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Abstract. Object detection has witnessed significant progress by rely-
ing on large, manually annotated datasets. Annotating such datasets is
highly time consuming and expensive, which motivates the development
of weakly supervised and few-shot object detection methods. However,
these methods largely underperform with respect to their strongly su-
pervised counterpart, as weak training signals often result in partial or
oversized detections. Towards solving this problem we introduce, for the
first time, an online annotation module (OAM) that learns to generate
a many-shot set of reliable annotations from a larger volume of weakly
labelled images. Our OAM can be jointly trained with any fully super-
vised two-stage object detection method, providing additional training
annotations on the fly. This results in a fully end-to-end strategy that
only requires a low-shot set of fully annotated images. The integration
of the OAM with Fast(er) R-CNN improves their performance by 17%
mAP, 9% AP50 on PASCAL VOC 2007 and MS-COCO benchmarks, and
significantly outperforms competing methods using mixed supervision.

1 Introduction

Object detection is an essential building block of many computer vision sys-
tems [26]. State-of-the-art (SOTA) methods mainly rely on large scale datasets
with manually annotated bounding boxes to train fully supervised CNN-based
models [8, 17, 16, 12, 3]. However, the prohibitive cost and time requirements as-
sociated with data annotation reduce the applicability of SOTA detection models
in real life scenarios. This has motivated research on object detection strategies
with reduced data annotation requirements. Amongst the most popular low data
regimes, we distinguish Weakly Supervised Object Detection (WSOD), which
aims to train object detectors using only image-level annotations [2, 18, 21, 1,
25], and Few-Shot or Low-Shot Object Detection (FSOD/LSOD), training su-
pervised models with only a handful of training examples on all (LSOD) or only
a subset of novel test classes (FSOD) [10, 24, 5]. FSOD and in particular WSOD
have been the focus of a large body of work with innovative strategies obtaining
promising performance. Nonetheless, these models typically fall far short of their
strongly supervised counterparts. Numerical performance gaps are attributed to
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Fig. 1. Weak and low data detection strategies and our proposed mixed supervision-
based setting. First row: Weakly Supervised Object Detection (WSOD) models learn
to annotate images with image-level annotations which are then used to train fully
supervised models. WSOD annotations are often partial or oversized, resulting in poor
detector performance. Second row: Few-shot or low-shot object detection (LSOD) trains
models on only a handful of training examples. Research mainly focuses on situations
where only a specific subset of novel classes have limited training data. Bottom row:
Mixed Supervision for Object Detection (MSOD) combines a low shot set of images
containing object annotations with a large volume of images comprising only image-
level annotations. We train an online annotation module to generate a many-shots set
which, at the same time, is used to train a fully supervised model.

the low quality of bounding-box annotations produced, e.g . by WSOD methods,
that often manifest as partial or oversized boxes. Such results are not reliable
enough for use in real-world scenarios and can be observed to cause deteriora-
tion of detection performance when used in fully supervised models training.
This can be attributed to weak training signals requiring very large and cu-
rated datasets (WSOD) or very representative and carefully selected annotated
examples (FSOD).

To address the aforementioned challenges, we focus on a recent training
paradigm relying on Mixed Supervision for Object Detection (MSOD) [14, 7].
The distinction between this protocol and the previously introduced weak and
low data settings is illustrated in Fig. 1. The objective of MSOD is to exploit
and combine the complementary advantages provided by WSOD and LSOD;
weak (image-level) supervision affords the construction of large databases with
minimal effort, while low-shot supervision provides information rich, fully anno-
tated ground truth examples. The MSOD paradigm has, only very recently, been
initially investigated in two related works. Fang et al . [7] propose a cascaded ar-
chitecture yielding performance competitive with fully supervised counterparts
yet using a significant fraction of the full training data to achieve comparable
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performance. Pan et al . [14] use low-shot examples to refine bounding box an-
notations obtained from a pre-trained WSOD model [19], resulting in a method
intrinsically linked to the performance and drawbacks of WSOD techniques.

In this work, we approach the MSOD scenario from a different angle. Due to
the sparsity of rich training information provided, we expect a MSOD model to
output annotations of variable quality, especially for images containing crowded
scenes or objects with appearance substantially dissimilar to the training data.
In contrast to existing MSOD models we introduce an Online Annotation Mod-
ule (OAM), trained with mixed supervision, that can be used in conjunction
with any two-stage fully supervised object detection method to improve its per-
formance (e.g . Fast(er) R-CNN family [8, 17]). Our OAM generates, on the fly,
additional reliable automated annotations obtained from a larger set of weakly
annotated images (containing only image-level class labels). Furthermore, we
exploit prediction stability to reason about annotation reliability resulting in as-
sociated confidence scores. Generated annotations are used to train, concurrently
to the OAM, a fully supervised detector that shares the same encoding features.
This produces an intrinsic training curriculum for the standard detector model;
only simple images, labelled with high confidence will be presented to the model
at the outset. Compared to previous MSOD work, our OAM strategy provides
increased robustness against mislabeled crowded and ambiguous training images
as only confident MSOD annotations are exploited for fully supervised training.
Furthermore, our joint MSOD and fully supervised training provides intrinsic
regularisation for both tasks, allowing the learning of higher quality and more
discriminative feature extractors.

