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In this supplementary material, we present more experimental results that
could not be included in the main manuscript due to the lack of space.

1 Various settings of I2L-MeshNet

1.1 When to marginalize 2D to 1D?

We report how the MPJPE, PA MPJPE, and GPU memory usage change when
the marginalization takes place on the ResNet output (i.e., Fp or Fy), which
is the input of the first upsampling module, instead of the output of the last
upsampling module (i.e., fp(Fp) or %(FM)) in Table 1. For the convenience,
we removed PoseNet from our 12L-MeshNet and changed MeshNet to take the
input image. The table shows that the early marginalization increases the errors
while requiring less amount of GPU memory. This is because the marginalized
two 1D feature maps can be generated from multiple 2D feature map, which
results in spatial ambiguity. To reduce the effect of this spatial ambiguity, we
designed our 12L.-MeshNet to extract a sufficient amount of 2D information and
then apply the marginalization at the last part of the network instead of applying
it in the early stage.

When the marginalization is applied on the ResNet output Fy;, all 2D layers
(i.e., deconvolutional layers and batch normalization layers) in the upsampling
modules are converted to the 1D layers. All models are trained on Human3.6M
dataset. The z-axis heatmap prediction part is not changed.

settings MPJPE PA MPJPE GPU mem.
avg on Fy 93.5 64.1 4.4 GB
avg on f5(Fum) (ours) 86.2 59.8 4.6 GB

Table 1. The MPJPE, PA MPJPE, and GPU memory usage comparison between
various marginalization settings on Human3.6M dataset.
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1.2 How to marginalize 2D to 1D?

We report how the MPJPE and PA MPJPE change when different marginal-
ization methods are used in Table 2. For the convenience, we removed PoseNet
from our I2L-MeshNet and changed MeshNet to take the input image. The ta-
ble shows that our average pooling achieves the lowest errors. Compared with
the max pooling that provides the gradients to one pixel position per one x
or y position, our average pooling provides the gradients to all pixel positions,
which is much richer ones. We implemented the weighted sum by constructing
a convolutional layer whose kernel size is (8h,1) and (1,8w) for z- and y-axis
lixel-based 1D heatmap prediction, respectively, without padding. The weighted
sum provides lower error than that of the max pooling, however still worse than
our average pooling. We believe the large size of a kernel of the convolutional
layer (i.e., (8h,1) and (1,8w)) is hard to be optimized, which results in higher
error than ours. For all settings, models are trained on Human3.6M dataset, and
the z-axis heatmap prediction part is not changed.

settings MPJPE PA MPJPE
max pooling 93.5 64.1
weighted sum 89.4 61.4
avg pooling (ours) 86.2 59.8

Table 2. The MPJPE and PA MPJPE comparison between various marginalization
settings on Human3.6M dataset.

2 Comparison with previous 2.5D heatmap regression

We compare the MPJPE and GPU memory usage between a model that predicts
our lixel-based 1D heatmap and a model that predicts the 2.5D heatmap [2] in
Table 3. The 2.5D heatmap [2] consists of zy heatmap and z heatmap, where
xy one is the pixel-based 2D heatmap and z one has the same spatial size with
that of xy heatmap and contains root joint-relative depth on the activated xy
position for all mesh vertices. They predict the depth values on z heatmap, not
the likelihood, thus cannot model uncertainty of the z-axis prediction. As the
table shows, our lixel-based one achieves significantly lower error under the same
resolution while requiring a much smaller amount of GPU memory. We think
that this is because the 2.5D heatmap of Igbal et al. [2] cannot model uncertainty
of the prediction in z-axis, while ours can. For all settings, models are trained
on Human3.6M dataset, and we removed PoseNet and changed MeshNet to take
an input image and predict the heatmap.

3 Effect of each loss function

We show the effectiveness of the MeshNet pose loss LMeshNet i Table 4. Although

pose

we supervise mesh vertices by the mesh vertex loss Llr\,/f)‘;i)hNet, additional Lg{;@hNEt
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settings resolution uncertainty in z-axis| MPJPE GPU mem.
2.5D heatmap [2] 8x8,8x8 X 107.4 3.6GB
2.5D heatmap [2] 32 x 32,32 x 32 X 100.4 8.4GB
lixel-based 1D heatmap 8, 8,8 4 100.2 3.4GB
lixel-based 1D heatmap 32, 32, 32 v 94.8 4.0GB
lixel-based 1D heatmap 64, 64, 64 v 86.2 4.6GB

Table 3. The MPJPE and GPU memory usage comparison between various marginal-
ization settings on Human3.6M dataset.

is helpful for human joint-aligned mesh prediction. Both models are trained on
Human3.6M dataset.

