataset test (e.g., M→D, D→M).

3 Implementation Details

Data Augmentation and Training. In the first stage of model pre-training,
just as in [13], we use the commonly used data augmentation strategies of ran-
dom cropping [17, 24], horizontal flipping, random erasing (REA) [12, 30], and
the label smoothing regularization [15] to train the network for obtaining the
capability of extracting discriminative features for person ReID on the labeled
source dataset. The training is supervised by classification loss [14, 5] and triplet
loss with batch hard mining [6]. In the second stage of clustering, we discard all
the previous data augmentation operations and just simply extract features for
the images of the target datasets for clustering. For the third stage of adapta-
tion, consistent with the operations in the first stage, we leverage all these data
augmentations to fine-tune the network.
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Table 2: Performance (%) comparisons with the state-of-the-art approaches for
unsupervised person ReID on the target dataset MSMT17 [18].

Unsupervised ReID Venue
M→MSMT17 D→MSMT17

mAP Rank-1 mAP Rank-1

PTGAN [18] CVPR’18 2.9 10.2 3.3 11.8
SSG [4] ICCV’19 13.2 31.6 13.3 32.2

Baseline This work 7.2 18.9 9.2 25.3
Baseline+GDS-H This work 14.9 34.3 14.2 33.9

In the first and third stages, following [6], a batch is formed by first randomly
sampling P identities. For each identity, we sample K images. Then the batch
size is B = P ×K. We set P = 32 and K = 4 (i.e., batch size B = P ×K = 128).
We use Adam optimizer [8] for both stages.

For the first stage of model pre-training, we set the initial learning rate to
3×10−4 and regularize the network with a weight decay of 5×10−4. The learning
rate is decayed by a factor of 0.1 for every 50 epochs. We train the model on the
source dataset for a total of 150 epochs. For the third stage of adaptation, we
set the learning rate to 6×10−5 and keep it unchanged. The second stage and
the third stage are executed alternatively for 30 iterations. For each iteration,
we train our model for 70 epochs (that means, traverse all the target training
samples for 70 times). For our proposed schemes, on top of Baseline, we add the
proposed GDS constraint in the third stage.

All our models are implemented on PyTorch and trained on a single 16G
NVIDIA-P100 GPU. We will release our code upon acceptance.

4 Influence of the Hyper-parameters λh and λσ

The hyper-parameter λh is used to balance the importance between the basic
GDS loss LGDS and the distribution-based hard mining loss LH . λσ aims to bal-
ance the mean and variance constraints within LGDS . For λh and λσ, we initially
set them to 1, and then coarsely determine each one based on the corresponding
loss values and their gradients observed during the training. The decision princi-
ple is to set their values to make the loss values/gradients lie in a similar range.
Grid search within a small range of the derived λh/λσ is further employed to
get better parameters. Actually, we observed the final performance is not very
sensitive to the two hyper-parameters, we experimentally set λh = 0.5, λσ = 1.0
in the end.

5 Comparison with State-of-the-Arts (Complete Version)

More comparison results with state-of-the-art methods on the target dataset
MSMT17 can be found in Table 2. We observe that in comparison with Base-
line, our GDS constraint brings gains of 7.7%/15.4% and 5.0%/8.6% in
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Table 3: Performance (%) comparisons with the state-of-the-art approaches for
unsupervised person ReID. * means applying a re-ranking method of k-reciprocal
encoding [27]. Note that Baseline is built following [13] with ResNet-50 backbone
and thus has nearly the same performance as Theory [13]. To save space, we
only present the latest approaches in the main manuscripts and here we show
comparisons with more approaches.