Experiments show that our strategy allows effective training of standard de-
tection algorithms with only minimal annotation requirements and significantly
outperforms WSOD and competitive MSOD approaches on PASCAL VOC 2007
and MS-COCO benchmarks. Additionally, we report competitive performance in
comparison to fully supervised alternatives, illustrating the ability of our OAM
to annotate a many-shot set of (weakly labelled) images that can be leveraged
to improve the fully supervised model performance.

In summary, we propose a new direction using Mixed Supervision for Object
Detection (MSOD). Our main contributions are the following:

– We introduce a novel Online Annotation Module (OAM), trained using
mixed supervision. This module allows expansion of the low-shot training set
of fully annotated images by generating reliable annotations from a larger
volume of weakly labelled images.

– Training our OAM concurrently with any two-stage object detection model
introduces a strategy for object detection performance improvement due to
the generated annotation. We report on the benefits of intrinsic regularisa-
tion afforded to both tasks when common encoding features are shared.

– The integration of the OAM with Fast(er) R-CNN improves their perfor-
mance by 17% mAP, 9% AP50 on PASCAL VOC 2007 and MS-COCO
benchmarks, and significantly outperforms MSOD approaches.
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2 Related work

Weakly Supervised Object Detection. A large body of recent work, consid-
ering WSOD, couples CNN feature extractors with Multiple Instance Learning
(MIL) frameworks, thus casting weakly supervised object detection as a multi-
label classification problem. Each image is typically represented as a bag of
pre-computed proposals (e.g . Selective Search [20], Edge Boxes [27], etc.) and
the objective is to identify proposals that are most relevant for bag classifica-
tion [2, 18, 21, 25]. Being framed as a classification task, MIL WSOD models
typically focus on proposals that comprise of either the most discriminative ob-
ject parts or image regions that define the presence of an object category. They
therefore struggle to detect full object extent (e.g . human faces in contrast to
an entire human body) or group multiple object instances of the same object
within a single bounding box [25, 14]. In order to address this issue, recent work
has focused on bounding-box refinement strategies using cascaded refinements of
MIL classifications [19, 18], using saliency maps [23, 25], adopting continuation
strategies [21, 22] and modelling uncertainty [1]. However, the ill-posed nature
of the WSOD problem and insufficient statistics provided by the PASCAL VOC
dataset (on which these approaches are usually evaluated) has lead to the devel-
opment of ad-hoc training strategies and parameter sensitive methods to cope
with the weak training signal, which substantially reduce generalisability across
datasets. In this paper, we argue that including a handful of labelled samples
yields accuracy and stability model improvements at only minimal annotation
cost. Usually, all the images annotated by MIL WSOD methods are used, in a
second step, to train fully supervised models [18, 21, 25]. Further previous work
has also focused on alternating between the pseudo-labelling of images and, in
conjunction, training a fully supervised model [9, 5]. In this work, we generate
bounding box annotations on the fly from mixed supervision and we concur-
rently train a fully supervised detector only on the images annotated with high
confidence.
Few-Shot and Mixed Supervision Object Detection. Few-Shot Object
Detection (FSOD) considers a fully supervised training set, and aims to achieve
strong performance on a set of novel classes comprising of only K annotated
training images per class. To date only a handful of works have focused on
FSOD [10, 24, 11, 4]. Such approaches typically adapt few-shot classification tech-
niques to the object detection setting, exploring metric learning [11] or meta-
learning [24] strategies. Mixed Supervision for Object Detection (MSOD) en-
hances a WSOD training set containing only image-level labels with a small
set of fully annotated (strong) images (e.g . K images per class, analogous to
an FSOD scenario) and aims to achieve strong performance on all the training
classes. Pan et al . recently propose BCNet [14], which learns to refine the output
of a pre-trained WSOD model using a small set of strong images. The definition
of small set explored in their work ranges from 10 shots to 20% of the entire
dataset (∼1000 images in PASCAL VOC 2007 training set). This approach pro-
vides a strong performance increase with respect to WSOD methods, however
remains highly dependent on the original WSOD model detections as input. If
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detections are originally missed by the pre-trained model, the approach can-
not recover. Moreover, BCNet requires the training of two independent models
which makes the adaption of WSOD parameters, i.e. training for new datasets,
challenging. In this work, we instead propose a one-stage approach relying on
an adaptive pool of annotations, updated dynamically as training progresses.
EHSOD [7] and BAOD [15] focus on larger data regimes (e.g . 10% to 90%) and
aim to reduce the data required to reach fully supervised performance using a
cascaded MIL model and a student-teacher setup trained on weak and strong
annotations, respectively. In contrast to all outlined methods, we propose in-
stead to learn, and annotate on the fly, only a subset of weak images that can be
labelled with high confidence. These additional samples are then used together
with strong images to train an object detector and thus improve performance.