For visually pleasant mesh estimation, we use normal vector loss Lyorma and
edge length loss Leqge. We show the effectiveness of the two loss functions in
Figure 1. As the figure shows, the two loss functions improves visual quality of
output meshes. We checked that Lyormal and Ledge marginally affect the MPJPE
and PA MPJPE. For all settings, all models are trained on Human3.6M dataset
and MSCOCO dataset.

settings MPJPE PA MPJPE
wo. LheihNet 84.5 58.5
w. Lyeshiet 81.8 58.0

Table 4. The MPJPE and PA MPJPE comparison between models trained with and
without LgffssehNCt on Human3.6M dataset.
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Fig. 1. Estimated meshes from models trained with different combinations of loss func-
tions.

4 Accuracy of PoseNet

We provide the MPJPE and PA MPJPE of PoseNet from I2L-MeshNet in Ta-
ble 5. The PoseNet is trained with MeshNet by minimizing the loss function
L. As our PoseNet predicts 3D joint coordinates of the SMPL body joint set
or MANO hand joint set, we calculate the errors using groundtruth SMPL or
MANO 3D joint coordinates. We could not calculate the MPJPE on FreiHAND
dataset because the official evaluation server does not support it.
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datasets MPJPE PA MPJPE
Human3.6M 62.2 47.2
3DPW 112.2 72.3
SURREAL 40.0 29.5
FreiHAND n/a 8.0

Table 5. The MPJPE and PA MPJPE of PoseNet on each dataset.

5 Pseudo-groundtruth SMPL parameters of Human3.6M
dataset

All the previous works [4-6,10] used SMPL parameters obtained by applying
Mosh [7] on the marker data of Human3.6M dataset as the groundtruth param-
eters. However, currently, the distribution of the SMPL parameters from Mosh
is disallowed because of the license problem. In addition, the source code of
Mosh is not publicly released. Alternatively, we obtain groundtruth SMPL pa-
rameters by applying SMPLify-X [9] on the groundtruth 3D joint coordinates of
Human3.6M dataset. Although the obtained SMPL parameters are not perfectly
aligned to the groundtruth 3D joint coordinates, we checked that the error of
the SMPLify-X is much less than those of current state-of-the-art 3D human
pose estimation methods, as shown in Table 6. Therefore, we think using SMPL
parameters from SMPLify-X as groundtruth is reasonable. Note that for a fair
comparison, all the experimental results of previous works are reported by train-
ing and testing them on our SMPL parameters from SMPLify-X. When fitting,
we used neutral gender SMPL body model. However, we found that it produces
gender-specific body shapes, although we did not specify gender for each subject.
As most of the subjects of the training set in Human3.6M dataset are female, we
found that our I2L-MeshNet trained on Human3.6M dataset tends to produce
female body shape meshes. We tried to fix the identity code of the SMPL body
model obtained from the T-pose; however it produces higher errors. Thus, we
did not fix the identity code for each subject.

methods MPJPE
Moon et al. [8] 53.3
Sun et al. [11] 49.6
Iskakov et al. [3]* 20.8
SMPLify-X from GT 3D pose 13.1

Table 6. The MPJPE comparison between SMPLify-X fitting results and state-of-the-
art 3D human pose estimation methods. “*” takes multi-view RGB images as inputs.
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methods MPVPE MPJPE
SMPLify [1] 75.3 -
BodyNet [12] 658  40.8
I2L-MeshNet (Ours)| 44.7 37.7

Table 7. The MPVPE and MPJPE comparison between state-of-the-art methods and
the proposed 12L-MeshNet on SURREAL.

6 Evaluation on SURREAL

We additionally provide evaluation results on SURREAL [13] that contains 67K
clips synthesized by animating SMPL body model. We followed the same training
and test set split of BodyNet [12]. For evaluation, mean per-vertex position error
(MPVPE), which is averaged per-vertex Euclidean distance error (mm) between
predicted and groundtruth 3D mesh coordinates, and MPJPE are used after
root joint alignment. We compare MPVPE and MPJPE of our 12L.-MeshNet
with previous state-of-the-art 3D human body pose and mesh estimation meth-
ods [1,4,12] on the SURREAL test set. To this end, we reduced the clips in the
training set to 1 fps to make the training image set. Table 7 shows that the pro-
posed 12L.-MeshNet significantly outperforms all previous state-of-the-art meth-
ods. Especially, it achieves much lower test error compared with BodyNet [12],
model-free approach.

7 Qualitative results

We provide qualitative results comparison between ours and previous state-
of-the-art model-free method (i.e., GraphCMR [6]) in Figure 2. As the figure
shows, our I2L-MeshNet provides much more visually pleasant mesh results
than GraphCMR. We think this is because the graph convolutional network
(GraphCNN) often tends to smooth the meshes by averaging the vertex feature
with that of neighboring vertices.
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Fig. 2. Estimated meshes comparisons between our 12L-MeshNet and GraphCMR [6].
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