Unsupervised ReID Venue
M→D D→M M→C D→C C→M C→D

mAP Rank-1 mAP Rank-1 mAP Rank-1 mAP Rank-1 mAP Rank-1 mAP Rank-1

CAMEL [21] ICCV’17 – – 26.3 54.5 – – – – – – – –
PUL [3] TOMM’18 – – 20.5 45.5 – – – – – – – –
PTGAN [18] CVPR’18 – 27.4 – 38.6 – – – – – 31.5 – 17.6
SPGAN [2] CVPR’18 22.3 41.1 22.8 51.5 – – – – 19.0 42.8 – –
TJ-AIDL [16] CVPR’18 23.0 44.3 26.5 58.2 – – – – – – – –
ARN [10] CVPRW’18 33.4 60.2 39.4 70.3 – – – – – – – –
MMFA [11] BMVC’18 24.7 45.3 27.4 56.7 – – – – – – – –
HHL [28] ECCV’18 27.2 46.9 31.4 62.2 – – – – 29.8 56.8 23.4 42.7
CFSM [1] AAAI’19 27.3 49.8 28.3 61.2 – – – – – – – –
MAR [22] CVPR’19 48.0 67.1 40.0 67.7 – – – – – – – –
ECN [29] CVPR’19 40.4 63.3 43.0 75.1 – – – – – – – –
PAUL [20] CVPR’19 53.2 72.0 40.1 68.5 – – – – – – – –
SSG [4] ICCV’19 53.4 73.0 58.3 80.0 – – – – – – – –
PCB-R-PAST∗ [23] ICCV’19 54.3 72.4 54.6 78.4 – – – – 57.3 79.5 51.8 69.9
Theory [13] PR’2020 48.4 67.0 52.0 74.1 46.4 47.0 28.8 28.5 51.2 71.4 32.2 49.4
ACT [19] AAAI’20 54.5 72.4 60.6 80.5 48.9 49.5 30.0 30.6 64.1 81.2 35.4 52.8

Baseline This work 48.4 67.1 52.1 74.3 46.2 47.0 28.8 28.4 51.2 71.4 32.0 49.4
Baseline + GDS This work 52.9 71.4 57.1 78.5 48.0 48.9 30.7 32.5 63.6 81.6 44.1 64.0
Baseline + GDS-H This work 55.1 73.1 61.2 81.1 49.7 50.2 34.6 36.0 66.1 84.2 45.3 64.9

B-SNR[7] CVPR’20 54.3 72.4 66.1 82.2 47.6 47.5 31.5 33.5 62.4 80.6 45.7 66.7
B-SNR[7]+GDS This work 57.2 74.6 68.6 84.9 49.8 50.5 36.7 38.8 67.2 85.1 49.4 69.9
B-SNR[7]+GDS-H This work 59.7 76.7 72.5 89.3 50.7 51.4 38.9 41.0 68.3 86.7 51.0 71.5

mAP/Rank-1 for M→MSMT17 and D→MSMT17, respectively, which demon-
strates the effectiveness of our proposed GDS constraint. SSG [4] also belongs
to clustering-based approach. It exploits the potential similarity from the global
body to local parts to build multiple clusters at different granularities. As a
comparison, our Baseline and Baseline+GDS-H only consider the similarity at
global body. Being simple in design, our final scheme Baseline+GDS-H outper-
forms the second best method SSG [4] by 2.7% and 1.7% in Rank-1 accuracy
for M→MSMT17 and D→MSMT17, respectively.

In addition, to save space, we only present the latest approaches in the Section
4.6 “Comparison with State-of-the-Arts” in the main manuscripts and here we
show comparisons with more approaches in Table 3.

6 More Visualization Results

Visualization of Dataset-wise (Global) Distance Distributions. To bet-
ter understand how well our GDS constraint works, in Fig. 1, we not only visu-
alize the dataset-wise Pos-distr and Neg-distr on the test set of target dataset
(as shown in Fig. 6 in the main manuscripts), but also visualize the counter-
part on the training set of target dataset. We have the following observations.
1) Thanks to the adaptation on the unlabeled target dataset and our GDS con-
straint, the distance distributions of our final scheme Baseline+GDS-H present
a much better separability than that of other schemes. This trend can be ob-
served on both the training set and test set. 2) On the training set, each scheme
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Fig. 1: Histograms of the distances of the positive sample pairs (red) and negative
sample pairs (green) on the test set (top) and train set (bottom) of the
target dataset Duke (Market1501→Duke) for schemes of (a) Direct transfer, (b)
Baseline, (c) Baseline+GDS, and (d) Baseline+GDS-H.
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Fig. 2: Trend analysis of the learned dataset-wise (global) statistics in the train-
ing.

presents better separability than that on the test set, especially for our final
schemeBaseline+GDS-H, which suggests that our GDS constraint is actually
very helpful in promoting the separation after the optimization.