3 Method

Let I be a set of training images annotated with image-level supervision. Un-
der our mixed supervision paradigm, a subset of these images, S ⊂ I with
|S| � |I|, is further annotated with bounding box annotations. We refer to the
images contained in S as strong training images, while the images inW = I \S,
that have only image-level annotations, are referred to as weak training images.
An overview of our proposed method is reported in Fig. 2. Our model comprises
two branches with shared encoder backbone, and employs an ROI pooling layer
to compute a fixed-length feature representation for each image bounding box
proposal. The first branch of our model employs both weak and strong train-
ing images to learn an Online Annotation Module (OAM) for weak training
images. The OAM generates bounding box annotations, with associated confi-
dence scores, on the fly, for every weak training image. Annotated weak images
are added to a third set of images, P ⊂ W, if they have been annotated with
high confidence, and can be subsequently removed if their annotation confidence
drops during training. Images contained in P are referred to as semi-strong train-
ing images throughout the paper. The second branch of our model is designed
as a standard fully supervised component and trained, in parallel, in an end-
to-end manner using strong and semi-strong images. At testing, only the fully
supervised model is used for object detection.

Given an input image, we first compute a set of B candidate proposals
{br}Br=1, using either an unsupervised method (e.g . Selective Search [20] or Edge
Boxes [27]) or a Region Proposal Network (RPN) [17], and their associated fea-
ture vectors {ξr}Br=1. These feature vectors {ξr}Br=1 are obtained using a stan-
dard CNN backbone and ROI Pooling layer and provide a common input to
both of our model branches: the OAM and the fully supervised branch.

3.1 Online Annotation Module

Our OAM is designed to jointly exploit weak and strong supervision in an effi-
cient manner. It comprises three main components: 1) a joint detection module
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Fig. 2. Architecture of the proposed approach. Our model comprises two branches with
a shared encoder. Our Online Annotation Module (OAM) is trained on weakly (W)
and strongly (S) annotated images to generate, on the fly, confident annotations for
W images which are added to a pool of semi-strong (SS) images. The model’s second
branch uses SS and S images to train a standard fully supervised detection model.

exploiting weak and strong labels in a single, common architecture to predict
bounding boxes and their classes, 2) an online bounding box augmentation step
that generates refined bounding box proposals, 3) a supervision generator, iden-
tifying confident annotations to be used as supervision. We next describe all
three components in detail.

Joint detection module. Similarly to the strategy proposed in [7], we com-
bine a multiple instance learning (MIL) type image-level classification task with a
fully supervised joint classification and regression task. Our joint detection mod-
ule hence comprises three parallel, fully connected layers focusing on three differ-
ent subtasks: proposal scoring, classification and regression (Fig. 2, online anno-
tation module block). Proposal scoring γC(c, l) and classification γR(c, l) ∈ RC×B

are obtained by applying the softmax function to the output of their layers along
both dimensions, independently, (classes for γC, proposals for γR). After this op-
eration, γC(c, l) represents the probability that the l-th proposal belongs to class
c, while γR(c, l) represents the proportional contribution that proposal l provides
to the image being classified as class c. Following [2], these layers are trained by
exploiting the image-level supervision of both strong and weak images. In par-
ticular, a proposal score φP = γC�γR, per class, is obtained by combining them
where � is a Hadamard product. Then, summing these scores over proposals,
αc =

∑R
r=1 φP , enables the use of a binary cross-entropy loss as image-level loss

function:

Lgc(αc, yc) = −
C∑

c=1

[(1− yc)log(1− αc) + yclog(αc)] (1)

where yc is the label indicating the presence or absence of class c in an image.
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Similar to traditional object detectors, we use strong images to compute
bounding box regression and classification via the corresponding fully connected
layers. We therefore combine weak and strong supervision by providing direct su-
pervision to proposal-level class prediction γC. For regression, each bounding box
b is parametrised as a four-tuple (x, y, h, w) that specifies its center coordinate
(x, y) and its height and width (h,w). For each proposal classified as foreground
in a strong image, this regression branch predicts the offset of these coordinates
tk = (tx, ty, th, tw). Hence, for every strong image, the following additional loss
is computed on a batch of M proposals:

