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In this supplementary material, we present more experimental results that
could not be included in the main manuscript due to the lack of space.

1 Qualitative results

1.1 Shape recovery

We trained and tested Pose2Mesh on SURREAL dataset [20], which have various
samples in terms of the body shape, to verify the capability of shape recovery.
As shown in Figure 1, Pose2Mesh can recover a 3D body shape corresponding
to an input image, though not perfectly. The shape features of individuals, such
as the bone length ratio and fatness, are expressed in the outputs of Pose2Mesh.
This implies that the information embedded in joint locations (e.g. the distance
between hip joints) carries a certain amount of shape cue.

input image mean shape Pose2Mesh groundtruth input image mean shape Pose2Mesh groundtruth

input image mean shape Pose2Mesh groundtruth input image mean shape Pose2Mesh groundtruth

Fig. 1. The Pose2Mesh predictions compared with the groundtruth mesh, and the
mesh decoded from groundtruth pose parameters and the mean shape parameters.
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1.2 Additional results

Here, we present more qualitative results on COCO [7] validation set and Frei-
HAND [21] test set in Figure 2. The images at the fourth row show some of
the failure cases. Although the people on the first and second images appear
to be overweight, the predicted meshes seem to be closer to the average shape.
The right arm pose of the mesh in the third column is bent, though it appears
straight.

Fig. 2. Additional qualitative results on COCO and FreiHAND.

1.3 Comparison with the state-of-the-art

We present the qualitative comparison between our Pose2Mesh and GraphCMR [6]
in Figure 3. We regard GraphCMR as a suitable comparison target, since it is
also the model-free method and regresses coordinates of human mesh defined
by SMPL [9] using GraphCNN like ours. As the figure shows, our Pose2Mesh
provides much more visually pleasant mesh results than GraphCMR. Based on
the loss function analysis in Section 7 and the visual results of GraphCMR, we
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conjecture that the surface losses such as the normal loss and the edge loss are
the reason for the difference.

snapshot00.png

Pose2Mesh (Ours) GraphCMRinput image

Fig. 3. The mesh quality comparison between our Pose2Mesh and GraphCMR [6].

2 Details of PoseNet

2.1 Network architecture

Figure 4 shows the detailed network architecture of PoseNet. First, the normal-
ized input 2D pose vector is converted to a 4096-dimensional feature vector by
a fully-connected layer. Then, it is fed to the two residual blocks, where each
block consists of a fully connected layer, 1D batch normalization, ReLU activa-
tion, and the dropout. The dimension of the feature map in the residual block
is 4096, and the dropout probability is set to 0.5. Finally, the output from the
residual block is converted to (3J)-dimensional vector, the 3D pose vector, by a
fully-connected layer. The 3D pose vector represents the root-relative 3D pose
coordinates.

2.2 Accuracy of PoseNet

We present MPJPE and PA-MPJPE of PoseNet on the benchmarks in Table 1.
For the Human3.6M benchmark [2], 14 common joints out of 17 Human3.6M
defined joints are evaluated following [4–6, 16]. For the 3DPW benchmark [11],
COCO defined 17 joints are evaluated and JM from the groundtruth SMPL
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Fig. 4. The detailed network architecture of PoseNet.

meshes are used as groundtruth. The 2D pose outputs from [19] and [18] are
taken as test inputs on Human3.6M and 3DPW respectively. For the FreiHAND
benchmark, only FreiHAND train set is used during training, and 21 MANO [17]
hand joints are evaluated by the official evaluation website. The 2D pose outputs
from [18] are taken as test inputs.