Trend Analysis of the Learned Dataset-wise (Global) Statistics. We
observe the changing trend of the global statistics of distance distributions (in-
cluding the mean µ+

g of global Pos-distr, the mean µ−
g of global Neg-distr, the

variance σ+2
g of global Pos-distr, and the variance σ−2

g of global Neg-distr) in the
training process and show the curves in Fig. 23. The horizontal axis denotes the
identities of the epochs (30 iterations × 70 epochs = 2100 epochs). We observe
that 1) as we expected, the centers/means of two distributions (µ+

g , µ
−
g ) and

their hard tails (µ+
g +3σ+

g , µ
−
g −3σ−

g ) become further apart as the training goes;
2) the two distributions variance (σ+2

g , σ−2
g ) become sharper since the variances

become smaller as the training progresses.

3 We initialize the two distributions with mean of 0.5 and variance of 1/6 for the
observation. Actually, we found the performance is not sensitive to the initialization
values of the statistics.
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Fig. 3: Histograms of the distances of the positive sample pairs (red) and negative
sample pairs (green) on the training set of the labeled dataset CUHK03 for fully
supervised person ReID.

Table 4: Effectiveness of the proposed GDS loss and the distribution-based hard-
mining loss (H) for the fully supervised Person ReID.

Supervised ReID
CUHK03 (L) MSMT17

mAP Rank-1 mAP Rank-1

Baseline 69.8 73.7 47.2 73.8
Baseline+GDS 70.7 74.3 48.3 74.4
Baseline+GDS-H 71.4 75.5 49.1 74.9

7 GDS Constraint Applied to Supervised Person ReID

We design the GDS constraint for addressing the inseparability of distance dis-
tributions in unsupervised person ReID, where there is no groudtruth labels for
the target dataset. The use of either the pseudo labels or style transferred images
results in noises and overlapping of the two distributions. For fully supervised
person ReID, the proposed GDS is also expected to enhance the performance.
However, on the benchmark datasets, due to the use of reliable labels and the
over-fitting problem, we found the distance distributions on the training set are
already well separated (see Fig. 3) and thus there left small optimization space
for us. Quantitatively, as shown in Table 5, although our GDS brings some per-
formance improvement (1.6% and 1.9% in mAP for CUHK03(L) and MSMT17,
respectively), it is not significant in comparison with the unsupervised ReID
setting.

8 Training Complexity Analysis

The increase of training time of our design in comparison with Baseline [13] is
negligible. We build Baseline with the representative clustering-based method
[13], and add the proposed GDS constraint in the training. Both our loss calcu-
lation and momentum update have very low computation complexity in compar-
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Table 5: Performance w.r.t different clustering algorithms for the M→D setting.

M→D
K-means DBSCAN HDBSCAN

mAP Rank-1 mAP Rank-1 mAP Rank-1

Baseline 40.2 57.9 48.4 67.1 49.6 67.9
Baseline+GDS-H 49.0 67.2 55.1 73.1 55.7 73.6

ison with the convolutional operations of the network. Take the setting of using
DukeMTMC-reID as source dataset and Market1501 as target dataset as an ex-
ample, the training time of Baseline [13] and our scheme Baseline+GDS-H is
17.9 hours and 18.2 hours, respectively (i.e., about 1.7% increase). The training
time is comparable to that of the existing STOA methods (PAUL [20] with 16.3
hours, SSG [4] with 20.8 hours, MAR [22] with 25.6 hours). Note that all these
training courses are conducted on a single 16G NVIDIA-P100 GPU.

9 Performance w.r.t Different Clustering Algorithms

The performance of the Baseline scheme with the cluttering approach of DB-
SCAN is similar to that with hierarchical DBSCAN (HDBSCAN), 48.4% vs.
49.6% in mAP for M→D, and both outperforms the Baseline scheme with K-
means (40.2%). Our GDS constraint consistently brings improvement of 8.8%,
6.7%, and 6.1% for that with K-means, DBSCAN, and HBSCAN, respectively.
For simplicity, we use DBSCAN by default in our experiments.
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