Lp(γ, u, t, v) = Lcls(γ, u) + 1[u ≥ 1]Lreg(t, v) (2)

where:

Lcls = − 1

M

M∑
r=1

C+1∑
c=1

ucr log(γcr), Lreg(t, v) =
∑

i∈(x,y,h,w)

smoothL1(ti − vi) (3)

Parameters γ and u constitute the predicted and target proposal classes respec-
tively, t and v the predicted and target bounding box offsets respectively and
smoothL1 is a smooth L1 loss function [8].

The loss function of the joint detection module is hence LIs = Lp+Lgc on
strong images, while the loss function on weak images is LIw = Lgc. Enforcing
synergy between the two types of supervision regularises the low-shot task thanks
to the statistical information provided by weak images. Moreover, due to the
instance-level annotations provided by strong images, this also constrains the
MIL task and encoder to learn stronger discriminative features between full and
partial-extent object proposals.
Online Bounding Box Augmentation Strategy. Learning to update and
improve bounding box spatial regions via low-shot regression is highly challeng-
ing. When initial inference and ground-truth box overlap is small, large correc-
tions (spatial offsets) are required. Previous work (BCNet [14]) actively elects
to exclude such challenging samples, further reducing already highly limited
data. We alternatively fully exploit available annotations and push our regres-
sion branch output through a second forward pass of our OAM (red arrow in
Fig. 2).

More specifically; after the first forward pass, we select the M top scoring
proposals, per class, corresponding to image-level ground-truth. M is defined
as half the size of the proposal batch used to train the strongly supervised
component. This accounts for the presence of irrelevant background proposals
and allows us to fix this hyperparameter. Once regression branch offsets have
been applied, our ROI pooling layer ingests the proposals and yields a new set
of bounding box features. Loss functions are evaluated using the updated boxes
features and combined with the first pass loss. The overall loss function of our
OAM branch is then: L1B = LI

Is
+LI

Iw
+LII

Is
+LII

Iw
, where superscripts I and II

indicate the first and second pass, respectively. At every iteration, a batch with
the same number of weak and strong images is used.
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Fig. 3. Proposed online pseudo-supervision generation strategy. At each iteration, a
new set of bounding boxes Dt is computed via classification, regression and NMS of
the features from previous set Dt−1. If bounding box predictions converge at iteration
T < K, and all proposal classes agree with the image-level label, the weak image is
annotated.

Motivation for our second pass is two-fold. Firstly augmentation is intrinsi-
cally provided as new sets of proposal candidates are generated for regression
and classification task training. In contrast pre-computed proposals (predomi-
nant in WSOD), that lack additional external augmentation strategies, provide
only static input, reducing sample variability during training. Secondly, our re-
gression task is regularised as any weak proposals receiving modifications that
hinder correct image-level classification are penalised.

Online Pseudo-Supervision Generation. The key objective of our OAM
is to generate reliable annotations on a large set of weakly labelled images in
order to guide the training of a fully supervised second branch. As the OAM is
trained concurrently with the second branch, it is critical to identify and add only
reliable annotations to the pool of training images. Our rationale is that only
these images should be used to train the final supervised detection network,
while images that the joint detection module struggles to annotate with high
confidence should not be used for model training, as they may hurt the training
process and deteriorate detector performance.

During early stages of the training process, uncertainty regarding both the
class of bounding box proposals and the related regression refinement of box
coordinates will be high. As training progresses and model predictive quality
improves, confidence, accuracy and stability will increase. This results in an
increasingly difficult set of images being accurately annotated. We propose to
exploit this behaviour by introducing a supervision generator that is able to
reliably identify annotated images, creating a set we refer to as semi-strong
images P ⊂ W, that are used to train the fully supervised branch. Intuitively,
P will comprise “easy” images in early stages of training (e.g . single instances,
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Fig. 4. Examples of semi-strong images. First row: annotated semi-strong images at
epoch E, with T iterations required for convergence (see text for details). Second
row: examples of semi-strong annotation at pairs of early and late epochs. Magenta
color: OAM annotation (class, bounding box score). Yellow: OICR [19] annotation. The
results are obtained from a model trained on PASCAL VOC 2007 with 10 shot strong
supervision.

uniform colour backgrounds) and sample diversity will progressively increase as
the model becomes more accurate (examples of images annotated by our OAM
at different training epochs are reported in Fig. 4).