Table 1. The MPJPE and PA-MPJPE of PoseNet on each benchmark.

train set Human3.6M Human3.6M + COCO

benchmark MPJPE PA-MPJPE MPJPE PA-MPJPE

Human3.6M 65.1 48.4 66.7 48.9
3DPW 105.0 62.9 99.2 61.0

benchmark PA-MPJPE

FreiHAND 8.56

3 Pre-defined joint sets and graph structures

We use different pre-defined joint sets and graph structures for Human3.6M,
3DPW, and FreiHAND benchmarks, as shown in Figure 5. To be specific, we
employ Human3.6 body joints, COCO body joints, MANO hand joints for Hu-
man3.6M, 3DPW, FreiHAND benchmarks, respectively, in both training and
testing stages. For the COCO joint set, we additionally define pelvis and neck
joints that connect the upper body and lower body. The pelvis and neck coordi-
nates are calculated as the middle point of right-left hips and right-left shoulders,
respectively.
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Fig. 5. The joint sets and graph structures of each dataset that are used in Pose2Mesh.

4 Pseudo-groundtruth SMPL parameters of Human3.6M
dataset

Mosh [8] method can compute SMPL parameters from the marker data in Hu-
man3.6M dataset. Since Human3.6M dataset does not provide 3D mesh annota-
tions, most of the previous 3D pose and mesh estimation papers [4–6,16] used the
SMPL parameters obtained by Mosh method as the groundtruth for the super-
vision. However, due to the license issue, the SMPL parameters are not currently
available. Furthermore, the source code of Mosh is not publicly released.

For the 3D mesh supervision, we alternatively obtain groundtruth SMPL pa-
rameters by applying SMPLify-X [15] on the groundtruth 3D joint coordinates
of Human3.6M dataset. Although the obtained SMPL parameters are not per-
fectly aligned to the groundtruth 3D joint coordinates, we confirmed that the
error of the SMPLify-X is much less than those of current state-of-the-art 3D
human pose estimation methods, as shown in Table 2. Thus, we believe using
SMPL parameters obtained by SMPLify-X as groundtruth is reasonable. For the
fair comparison, all the previous works and our system are trained on our SMPL
parameters from SMPLify-X.

During the fitting process of SMPLify-X, we adopted a neutral gender SMPL
body model. However, we empirically found that the fitting process produces
gender-specific body shapes, which correspond to each subject. As a result, since
most of the subjects in the training set of Human3.6M dataset are female, our
Pose2Mesh trained on Human3.6M dataset tends to produce female body shape
meshes. We tried to fix the identity code of the SMPL body model obtained
from the T-pose; however, it produces higher errors. Thus, we did not fix the
identity code for each subject.

5 Synthetic data from AMASS

We leverage additional synthetic data from AMASS [10] to boost the perfor-
mance of Pose2Mesh. AMASS is a new database that unifies 15 different optical
marker-based mocap datasets within a common framework. It created SMPL
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Table 2. The MPJPE comparison between SMPLify-X fitting results and state-of-the-
art 3D human pose estimation methods. “*” takes multi-view RGB images as inputs.

methods MPJPE

Moon et al. [12] 53.3

Sun et al. [19] 49.6

Iskakov et al. [3]* 20.8

SMPLify-X from GT 3D pose 13.1

parameters from mocap data by a method named Mosh++. We used CMU
dataset [1] from the database in training.

To be specific, we generated paired 2D pose-3D mesh data by projecting a 3D
pose obtained from a mesh to the image plane, using camera parameters from
Human3.6M. As shown in Table 3, when AMASS is added, both the joint error
and surface error decrease. Exploiting AMASS data in this fashion is not possible
for [4], [6], and [5], since they need pairs of image and 2D/3D annotations.

Table 3. The MPJPE and MPVPE of our Pose2Mesh on 3DPW with accumulative
training datasets. The 2D pose outputs from [18] are used for input to Pose2Mesh.

train sets MPJPE MPVPE

Human3.6M+COCO 91.4 109.3

Human3.6M+COCO+AMASS 90.1 108.0

6 Synthesizing the input 2D poses in the training stage

6.1 Detailed description of the synthesis

As described in Section 4.1 of the main manuscript, we synthesize the input
2D poses by adding randomly generated errors on the groundtruth 2D poses in
the training stage. For this, we generate errors following Chang et al. [14] and
Moon et al. [13] for Human3.6M and COCO body joint sets, respectively. On
the other hand, for FreiHAND benchmark, we used detection outputs from [18]
on the training set as the input poses in the training stage, since there are no
verified synthetic errors for the hand joints.