In order to build a set of semi-strong images P, with bounding boxes and
associated annotation confidence scores, we propose the following mechanism.
Given a weak image I, we obtain a set of N1 bounding boxes D1 = {cr, pr}N1

r=1

after Non-Maximum Supression (NMS) is performed on the output of the joint
detection module, where cr and pr correspond to the class label and coordinates
of box r respectively. Dt = {cr, pr}Nt

r=1 at every iteration t > 1, using Dt−1 as
input candidate proposals. More specifically, the bounding boxes Dt−1 obtained
at the previous iteration are fed again to the RoI Pooling Layer, providing a
new set of image features allowing to compute new proposal coordinates. The
process iterates until bounding box prediction stabilises and is stopped when
Dt = Dt−1 for three consecutive iterations, i.e. for each bounding box bt ∈
Dt, there exists a corresponding box bt−1 ∈ Dt−1 such that bt and bt−1 have
intersection-over-union (IoU) ≥ 0.5 and possess matching class predictions (i.e.
a standard criterion for characterising object equivalence in detection methods).
We assign a global confidence weight 1/T , per image, where T is defined as the
first of three iterations in which Dt = Dt−1. Pseudo-code for the OAM algorithm
is found in Supplementary Materials A.

The set of proposals D1 obtained at iteration 1 constitute the final bounding
box annotations. Each box is weighted (box level confidence) by its average IoU
with the best matching box at all subsequent iterations. Boxes absent at a given
iteration (IoU < 0.5) are, by definition, down weighted due to being assigned
an overlap of 0 at that iteration (Fig. 3 shows an example). Images that do not
reach convergence byK iterations, or that fail to find any foreground proposals at
iteration t, are considered to be annotated with low confidence and are not added
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to the semi-strong pool. We set the maximum number of updates K = 30, to
prevent large sets of iterations and observe that large T (e.g . T > K) would only
occur during early stage training in practice. Finally, the image is only added
to the semi-strong pool if the set of obtained annotations contains all classes
pertaining to the image-level label. We highlight that images requiring large
iteration count T for convergence are assigned low confidence scores by design
and therefore have limited influence on the training procedure of the second
branch. As weak images get annotated by the proposed OAM during training;
the semi-strong set expands, while at the same time refining annotations and
confidence as the model improves. At a given training step, a weak image that
is not successfully annotated, and yet was present in the pool of semi-strong
images, will be removed. In this way, the set of semi-strong images has the
ability to both expand and contract during training.

3.2 Fully Supervised Branch

Concurrently to OAM training, the obtained strong and semi-strong sets of
images are used to train a fully supervised second branch, that comprises both
bounding box classification and regression modules on the proposal features ξrf
in a similar fashion to Fast(er) R-CNN [8] style methods. In particular, at every
training iteration a batch with the same number of strong and semi-strong images
is used. The loss function for this branch is:

L2B(p, u, t, v) = Lcls(p, u) + Lreg(t, v), (4)

where p is the ROI class predictions, t is the predicted offset between ROIs and
targets, u is the class label and v is the target offset. Only ROIs with foreground
labels contribute to the regression loss, Lreg. The Lcls loss constitutes a weighted
cross-entropy for each image:

Lcls(p, u) = − 1

T

∑
i

ωipilog(ui) (5)

where the proposals in each batch, contributing to the loss, are indexed by i,
the confidence for GT proposal ui is denoted ωi and the image-level annotation
confidence score is denoted 1

T . Strong images are assigned image and proposal-
level weights of 1. In the early stages of the training process, the semi-strong
annotations present some localisation inaccuracies, but are nonetheless highly in-
formative to learn foreground vs background proposals. As training progresses,
our OAM improves annotation quality with tighter object coverage and these
additional high accuracy annotations will more often contain proposals of ex-
actly full object extent. Such annotations reinforce and strengthen a base signal,
provided by strong images alone, towards better bounding-box classification. We
also explored utilising semi-strong images to improve bounding-box regression,
analogously. In practice, however, this produced slightly worse results. We hy-
pothesise that the discrete problem, associated with the bounded classification
loss, affords more robustness to (early-stage) imperfect semi-strong annotations
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method backbone aero bike bird boat bottle bus car cat chair cow table dog horse moto person plant sheep sofa train tv mAP(%)

10% images

Fast R-CNN VGG 47.9 62.9 45.5 34.2 23.0 54.6 70.8 65.5 27.2 61.1 39.8 60.6 70.0 63.3 64.2 14.7 52.9 43.0 55.7 49.5 50.3
BAOD VGG 51.6 50.7 52.6 41.7 36.0 52.9 63.7 69.7 34.4 65.4 22.1 66.1 63.9 53.5 59.8 24.5 60.2 43.3 59.7 46.0 50.9
BCNet VGG 64.7 73.1 55.2 37.0 39.1 73.3 74.0 75.4 35.9 69.8 56.3 74.7 77.6 71.6 66.9 25.4 61.0 61.4 73.8 69.3 61.8
Ours VGG 65.6 73.1 59.0 49.4 42.5 72.5 78.3 76.4 35.4 72.3 57.6 73.6 80.0 72.5 71.1 28.3 64.6 55.3 71.4 66.2 63.3

EHSOD ResNet 60.6 65.2 55.0 35.4 32.8 66.1 71.3 75.3 38.4 54.1 26.5 71.7 65.0 67.8 63.0 27.7 52.6 48.6 70.9 57.3 55.3
BCNet ResNet 68.3 72.0 61.2 48.1 40.8 73.3 73.4 77.8 37.0 69.7 58.3 78.2 80.0 67.5 70.5 27.4 62.9 63.6 73.4 63.6 63.4
Ours ResNet 62.3 73.2 61.8 56.2 44.3 75.4 76.7 80.5 39.5 73.7 61.7 78.8 82.8 71.5 74.3 27.0 67.4 62.7 71.2 64.4 65.3

10 shots

BCNet VGG 59.7 69.1 44.6 29.4 40.1 69.2 73.2 72.9 32.9 58.1 53.3 66.7 71.3 66.0 61.7 24.6 53.0 62.0 67.2 67.4 57.1
Ours VGG 60.2 71.6 51.5 45.6 43.5 71.1 75.8 72.2 33.8 62.9 54.0 70.0 72.9 67.5 67.4 23.6 61.5 59.1 63.6 66.7 59.7

BCNet ResNet 63.4 69.4 54.7 39.5 35.9 70.6 71.8 71.8 33.5 64.6 50.0 65.3 72.7 62.5 61.6 29.2 54.5 63.3 66.7 69.4 58.5
Ours ResNet 61.7 72.3 56.5 52.0 37.2 71.3 74.6 77.8 36.0 67.1 58.3 78.1 77.6 68.0 71.8 25.5 63.6 62.4 72.7 61.2 62.3

Table 1. Detailed detection performance (%) on VOC07 dataset. In all the setting,
the same BCNet data splits were employed [14].

and therefore compute bounding box regression on only strong images in our
final model. To conclude, collecting the introduced components results in the
complete loss function for our model: Ltot = L1B + L2B . At testing, only this
fully supervised model is deployed.

4 Results

4.1 Datasets and Implementation Details

We evaluate the performance of our proposed method on two common detection
benchmarks: the PASCAL VOC 2007 [6] and the MS-COCO 14 dataset [13],
referred to as VOC07 and COCO14. VOC07 has 5011 training and 4952 testing
images across 20 categories. COCO14 has 82k training and 5k testing images
across 80 categories. Following evaluation strategies used in the literature, we
evaluate detection accuracy on VOC07 using mean Average Precision (mAP),
while we employ the COCO metrics, AP50 and AP50:95, on the COCO dataset.
In the reported experiments, reference to 10% of labelled images dictates that
10% of all images have bounding box annotations while the remaining 90% have
image-level labels. This corresponds to 500 images in VOC07, 8.2k images in
COCO14. With reference to our “N -shot” experimental setup, we define each
class to have access to N images possessing bounding box annotations. All the
experiments on VOC07 use the same data splits provided by BCNet [14], exper-
iments on COCO14 use random selection.

We employ popular network backbones VGG16 and ResNet101 in our exper-
iments to retain consistency with recent approaches. We combine our OAM with
Fast R-CNN [8] (using Edge Boxes [27]) and Faster R-CNN using a trainable
RPN [17]. Optimisation of all models is performed using SGD with weight de-
cay 0.0001 and momentum 0.9. For experiments concerning the VOC07 dataset,
models are trained for 60 epochs. The initial learning rate is 0.001 (first 40
epochs) and reduced to 0.0001 for the final 20 epochs. Analogously for MS COCO
experiments; models are trained for 12 epochs, with learning rate 0.001 in the
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Method type Method 10-shots/WSOD 10% images

AP (%)
person class

mAP (%)
AP (%)

person class
mAP (%)

fully supervised Fast R-CNN 58.0 42.1 64.2 50.3
fully supervised Faster R-CNN 54.3 37.7 55.7 46.7