6.2 Effect of synthesizing the input 2D poses

To demonstrate the validity of the synthesizing process, we compare MPJPE and
PA-MPJPE of Pose2Mesh trained with the groundtruth 2D poses, and the syn-
thesized input 2D poses in Table 4. For Human3.6M, only Human3.6M train set
is used for the training, and for 3DPW benchmark, Human3.6M and COCO are
used for the training. The test 2D input poses used in Human3.6M and 3DPW
evaluation are outputs from Integral Regression [19] and HRNet [18] respectively,
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using groundtruth bounding boxes. Apparently, when our Pose2Mesh is trained
with the synthesized input 2D poses, Pose2Mesh performs far better on both
benchmarks. This proves that the synthesizing process makes Pose2Mesh more
robust to the errors in the input 2D poses and increases the estimation accuracy.

Table 4. The MPJPE and PA-MPJPE comparison according to input type in the
training stage.

input pose when training
Human3.6M 3DPW

MPJPE PA-MPJPE MPJPE PA-MPJPE

2D pose GT 70.4 50.6 153.7 94.4

2D pose synthesized (Ours) 64.9 48.7 91.4 60.1

7 Train/test with groundtruth input poses

We present the upper bounds of Pose2Mesh, PoseNet, and MeshNet on Hu-
man3.6M and 3DPW benchmarks by training and testing with groundtruth
input poses in Table 5. Pose2Mesh and PoseNet take the groundtruth 2D pose
as an input, while MeshNet takes the groundtruth 3D pose as an input. As the
table shows, the upper bound of Pose2Mesh is similar to that of PoseNet, which
implies that the 3D pose errors of Pose2Mesh follow those of PoseNet as ana-
lyzed in Section 7.2 of the main manuscript. In addition, the upper bound of
MeshNet indicates that we can recover highly accurate 3D human meshes if we
can estimate nearly perfect 3D poses.

The MPJPE and PA-MPJPE of Pose2Mesh and MeshNet are measured on
the 3D pose regressed from the mesh output, while the accuracy of PoseNet
is measured on the lifted 3D pose. For the Human3.6M benchmark, only Hu-
man3.6M train set is used to train the network. For the 3DPW benchmark,
Human3.6M, COCO, AMASS train sets are used to train the network.

Table 5. The upper bounds of Pose2Mesh, PoseNet, and MeshNet on Human3.6m and
3DPW benchmarks.

networks
Human3.6M 3DPW

MPJPE PA-MPJPE MPJPE PA-MPJPE

Pose2Mesh with 2D pose GT 51.1 35.3 65.1 34.6

PoseNet with 2D pose GT 50.6 41.3 66.1 43.8

MeshNet with 3D pose GT 13.9 9.9 10.8 8.1
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8 Effect of each loss function

We analyze the effect of joint coordinate loss Ljoint, surface normal loss Lnormal,
and surface edge loss Ledge on reconstructing a 3D human mesh in Table 6 and
Figure 6. Human3.6M dataset is used for the training and testing. As the table
shows, training without Ljoint has a relatively distinctive effect on MPJPE and
PA-MPJPE, while other settings show numerically negligible differences. On
the other hand, as the figure shows, training without Lnormal or Ledge clearly
decreases the visual quality of the mesh output, while training without Ljoint

has nearly no effect on the visual quality of the meshes. To be specific, training
without Lnormal impairs the overall smoothness of the mesh and local details
of mouth, hands, and feet. Similarly, training without Ledge ruins the details
of body parts that have dense vertices, especially mouth, hands, and feet, by
making serious artifacts caused by flying vertices.

Table 6. The MPJPE and PA MPJPE comparison between the networks trained from
various combinations of loss functions.

settings MPJPE PA-MPJPE

full supervision (Ours) 64.9 48.7

without Ljoint 66.9 50.1

without Lnormal 64.6 48.5

without Ledge 64.8 48.7

input image groundtruth full supervision
(Ours)

without without without

Fig. 6. Qualitative results for the ablation study on the effectiveness of each loss func-
tion.
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