WSOD PCL 17.8 43.5 - -
WSOD PCL + Fast R-CNN 15.8 44.2 - -
WSOD WSOD2 21.9 53.6 - -

MSOD BAOD - - 59.8 50.9
MSOD EHSOD (ResNet + FPN) - - 63.0 55.3
MSOD BCNet 61.7 57.1 66.9 61.8
MSOD Ours 67.4 59.7 71.1 63.3
MSOD Ours + RPN 64.3 54.6 68.9 60.5

fully supervised Fast-RCNN 100 % images (Ours upper bound) 76.8 (person), 71.6
fully supervised Faster-RCNN 100 % images (Ours + RPN upper bound) 75.6 (person), 67.0

Table 2. Comparison to SOTA on VOC07 dataset. A VGG backbone is used un-
less specified. Gray rows correspond to methods learning an RPN (vs methods using
precomputed proposals).

first 9 epochs and then reduced to 0.0001 for the final 3 epochs. Remaining model
hyper-parameters follow the values reported in [14]. For data augmentation, we
apply the same augmentation strategy as BCNet [14] for fair comparison, i.e. we
bilinearly resize images to induce a minimum side length ∈ {400, 600, 750} and,
for fully supervised training, uniformly crop image regions with a fixed 600×600
window. All experiments are implemented in PyTorch using a single GeForce
GTX 1080 GPU.

4.2 Comparisons with State-of-the-art

Baselines: We evaluate our model with respect to two SOTA WSOD methods,
PCL [18] and WSOD2 [25], that were evaluated on both VOC07 and COCO14.
We further compare to three MSOD approaches: the two level approach of BC-
Net [14], end-to-end methods BAOD [15] and EHSOD [7]. To the best of our
knowledge, these are the only three methods adopting mixed supervision. All
three methods were evaluated on VOC07. Results for BCNet, the best perform-
ing baseline on VOC07, were not available for the COCO dataset. The approach
requires training two models (OICR and BCNet) with two separate sets of pa-
rameters that need to be adapted to the new dataset, making it highly chal-
lenging and time consuming to provide a fair comparison, hence we were not
able to provide it. Similarly, EHSOD was evaluated only on the COCO 2017
database with a much larger set of annotated training images (approx. 12k),
making results not directly comparable to our experiments and different from
the low-shot setting studied in this work. Finally, we compare our results with
respect to Fast R-CNN and Faster R-CNN trained with full supervision (our
upper bounds) and low-shot supervision (i.e. 10% and 10-shot training data),
using the same augmentation strategy as all previous models.
PASCAL VOC 2007: We report detailed per-class results, compared to com-
peting MSOD approaches in Tab. 1 using 10% annotated training images, and
10 shots. We consistently outperform all competing methods in terms of mAP,
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Method type Method AP@.50 AP@[.50,.95]

fully supervised Fast R-CNN - 10 shots 22.1 10.0
fully supervised Faster R-CNN - 10 shots 16.1 6.7

WSOD PCL 19.4 8.5
WSOD PCL+ Fast R-CNN 19.6 9.2
WSOD WSODˆ2 22.7 10.8

MSOD Ours - 10 shots 31.2 14.9
MSOD Ours + RPN - 10 shots 24.9 10.2

fully supervised Fast R-CNN - 100% data 49.9 29.0
fully supervised Faster R-CNN - 100% data 42.1 20.5

Table 3. Comparison with the SOTA on MS-COCO14 with 10-shot training examples
(VGG backbone). Gray rows correspond to methods learning an RPN (vs methods
using precomputed proposals).

with an improvement of up to 4% with respect to BCNet in the 10 shot scenario
(ResNet), and 10% with respect to EHSOD in the 10% images scenario. We
further highlight that BCNet constitutes a two-level WSOD dependent method.
The influence of the chosen WSOD component is clearly visible; object classes
where their method excels, and surpasses our per-class performance, are the same
classes for which their adopted WSOD component (OICR) provides best initial
bounding box estimations [19]. In Tab. 2, we provide more comparisons in the
10 shots and 10% images scenarios using precomputed proposals (white rows)
and an RPN [17] (grey rows). We highlight that we use an off-the-shelf RPN
without parameter optimisation, and expect performance to be worse, and not
directly comparable to strategies relying on pre-computed proposals. We further
compare with top performing WSOD methods and Fast(er)-RCNN approaches
and highlight our performance on the “person” class, often reported as one of the
most challenging classes for WSOD methods due to the large intra-class vari-
ability in terms of appearance [14, 25]. We significantly outperform all SOTA
methods, and substantially improve with respect to WSOD methods, in partic-
ular for the person class, with only minor additional labelling cost. Comparing
to Fast(er)-RCNN methods, we highlight that our OAM improves upon models
trained on 10% data and 10 shots by a large margin (13% and 17% respectively),
reaching performance close to the fully supervised upper bound.

MS-COCO14: We provide further comparison to additional benchmark datasets
in order to highlight model generalisability. We note that contemporary WSOD
methods mainly focus on detection datasets of modest size such as VOC07.
COCO14 is significantly larger, and constitutes a more challenging dataset due
to both the increased size and variability expressed in image content. Tab. 3 re-
ports comparisons between our method (precomputed and RPN proposals) and
WSOD approaches PCL and WSOD2 on COCO14 using 10 shots labelled im-
ages. As we compare solely to WSOD methods, we limit our experiments to the
10 shots setting, as 10% annotated examples provide a very significant advantage
compared to WSOD methods. We additionally provide comparison to Fast(er)
R-CNN methods trained on 10 shots as well as their fully supervised equivalent
on 100% images. We highlight that our method maintains robust performance
and significantly outperforms the WSOD methods and 10 shots Fast(er)-RCNN
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10 shots AP (%)

SE BBA OAM 1B 2B aero bike bird boat bottle bus car cat chair cow table dog horse moto person plant sheep sofa train tv mAP(%)

X X 42.0 57.1 40.2 34.2 30.3 62.6 69.0 62.5 23.2 63.8 33.0 58.5 72.2 63.3 62.9 20.8 54.9 44.2 54.3 55.2 50.2
X 30.9 53.2 35.8 27.8 19.9 51.6 65.8 54.7 19.3 48.3 27.8 46.3 57.7 54.3 58.0 14.9 49.1 37.5 43.8 44.7 42.1

X X X 44.3 60.2 40.4 37.8 28.1 67.0 72.8 64.1 24.2 64.6 40.9 60.5 70.5 61.6 63.5 16.1 55.0 46.2 57.5 58.0 51.7
X X X 47.3 62.1 42.4 35.2 28.2 67.0 72.8 65.1 21.7 65.3 43.4 61.4 70.6 63.5 63.0 16.5 57.6 45.8 58.7 54.7 52.1
X X X 50.3 67.3 49.8 44.1 35.9 64.3 72.7 70.3 32.6 57.7 44.5 66.3 65.6 68.3 62.8 25.2 60.0 48.8 62.6 64.5 55.7
X X X 61.4 71.0 48.5 42.9 37.8 69.8 75.6 72.8 34.0 63.2 47.6 71.9 71.1 71.1 64.6 25.7 63.4 55.6 61.9 65.8 58.8
X X X X 57.9 71.4 48.2 42.7 38.0 71.4 75.5 75.5 34.0 67.1 54.0 71.4 74.3 69.4 65.7 23.7 61.6 56.1 61.0 65.0 59.2
X X X X 60.2 71.6 51.5 45.6 43.5 71.1 75.8 72.2 33.8 62.9 54.0 70.0 72.9 67.5 67.4 23.6 61.5 59.1 63.6 66.7 59.7

Table 4. Ablative analysis of our method on VOC07 for the 10 shot scenario. SE:
shared encoder, OAM: second branch training also on OAM generated semi-strong
images, BBA: bounding box augmentation strategy. 1B: first branch output, 2B: second
branch output.

models (9%). This provides evidence in support of our claim that the strategy
of providing mixed supervision significantly improves generalisation ability in
settings that entail more difficult tasks with higher variability.

4.3 Ablation Studies

We conduct experiments to understand the different contributions and assign-
ment of credit for our OAM components using the VOC07 dataset and a VGG
backbone. Tab. 4 shows ablative results for the 10 shots scenario while additional
results for the 10% images scenario are reported in supplementary materials.
Studied components are: SE : shared encoder (i.e. no SE entails independent
branch training); OAM: fully supervised branch is also trained on semi-strong
images generated by the OAM; BBA: online bounding box augmentation strat-
egy. For each configuration, we report mAP with respect to the output of the
OAM (first branch; 1B) as well as the output of the fully supervised branch (sec-
ond branch; 2B). We experimentally verify the importance of each component;
performance consistently improves as new components are integrated. We note
that the shared encoder strongly improves the fully supervised branch, while the
OAM, and communication between branches, affords mutual branch improve-
ment. Both performance gains can be attributed to the more discriminative full
vs. partial object proposal features learned by the shared encoder.

5 Conclusion

We have introduced a novel online annotation module (OAM), trained using
mixed supervision, that learns to generate annotations on the fly and thus af-
fords concurrent training for fully supervised object detection. The OAM can be
combined with any two-stage object detector and provides an intrinsic curricu-
lum to improve the training procedure. Extensive experiments on two popular
benchmarks show SOTA performance in the mixed supervision scenario, and
significant improvement of two-stage detection methods in low-shot settings.
Moreover, our method has the potential to increase performance on rare, long
tail classes that typically only possess a handful of annotated examples.
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